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Abstract.

Metastability is observed in fluids, solids, plasmas and other systems, and it often de-
termines their behavior. A better microscopic understanding of this ubiquitous natural
phenomenon, which is mathematically challenging,[1] is therefore of great practical and
theoretical interest. In particular, metastability is relevant to the behavior of magnetic
storage devices. Here one needs in practice to create and to control fine grains, i.e., mag-
netic particles whose size ranges from mesoscopic to atomic levels, namely, clusters of
104 to 102 spins, and even smaller ones. The underlying physics is much less understood
than for bulk properties. In particular, one cannot assume that such particles are neither
infinitenor pure.That is, they have free borders, which results in a large surface/volume
ratio inducing strong surface effects, and impurities. The microscopicnature of the latter,
which shows up in actual specimens as spin, bond and/or lattice disorder and other in-
homogeneities, quantum tunneling,[2] etc., suggests they might dominate the behavior
of near�microscopic particles; in fact, they are known to influence even macroscopic
systems. An interesting issue is therefore understanding the formation of a new phase
inside a metastable cluster which is finite, small and contains impurities.

Following recent efforts, we study in this paper the simplest possible model of this
situation, namely a 2d Ising ferromagnet with free boundaries that we endow with a
weak dynamic perturbation competing with the thermal spin-flip process, which impedes
equilibrium. Consider then the Hamiltonian function � ��s� � �J ∑�i� j� sisj �h∑N

i�1 si ,
where J � 0 (ferromagnetic interactions), si � �1 stands for the two possible states of
the spin at site i of the square lattice, i � 1� ����N, and the first sum is over any pair �i� j�
of nearest�neighbor sites. The system configuration, �s� �si�, is let to evolve in time
due to superposition of two canonical drives. That is, we chose the transition probability
per unit time for a change of�s to be

ω��s��s i� � p��1� p�
e�

1
T ∆�i

1� e�
1
T ∆�i

(1)

(Glauber rule). Here �s i stands for �s after flipping the spin at i, and ∆�i �� ��s i��
� ��s�. The Boltzmann constant is set kB � 1 in this paper. One may interpret that
this rule describes a spin�flip mechanism under the action of two competing heat
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FIGURE 1. (a) Decay from a metastable state for a R� 30 particle. Avalanches are seen by
direct inspection. Time is in Monte Carlo Steps per Spin (MCSS). Here τ0 � 1030 MCSS. (b)
Large avalanche size distribution P�∆m� for the circular magnetic nanoparticle and varying R.
From top to bottom, R� 120, 84, 60, 42 and 30. Curves have been shifted in the vertical direction
for visual convenience. The inset shows P�∆ t� for the same system sizes.

baths: with probability p, the flip is performed completely at random (�s is assumed
in contact with a heat bath at ‘infinite’ temperature), while the change is performed at
temperature T with probability 1� p. For p� 0, eq. (1) corresponds to the equilibrium
Ising case, which exhibits for h � 0 a critical point at T � TC � 2�2691J. Otherwise,
the conflict in (1) impedes canonical equilibrium, and the system evolves with time
towards a non�equilibrium steady state whose nature essentially differs from the Gibbs
state for T . It is assumed that this kind of stochastic, non�canonical perturbation for
p � 0 may actually occur in nature due to microscopic disorder or impurities, etc.[2]
Motivated also by the experimental situation, we choose to study a finite, relatively
small two�dimensional system subjected to open circular boundary conditions. This
system is defined on a square lattice, where we inscribe a circle of radius R. Sites
outside this circle do not belong to the system and hence contain no spins. We mainly
report here on a set of fixed values for the model parameters, namely, J � 1� h��0�1�
T � 0�11TC and p� 10�6. This choice is dictated by simplicity and also because (after
exploring the behavior for other cases) we came to the conclusion that this corresponds
to an interesting region of the system parameter space, where the effects of p and T are
comparable and clusters are compact and hence easy to analize. We believe that we are
describing here typical behavior of our model, and the chances are that it can be observed
in actual materials. The lattice is set initially with all spins up, si � �1 for i � 1� ����N.
Under negative field �h��0�1�, this ordered state is metastable, and it eventually decays
to the stable state which, for T � 0�11TC, corresponds to m� N�1 ∑i si 	 �1. Finally,
the simulations reported here required in practice using the s�1 Monte Carlo algorithm
with absorbing Markov chains,[3, 4] and the slow forcing limit approximation.[5]

Under these conditions, the system, after spending a long time wandering around the
metastable state, finally relaxes towards the stable one. As it is clear in Fig. 1.a, the
relaxation of magnetization occurs via a sequence of well�defined abrupt jumps. That
is, when the system relaxation is observed after each MCSS, which corresponds to a
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FIGURE 2. Some snapshots of a particular decay of a circular nanoparticle of radius R� 120.
Avalanches are plotted in grey. Notice that large avalanches appear only for curved domain walls.

’macroscopic’ time scale, stricktly monotonic changes of m�t� can be identified that we
shall call avalanchesin the following. To be precise, consider the avalanche beginning
at time ta, when the system magnetization is m�ta�, and finishing at tb. We define its size
and lifetime or duration, respectively, as ∆m � 
m�tb��m�ta�
 and ∆t � 
tb� ta
. Our
interest is on the histograms P�∆m�, P�∆t� and P�∆t 
∆m�.

Fig. 1.b shows the avalanche size distributions P�∆m� for different sizes Rof the mag-
netic nanoparticle, once the trivial extrinsic noise[6] has been substracted[7]. A power
law behavior, followed by an (exponential) cutoff is clearly observed. The measured
power law exponents, P�∆m� � ∆�τ �R�

m , show size-dependent corrections to scaling.
Similar corrections have been also found in real experimental systems.[8] These cor-
rections are compatible with a functional dependence of the form τ �R� � τ∞ � a�R2,
where τ∞ � 1�71�4�. Analogously, the lifetime distributions also show power law be-
havior, P�∆t�� ∆�α �R�

t . The inset of Fig. 1.b shows P�∆t� (once substracted the extrin-
sic noise) for the same system sizes. Again, the exponents α �R� are compatible with a
law α �R� � α∞ � a��R2, where α∞ � 2�25�3�. Hence we expect avalanche power law
distributions P�∆m� � ∆�τ∞

m and P�∆t� � ∆�α∞
t , with τ∞ � 1�71�4� and α∞ � 2�25�3�,

in the Thermodynamic Limit. On the other hand, the power law behavior of both P�∆m�
and P�∆t� lasts up to an exponential cutoff ∆c

m and ∆c
t , respectively, which depends

on system size. We measure these cutoff values fitting an exponential function of the
form exp��∆m�t��∆c

m�t�� to the cutoff tails, and find a power law dependence with R, i.e.

∆c
m� Rβm and ∆c

t � Rβt , where βm � 2�32�6� and βt � 1�53�3�. Analogous power law
dependences of cutoff with system size have been found in real magnetic materials. [9]
In order to investigate the relation between the size and lifetime of an avalanche, we
study the histogram P�∆t 
∆m�, i.e. the probability of measuring an avalanche with life-
time ∆t when its size is ∆m. We find that for each value of ∆m, the marginal distribution
P�∆t
∆m� shows a narrow peak around certain typical value �∆t�∆m

. This means that the
relation between the lifetime and the size of an avalanche is rather deterministic in our
model system. If we now assume that this relation is of the form ∆m� ∆γ

t , we are able
to measure γ in an indirect way using the cutoff dependence with R. In this way we
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FIGURE 3. (a) The mean avalanche size �∆m� and the mean curvature �� � as a function of
magnetization for a particle with R � 30 after averaging over Nexp � 3500 runs. The inset
shows a semilog plot of the avalanche size distributions for domain walls with constant nonzero
curvature. Curvature increases from bottom to top. (b) Avalanche size and lifetime distributions
as obtained from eq. (2), for N � 200, Amin � 0�007 y Amax� 1. For comparison we also show
the measured P�∆m� and P�∆t� for the R� 60 particle.

obtain γ � βm�βt which yields γ � 1�52�5� using the measured values of βm and βt . The
observed avalanche power laws strongly depend on the presence of both the free bor-
ders and the impurity p. This apparentscale-free behavior disappears if the magnetic
nanoparticle shows no free borders, or if we make p� 0 in eq. (1).

The reported results apparently support the existence of an underlying continuous
phase transition responsible of the observed scale invariance. However, as we will see
below, the observed power law behavior is effective, in the sense that the system is
not really critical. Instead, we will show that a finite (but large) number of different,
gap�separated typical scales appear superposed in such a way that the global distribu-
tions shows several decades of power law behavior. Fig. 2 shows some snapshots of the
demagnetization process. Due to the low temperature, the evolution of the system is de-
termined by the interface and its interplay with the open boundaries. In fact, we observe
that large avalanches are associated to curved regions of the domain wall. Interfacial
curvature appears due to the faster growth of the domain wall near the concave open
borders, and it gives rise to large avalanches towards configurations with less interfacial
energy. In order to clarify this relation we study now the mean avalanche size �∆m� and
the mean interface curvature �� � (measured as the number of step-like up interfacial
spins) as a function of magnetization. Fig. 3.a shows both curves measured in a R� 30
particle after averaging over 3500 runs. Here we observe that there is an high correla-
tion between avalanche size and domain wall curvature. High curvature involves large
avalanches and reversely. Therefore the typical avalanche size is perfectly determined
by the curvature of the interface when this avalanche starts. Moreover, we can measure
the probability of finding an avalanche of a given size ∆m if the domain wall has cer-
tain constant curvature. In order to do that we design an (unrealistic) modification of
our system where a domain wall with constant curvature evolves indefinitely.[7] This
evolution proceeds also via avalanches. The inset of Fig. 3.a shows a semilog plot of



the avalanche size distribution obtained in this system for different curvatures � . Apart
from the trivial (exponential) extrinsic noise, a stretched exponential regime for large
avalanches is observed, Plarge�∆m� � exp���∆m�∆̄m�

η �, with η � 0�89 and where ∆̄m

depends in an exponential fashion on � . Hence, a domain wall with constant curvature
� is characterized by avalanches with a typical size ∆̄m�� �. On the other hand, interfa-
cial curvature in the magnetic nanoparticle takes a wide range of different values as the
particle demagnetizes (see Figs. 2 and 3.a). Thus, the power law avalanche distributions
observed in the circular particle are just finite superpositions of distributions with well
defined typical sizes.

Moreover, we can calculate[7] the result of a finite superposition of exponential
distributions, each one with a well-defined typical rate. Let’s��x
A� � Aexp��Ax� be
the probability of finding an event of size x when the system is characterized by certain
observable taking the value A. Now Q�A� is the probability of finding the system in a
state characterized by A. If we assume that the observable A can take a finite number
N � 1 of equally spaced values in the interval �Amin�Amax�, An � Amin� n∆, where
∆ � �Amax�Amin��N, and that all these values are equally probable, ��A� � constant,
then the probability of finding an event of size x can be written as[7],

��x� � ∆e�Aminx
� Amin

1� e�∆x �Amax
e��N�1�∆x

1� e�∆x �∆
e�∆x�1� e�N∆x�

�1� e�∆x�2

�
(2)

Fig. 3.b shows the event size distribution ��x� obtained from eq. (2) for N � 200,
Amin� 0�007 and Amax� 1. The curve follows power law behavior up to an exponential
cutoff given by exp��Aminx�. Fig. 3.b also shows for comparison the avalanche size
distribution measured for a circular particle with R� 60. The agreement is very good.
Moreover, assuming that eq. (2) represents the avalanche size distribution, and using
the relation ∆m� ∆γ

t between the size and the lifetime of an avalanche, we can obtain
the avalanche lifetime distribution via the conservation of probability, P�∆m�d∆m �
P�∆t�d∆t . Thereby, if ��∆m� is the probability of finding an avalanche with size ∆m,
the probability of finding an avalanche with lifetime ∆t is γ∆γ�1

t ��∆γ
t �. This curve,

also shown in Fig. 3.b, agrees with the measured avalanche lifetime distribution for the
R� 60 magnetic particle when we use the previously measured value γ � 1�52�5�. This
agreement confirms the measured value for the exponent γ, and on the other hand it
also strengthens our conclusion about the origin of the scale invariance in this problem.
Hence the superposition of a finite (but large) number of exponential distributions with
different typical rates, which we observe for avalanches in our magnetic particle model,
results in a global distribution which shows several decades of power law behavior,
together with an exponential cutoff corresponding to the slowest exponential typical
rate.

In this way we propose in this paper a new mechanism to obtain power law distri-
butions not related to any underlying critical dynamics.[10] However, the deep insight
derived from this analysis comes when we extrapolate the conceptual framework here
developed to the understanding of Barkhausen Noise in particular and 1� f Noise in
general. Barkhausen Noise is the noise by which an impure ferromagnet responds to a
slowly varying external magnetic field. This response is not continuous, but burst-like. In
particular, magnetization jumps are observed as a function of the applied field which are



called avalanches. These avalanches exhibit size and lifetime power law distributions.
Moreover, this measured scale-free behavior appears without any need of fine tuning.
For many years theoretical physicist have been wondering about the origin of this spon-
taneousor self-organizedscale invariant behavior. Different theoretical approaches have
been proposed as explanation of Barkhausen Effect.[11] Most of these approaches are
incompatible among them[6], and all of them are based on assuming the existence of
an underlying critical point, responsible of the observed scale invariance. This assump-
tion implies that universalitymust be observed in Barkhausen experiments. However,
this is not observed in practice. Furthermore, the power of most practical applications of
Barkhausen Noise is based on the sensibility of Barkhausen emission to microstructural
details in the material.[12] Such sensibility is incompatible with the concept of univer-
sality derived from a critical point. On the other hand, the exponents we have obtained
for the avalanches in the magnetic nanoparticle are almost equal to those measured by
Spasojević et al[6] in Barkhausen experiments on quasi-bidimensional VITROVAC. Fur-
thermore, our system shows reproducibility, i.e. large avalanches always appear at the
same stages of evolution, independently of the observed experiment (see Fig. 3.a). The
same property has been observed in Barkhausen experiments with Perminvar and a Fe-
Ni-Co alloy.[13] In addition, our avalanche size and lifetime distributions show expo-
nential cutoffs which depend algebraically on system size. This behavior has been also
reported in real materials[9]. Finally, the measured exponents τ and α show finite size
corrections similar to those found in experiments with avalanche systems[8]. All these
similarities, together with the fact that experimental observations do not support the ex-
istence of universality in Barkhausen Noise, led us to suspect that Barkhausen Noise
might also come from the superposition of more elementary events with well-defined
typical scales. In fact, the 1� f noise behavior in this case is assumed to reflect topolog-
ical rearrangements of domain walls,[14] which result in practice in a series of jumps
between different metastable states, which is the basic process in our model.

The chances are that our observation that scale invariance originates in a combination
of simple events, which we can prove in our model cases, is a general feature of
similar phenomena in many complex systems. This should explain why distributions
exhibiting power law, exponential or stretched exponential behavior have been identified
in different but related experimental situations and in different regimes of the same
experiment.
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6. D. Spasojević et al, Phys. Rev. E54, 2531 (1996).
7. Pablo I. Hurtado, Dynamics of Nonequilibrium Systems: Metastability, Avalanches, Phase Separa-

tion, Absorbing States and Heat Conduction, Ph.D. thesis (2002).
8. V. Frette et al, Nature379, 49 (1996).
9. M. Bahiana et al, eprint cond-mat/9808017(1998). BUSCAR REFERENCIA PUBLICADA.
10. D. Sornette, eprint cond-mat/0110426(2001). BUSCAR REFERENCIA PUBLICADA.
11. J.P. Sethna et al, Nature410, 242 (2001); G. Durin and S. Zapperi, Phys. Rev. Lett.84, 4705 (2000).
12. L. Sipahi, J. Appl. Phys.75(10), 6978 (1994); L. Sipahi et al, J. Appl. Phys.75(10), 6981 (1994).
13. J.S. Urbach et al, Phys. Rev. Lett75, 4694 (1995).
14. See, for instance, X. Che and H. Suhl, Phys. Rev. Lett.64, 1670 (1990); K.L. Babcock and R.M.

Westervelt, Phys. Rev. Lett.64, 2168 (1990).


