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Abstract.

The standard field theoretic approach to the driven labtice gas model and a new
recently proposed one are briefly reviewed. We coniment on the singular nature of the
lufinite driving limit and on the vole of the particle current term.

Driven Systemns are subjected to external driving forces that prevent them from
attaining thermal equilibrinun. Instead, they may settle iuto non- equilibrivm steady-
state, i.e. states that, while ont of equilibrium, are statistically time-independent.
There are many examples of driven systems in nature, v.q granular systems. liquids
under shear, cte, and many possible applications such as electrophoresis, traffic low
or fast ionic conductors (see {1] and references therein).

Omne of the simplest conceivable driven system is the driven lattice gas (DLG) 2],
which was initially developed as a model for superionic conductors. It is defined
on a regular d-dimensional lattice with periodic boundary conditions whose sites
may be occupied by a pasticle o vacant, denoted by the occupation variables 1
and 0, respectively. Particles can hop to neighboring sites, the hopping rate being
controlled by the Ising Hamiltonian, H, and an external uniform driving fleld, E,
pointing along one of the principal divections of the lattice. More specifically, the
jumps oceur with a rate per unit timie given by w{(AH —£-E)/T), where AH s the
change in H after a particle-hole exchange, T is the teniperature of a thermal bath
coupled to the system, and £ is a unit vector pointing from the particle to the hole.
w s any function satisfying the detailed-balance condision, w{—x} = e%w(r), which
ensures that when E = |E| = 0 the familiar dynamic Ising model is recovered, For
E >0, the drive enhances jumps along its direction, suppresses jumps against it,
and leaves unaffected those in the transverse directions. Note that detailed-balance
holds, but only locally. That is, it is not satisfied for everv pair of configurations,
but just for those that differ by a single particle-lole exchange. Therefore, one cau
still speak of energy in the DLG. However. due to the periodic boundary conditions,
the work doue by a particle that moves hetween any two points depends on the path
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taken by the particle. Thus, the system is non-conservative and the rates are not
dertvable from a potential. Iu fact, there is a non-zero flux of energy through the
system, which gains energy from the external field aud dissipates it to the thermal
batl. Finally, note that the dynamic rules conserve the total particle number.
We shall restrict the discussion hercafter to Lhalf-filled lattices because is for that
density value that critical phenomena is observed,

Figure 1 depicts the phase diagram of a bidimensional DLG. Tt displays a second-
order phase transition at T.(E) from a disordered state to a highly anisotropic
ordered one with a striped particle-rich region parallel to the drive. The transi-
tion temperature increases monotonically with F and saturates at T.{F = o) &
14T E =0). Almost all Monte Carlo simnlations deal with the B = oo case {(no
jumps against the field are allowed).

We now consider a mesoscopic description of the DLG. This approach was carried
out for the first time by Leung and Cardy [3] and it can be summarized as {follows:
an order parameter is introduced as a coarse-grained version of the excess particle
density (equivalently, a local magnetization @{x,¢) in the spin language). Since
the magnetization is conserved, we wiite the dynamical equation as a continuity
equation

Qo+ V. I =0, (1)

where J is-a spin or particle current, This is caused by chemical potential gradients
and by the external field and, by virtue of the Fick'’s law for iffusion, can be
written as ¥ = Jp 4+ J g, with Jp{x,1) = fws}’g and A belng a constant transport
cocflicient. One shall adopt the Landan-Ginzburg free energy as the mesoscopic
counterpaxrt of the [sing Hamiltonian,

. [ 2 2 T2 ¥ o 2
f./{Q(V¢) H 5P+ e . (2)

The cholce for Jg rests on symmetry prounds: given that no flow can exist in
regions locally full or empty, ¢ = £1, we postulate Jp = (1 — ¢HE. &€ is the
coarse-grained counterpart of E. In addition, a Gaussian distributed, conserved
noise § is included, modeling the coupling to the thermal bath. Due to anisotropy,
additional parameters ave introduced reflecting the fact that there 1s a preferential
direction of hopping. Hence, all V operators ave split into components transverse
(V1) and parallel (V) to E. Putting all this terms together, and after irrelevant
terms have been discarded in the renormalization group sense, we arrive at

) S TR ;
ot = M(re — V3)VL6 4 Vi + ggvj(y} FEV VL €. (3)

This is the Langevin equation postulated in [3] as a continuum description of the
DLG. The parameters 7., 7y, u and £ are unspecified functions of the microscopic
ones J (the coupling constant of the Ising Hamiltonian), T, F, but it is assumed
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that the detailed form of these functions is not needed for predicting macroscopic
phenomena. A field theoretic analysis of equation (3} yields an order parameter
critical exponent 8 = 1/2 for any value of the external field. Due to a Galilean
symimetry, this result is exact to any order in an e-expansion. This is at odds,
however, with the estimates from Monte Carlo simulations with & = oo (the only
case extensively studied) that predict non-classical critical behavior. Tt has been
claimed that an anisotropic finite-size scaling analysis reconciles both predictions
[4]. Nevertheless, as it was shown in [5]; after invoking anisotropic simulation data
analysis the discrepancy still holds and B is close to 1/3.

An effort in a different direction was proposed in [10], where it was suggested
that the original field theory was deficient in the limit of infinite drive and a new
one put forward. In this new approach one proceeds from a master equation [§]

AP(C) = ; {W[C’ - CIB(C") - WIC — c']P,(C)}, (4)

where € stands for a configuration of coarse-grained variables ¢, defined at each
lattice as the average value of the occupation variables on a region of volume ¢~
around r. Inspired by the original lattice dynamics, we postulate that the system
evolves from a given configuration é to another ¢ by choosing at random a particle
at point r and performing an exchange with its nearest neighbor in the £ direction.
Therefore, ¢t = ¢, + e(dxr = Oxrta) (see Fig. 2). The transition rates are the
microscopic ones, W[C' — C'] = w({AH — £ . E)/T), with H being expressed in
terms of the new coarse-grained variables [9).
When ¢ is small enough, we can do the following identifications:

* b — Qb(x)

* (%) = é(x) + eVi(x —1)

CHo F=S+H=1dx{56" + 36} + L [ ax{1(V4) + 147}
cw= w(AS)w(A’HwLL E(l - ¢2))

A few comments are now in order: the variables ¢x have been taken as continuous
functions of x and the Ising Hamiltonian replaced by the usual Landau-Ginzburg
free energy 7 which, being a mesoscopic free energy, comprises both entropic and
energetic contributions [13]. Recall that from the microscopics of the DLG, the
increment in energy from the drive ondy competes with the increment of energy
coming from the Ising Hamiltonian. This is why the transition rates are factorized.
In doing so, fundamental properties of the microscaopic system are preserved: local
detailed balance holds, invariance under translations in space and time and under
the simultaneous change E — ~E and ¢ — —4.

Next, a Kramers-Moyal [8] expansion of the master equation leads to a Foklker-
Planck equation whose stochastically equivalent Langevin equation reads
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FIGURE 1. Phase diagram for a bi-dimensional DLG. The driving field points downwards
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FIGURE 2. Schematic representation of the continuous limit described in the text.
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1= 30 V[0 +38) ~ AN — 1F) o)

+ /(A )w( M £ XE) + w(— AT w(—2F — AE)E,].

fa(x,t) is 2 Gaussian white noise and X¥ = —VG% In contrast to previous pro-
posals, the dependence of (5) on the microscopic rates is apparent. We now focus
on the critical region and discard irrelevant terms in the renormalization group
sense by naive power counting. After performing the following scale transforma-
tions £ — p™%t,r; — g = #7ry and ¢ — 1, we expand the Langevin in
power series while keeping only the leading terms. The time scale, the transverse
spatial interaction and the transverse noise are impose to be invariant under the
scale transformations, implying z = 4 and § = {0+ d—3)/2. We shall set ¢ = 2

because V4¢ and Vi are the leading gradient terms of the theory. Thus, after

dropping irrelevant terms we are lead to

Oi(r) = %{—Ai¢v+ (r+7) A ¢+ %A_qua} - Ew'(E) V”q52

+[F W - w'(E)] Vi + 2 Vabilr 1) ©

Three regimes of critical behavior are found depending on the value of E;

* £ =0. Were there no external field, it is easy to verify by direct substitution
that equation (6) reduces to a Model B [11], the continuum counterpart of the
Ising model with conserved order parameter. )

* 0 < B < co. This is the equation postulated by Leung and Cardy (3). We
identify Ew'(E) as the mesoscopic counterpart of the microscopic field E, and
7+ 7T and F(w(E) + w(—E))/4 ~ w/(E) as the two effective temperatures
associated with the transverse and longitudinal directions, respectively. The
associated order parameter exponent is # = 1/2 [6]

* E = co. In this case equation (6) simplifies to
b= —DLe+ (T +T)ALS+ S A+ LA 2V, £, (7)

because the rates are dominated by terms of the form e~E. Interestingly
enough, the order parameter critical exponent associated with (M)is 8 =1/3

in good agreement with the estimations coming from Monte Carlo simulations
2.

We have already seen how our continuous approach respects the symmetries
present in the microscopic model. The advised reader, however, will have realized
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that equation {7) has an extra symmetry lacking in the DLG: the ¢ —» —¢ sym-
metry. 1t is as if there were no particle current present. In fact, equation (7) was
first proposed as a mesoscopic description of a DLG in which the drive fluctuates
accordingly to an even distribution. It is clear that such a random force cannot
induce a current in the system. A number of arguments supporting the fact that
the current is not a relevant feature for the critical properties in the DLG under
infinite external drive were given in {10]. From the present point of view, we argue
that on taking the F = oo limit the current term coeflicient vanishes due to the
saturation of the transition rates in the Master equation. Finally, as a matter of
_consistency, we shall say that equation {7) is also the resulting equation that our
formalism predicts for a random DLG irrespective the value of F considered [13].
Summing up, we have presented an alternate field theoretic approach to the
driven lattice gas model. For finite driving force we recover the equation of Leung
and Cardy. However, the limit of infinite large driving force corresponds to a
different universality class, that of the randomly driven lattice gas. In this case the
current becomes irrelevant and the prediction for order parameter critical exponent
matches the estimates from Monte Carlo simulations.
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