
Physica A 296 (2001) 364–374
www.elsevier.com/locate/physa

Entropic contributions in Langevin equations for
anisotropic driven systems

Francisco de los Santosa ;∗; 1, Pedro L. Garridob , Miguel A. Muñozb;2
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Abstract

We report on analytical results for a series of anisotropic driven systems in the context of a
recently proposed Langevin equation approach. In a recent paper (P.L. Garrido et al., Phys. Rev.
E 61 (2000) R4683) we have pointed out that entropic contributions, over-looked in previous
works, are crucial in order to obtain suitable Langevin descriptions of driven lattice gases. Here,
we present a more detailed derivation and justi9cation of the entropic term for the standard
driven lattice gas, and also we extend the improved approach to other anisotropic driven systems,
namely: (i) the randomly driven lattice gas, (ii) the two-temperature model and, (iii) the bi-layer
lattice gas. It is shown that the two-temperature model and the lattice gas driven either by a
random 9eld or by an uniform in9nite one are members of the same universality class. When the
drive is uniform and 9nite the ‘standard’ theory is recovered. A Langevin equation describing
the phenomenology of the bi-layer lattice gas is also presented. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

When a system is driven out of thermal equilibrium its properties may change
signi9cantly. An illustrative example of this is the driven lattice gas (DLG) model
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[1–4], which has become a cornerstone for the study of nonequilibrium behavior, and
is currently in the forefront of research activity in nonequilibrum statistical mechanics.
Some time ago, motivated by discrepancies between Monte Carlo results [4–7] and
9eld theoretic predictions [17,8] the general validity of the standard 9eld theory for the
DLG was questioned, and an alternative Langevin equation, put forward [9,10]. This
alternative approach is certainly valuable per se because it represents a more detailed
connection between microscopic models and their mesoscopic (Langevin) descriptions
than previous more heuristic approaches.
However, some technical de9ciencies in the emerging Langevin equation for the

DLG under in9nitely fast drive were pointed out by Caracciolo et al. [11] and also
by Schmittmann et al. [12]. In particular, these authors identi9ed the presence of un-
physical generic infrared singularities in the alternative Langevin equation [11,12]:
a clear indication of some Maw in our equation building. Nevertheless, as we have
shown in our most recent article [13], the aforementioned de9ciencies can be over-
come once entropic contributions (not carefully separated from energetic ones in our
9rst works) are properly handled. This improved approach led us to the following
conclusions: (1) the driven lattice gas under 9nite driving 9eld is represented by
the standard model or Langevin equation, as conjectured some time ago by Cardy
and Leung [17] (see also [8]); (2) in the case of in9nite drive, we 9nd a diNerent
Langevin equation with no current term. In a nutshell, this is due to the fact that
for in9nitely large drive there is no explicit dependence of the transition rates on
the value of the density 9eld, i.e. in the microscopic model if an attempted jump is
feasible then it is performed regardless of the energetics of the neighboring lattice
con9guration, and consequently at a mesoscopic level the dependence of the transition
rates on Ising energetics is altered. In this paper, we shall explicitely show how the
abovementioned entropic corrections come about, and what is their role in the standard
DLG.
Closely related to the DLG, there exists a whole repertoire of variants of it that

display similar counterintuitive features. It is natural to investigate them so as to deepen
our understanding of driven systems, and elucidate the points relevant in characterizing
their collective behavior. In a recent paper [10], this issue was tackled as an application
of, and a test for, the formalism previously developed for the DLG. Besides the DLG
itself, three anisotropic driven systems were studied in [10]: the randomly driven lattice
gas, the two-temperature model and the bi-layer driven lattice gas. A set of Langevin
equations describing the phase transitions in these systems was provided [10]. However,
all the calculations in [10] where aNected by the previously mentioned problem, i.e.,
entropic contributions were not properly separated from energetic ones. It is our purpose
here to heal that problem and see how those Langevin equations and the associated
physical behavior are modi9ed once entropic terms are introduced, and how these
eventual modi9cations aNect the emerging physical behavior.
This paper is organized as follows: in Section 2 we provide a detailed derivation of

the Langevin equation for the DLG in which energetic and entropic contributions are
properly distinguished. In the subsequent sections, we review the results reported in
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[10] for the other three aforementioned anisotropic driven systems, and introduce the
pertinent entropic corrections. Finally, our main conclusions are summarized.

2. The driven lattice gas

The DLG is a half-9lled lattice gas coupled to a thermal bath at temperature T in
which nearest-neighbor particle-hole exchanges are stochastically performed. The hop-
ping rates are controlled by the Ising Hamiltonian and an external uniform driving 9eld
E pointing along one of the principal axis of the lattice. Periodic boundary conditions
are imposed. The 9eld biases the rates, favoring jumps along its direction, suppressing
jumps against it, and leaving unaNected those in transverse directions. At some tem-
perature T the DLG undergoes a nonequilibrium phase transition from a disordered
state to an ordered one with a stripe-shaped particle-rich region parallel to the drive.
This transition has been thoroughly studied in recent years [8,4]. Here, we shall not
dwell any further on the system properties and refer the reader to [3,4] for detailed
comprehensive reviews.
Let us now review our derivation of a mesoscopic Langevin equation for the DLG

[9,10]. We de9ne a coarse-grained excess particle density 9eld �(r; t) as the deviation
of the actual density from its uniform average. Now, with each 9eld con9guration,
C = {�}, we associate a statistical weight, Pt(C), which evolves accordingly to the
following continuous master equation [10]:

@(t)Pt(C) =
∑
a

∫
R
d
f(
)

∫
dr

×{W [C
ra → C]Pt(C
ra)−W [C → C
ra]Pt(C)} : (1)

Here, W [C → C′] stands for the transition rates, C
ra = {�(x)+ 
�∇xa�(x− r)}, f(
)
is an even function of 
, and �−1 is the volume over which the original microscopic
occupation variables were averaged out. That is, Eq. (1) represents a process in which
a “mass” �
 is exchanged with the in9nitesimal neighbor of r in the a direction. The
“amount of mass”, 
, attempted to be displaced is distributed with a probability function
f(
), and the gradient in the de9nition of C
ra ensures mass conservation. As it is
usually done, the transition rates are taken to be a function of the free energy diNerence
between the con9gurations plus a term due to the eNect of the driving 9eld, namely:

W [C → C′] = D(F(C′)− F(C) + HE(C → C′)) ; (2)

where F is the usual Ginzburg–Landau free energy:

F = �−1
∫

dr
{
1
2
(∇�)2 +

�
2
�2 +

g
4!

�4
}

(3)

and

HE(C → C′) = 
a · E(1− �(r)2) + O(�) : (4)
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The latter is a current term directed along the direction of E that accounts for the
local variation of energy due to the driving 9eld [3,17]. D is any function satisfying
the detailed balance constraint, D(−x)=exD(x)¿ 0, which ensures that in the limiting
case E = 0 the stationary distribution is the equilibrium one, Pst˙ exp(−F).

So far we have followed the derivation in our 9rst papers [9,10]. Now we show
where this reasoning fails and how it can be corrected.
For Eq. (2) in the limit of in9nitely large driving forces, and jumps in the 9eld

direction, contributions from free energy variations are erased; i.e. allowed exchanges
are performed with probability equal to 1 regardless of their surrounding con9guration.
One should recall that the coarse-grained free energy, F , comprises both entropic and
energetic contributions.
The described situation is at odds with the microscopics of the DLG, where it is

only the dependence on the Ising Hamiltonian that is washed away in the E → ∞
limit. To see how to incorporate this key feature into our mesoscopic approach we
consider the partition function of the microscopic equilibrium lattice gas model, i.e.,
the E = 0 limit, Z . As it is well known, a Gaussian transformation of Z together
with a naive power counting analysis leads to a derivation of the Ginzburg–Landau
free energy, F , at a mesoscopic level [14,15]. In particular, at the intermediate stage
before arguments of relevance are applied, the structure of F consists of a bilinear-in-�
form, 1=T

∑
�(k)�(−k) plus a term In cosh � [14]. It is this diNerent dependence

on temperature that enables us to identify the entropic contribution to F as the one
coming from the expansion of the In cosh �:

S(C) = �−1
∫

dr
{
T�
2
�2 +

g
4!

�4
}

; (5)

while the energetic term (coming from the gradient expansion of the bilinear form)
reads:

H (C) = �−1
∫

dr
{
1
2
(∇�)2 +

�
2
�2

}
: (6)

Accordingly, we rewrite the transition rates in the form:

W [C → C′] = D(US(C))D(UH (C) + HE) ; (7)

UX (C) being equal to X (C′)−X (C). Note that, in doing so, the increment of energy
from the drive enters the dynamics through UH +HE and does not compete additively
with US. Moreover, using Eq. (7), when E = 0 the detailed balance condition on the
rates is preserved, ensuing that in the zero 9eld limit we recover the Ginzburg–Landau
equilibrium distribution [25].
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Next, a Kramers–Moyal [16] expansion of the Master equation yields the following
Fokker–Planck equation (the detailed calculus can be found in [10]):

@tPt =
∑
a

∫
dr
(
∇ra

�
��(r)

){
� Th(�S

a ; �
H
a + �E

a )Pt

+
�2

2
Te(�S

a ; �
H
a + �E

a )
(
∇ra

�
��(r)

)
Pt(C)

}
; (8)

where

�E
a ≡ a · E(1− �2) ;

�X
a ≡ −

(
∇ra

�
��

)
X ;

Th(x; y) ≡
∫
R
d
f(
)
D(
x)D(
y) ;

Te(x; y) ≡
∫
R
d
f(
)
2D(
x)D(
y) : (9)

As the combination Th(0; x) and Te(0; x) will occur often, we introduce the symbols
h(x) = Th(0; x); e(x) = Te(0; x) which, besides, are closer to the notation of [6,7].
The equivalent Langevin equation reads (Ito sense) [16]:

@t�(r; t) =
∑
a

∇ra [ Th(�
S
a ; �

H
a + �E

a ) + Te(�S
a ; �

H
a + �E

a )
1=2 a(r; t)] ; (10)

with  a(r; t) being a Gaussian white noise, i.e., 〈 a(r; t)〉 = 0 and 〈 a(r; t) a′(r′; t′)〉 =
�a;a′�(t − t′)�(r − r′). Time has been rescaled by a factor �, and 9nally, � has been
9xed to 1. Eq. (10) is a slightly modi9ed version of our previously proposed Langevin
equation for the DLG (Eq. (7) of [9] or Eq. (15) in [10]) and, as in its older version,
its dependence on microscopic details is apparent and contains the basic symmetries
of the DLG.
We now focus on the critical region and discard irrelevant terms in the renormaliza-

tion group sense by naive power counting. We perform the following scale transfor-
mations: t → !−zt; r⊥ → !−1r⊥; r|| → !−$r||; and � → !��, where || stands for the
direction parallel to the driving 9eld E, and ⊥ for those perpendicular to it. The noise
scales as  a → !(z+d+$−1)=2 a. Next, we expand the Langevin equation around ! = 0
while keeping only the leading terms. One realizes that the term T�e(E)=2∇2

||�, absent
in [9,10], is the only modi9cation with respect to our old Langevin equation. Since
this term does not vanish when E=∞; ∇4

⊥� and ∇2
||� are the leading gradient terms

of the theory, hence $ = 2. 3 The time scale, the transverse spatial interaction, and

3 Due to the absence of parallel Laplacians, $ = 1 was used in [9]. In the present case that would be
inconsistent with the presence of a unique tuning parameter.
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the transverse noise are imposed to be invariant under scale transformations, implying
z = 4 and �= ($ + d− 3)=2. This along with $ = 2, leads to:

@t�(r) =
e0
2

[
−U2

⊥�+ (�+ T�)U⊥�+
g
6
U⊥�3

]

+
(
T�
e(E)
2

− �h′(E)
)
∇2

||�− Eh′(E)∇||�2

+
√
e0
∑

⊥∇⊥ ⊥(r; t) ; (11)

where h′ is the 9rst derivative of the function h and e0 = e(0). This is nothing but
the equation postulated by Leung and Cardy [17] for the DLG, also known as driven
di7usive system (DDS). The coarse-grained parameters introduced by Leung and Cardy
appear here as speci9c functions of the Master equation parameters, and E = |E|.
Thus, we identify Eh′(E) as the mesoscopic counterpart of the 9eld E, and T�+ � and
T�e(E)=2 − �h′(E) as the two eNective temperatures associated with the transverse and
longitudinal directions respectively [8]. Given that we know the detailed form of the
coeWcients in terms of the Master Equation parameters, we can explicitly verify that
the limit E → ∞ is peculiar, as for it the coeWcient Eh′(E) of the current term (∇||�2)
vanishes, and the relevant Langevin equation is:

@t�(r) =
e0
2

[
U2

⊥�+ (T�+ �)U⊥�+
T�
2
∇2

||�+
g
6
U⊥�3

]

+
√
e0
∑
⊥

∇⊥ ⊥(r; t) : (12)

Indeed, this equation was 9rst proposed by [18] as the mesoscopic description of the
random DLG, a DLG in which the driving 9eld Muctuates accordingly to an even
distribution of amplitudes (see Section 3 in this paper). It can be easily appreciated
that the current term Eh′(E)∇||�2 is absent here. We conclude that the limit E =∞
is a sort of multicritical point at which the current term coeWcient vanishes due to the
saturation of the transition rates in the Master equation. Consequently, we have named
the universality class for the DLG in this limit anisotropic driven system (ADS) as
anisotropy is the essential feature for the critical properties of the system. Remarkably,
the value of the order parameter critical exponent that follows from a renormalization
group analysis of Eq. (12) [18], &≈ 0:33 [19] agrees rather well with the estimations
coming from Monte Carlo simulations of [4].

3. Randomly driven lattice gases

The random driven lattice gas (RDLG) is a DLG in which the driving force, al-
though still pointing along a particular axis, has a random amplitude in time accordingly
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to an even distribution p[E(x; t)] with �-like correlations in space and time [18]. Hence,
unlike the DLG, the � → −� and the y → −y (reMection in the direction of the 9eld)
symmetries are restored and no global current is present.
A Langevin equation for the RDLG can be easily derived by simply averaging out

over the random E in (11). The term proportional to Eh′(E) vanishes as a consequence
of the symmetric p[E] after integrating over 
. This allows us to write:

@t�(r) =
e0
2

[
−U2

⊥�+ �⊥U⊥�+ �||∇2
||�+

g
6
U⊥�3

]

+
√
e0
∑
⊥

∇⊥ ⊥(r; t) ; (13)

which coincides with Eq. (12), once the following identi9cations are done:

�|| =
2
e0

∫
dEp[E]

(
T�e(E)
2

− �h′(E)
)

;

�⊥ = �+ T� : (14)

Therefore, we have recovered the mesoscopic picture for the RDLG postulated by
Schmittmann and Zia in [18]. This makes an important diNerence with our previous
analysis in [10]. There 9nite and in9nite random drives yielded diNerent Langevin
equations. Here a single one is found since the in9nite drive limit is not singular for
the RDLG. Not surprisingly, it is the ADS universality class because no current term
is present in this case.

4. Two-temperature model

The two-temperature (TT) model is an Ising half-9lled lattice gas coupled to two
thermal baths at diNerent temperatures [20]. More speci9cally, particle-hole exchanges
aligned with a particular direction are controlled by rates D(UH=T||), H being the
Ising Hamiltonian. Otherwise they are coupled with a bath with temperature T⊥, and
controlled by rates D(UH=T⊥). The TT model and the RDLG share the same set of
symmetries so, although their microscopics details are quite diNerent, it is expected
that they both belong in the same universality class. In fact, Monte Carlo simulations
for the TT model compare quite well with 9eld theoretic predictions for the RDLG.
For instance, & ≈ 0:33 is measured by both procedures when T|| =∞ [19,21].
In our context these similarities can be understood by simply nothing that the TT

model corresponds to Eq. (1) without external drive and imposing two distinct � mass
terms in (6). Then, all results carry over without change leading to Eq. (12), thereby
placing the TT model as another example of anisotropic driven system.
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5. Bi-layer driven lattice gas

Let us consider a couple of DLG’s copies stacked one on the top of the other
without energetic coupling between the layers [22]. A given particle can hop to any
of its 9ve nearest neighbor sites (four in the same plane and one in the other one).
Particle exchanges across layers are not aNected by the drive and they are controlled
by in-plane energetics alone. Finally, the overall particle density is 9xed to 1

2 to access
the critical point [3,4]. As the temperature is decreased from a high enough value, the
system 9rst orders from a homogeneous state into one with high and low density stripes
in both layers. This transition is much alike the one appearing in the standard DLG,
i.e., each layer exhibits a phase segregated state with a linear liquid-vapor interface
aligned with the applied 9eld. Decreasing the temperature further, a second transition
occurs to two homogeneously 9lled layers with diNerent densities; particles accumulate
in one of the two planes breaking spontaneously the symmetry between them. This
transition is known to be Ising-like for any E¡Ec ≈ 2, and becomes 9rst order for
values of E beyond the threshold 9eld Ec [23,24]. We now proceed to investigate this
issue further in the frame of our Langevin-equation-building approach.
We call �i(r; t) to the coarse grained excess density 9eld in plane i, and C =

{(�1; �2)} denotes an arbitrary con9guration. By C
ra
i we term the con9guration after

an exchange of density �
 is performed in the a direction with an in9nitesimal neighbor
of r in plane i, while C
r stands for con9gurations obtained after exchanges between
planes. More explicitely:

C
ra
1 = {�1(x) + �
∇xa�(x − r); �2(x)} ;

C
ra
2 = {�1(x); �2(x) + �
∇xa�(x − r)} ;

C
r = {�1(x) + �
�(x − r); �2(x)− �
�(x − r)} : (15)

Next, we write down the Master equation for these processes:

@tPt(C) =
∑
a

2∑
i=1

∫
drd
f(
)

×{W [C
ra
i → C]Pt(C


ra
i )−W [C → C
ra

i ]Pt(C)}

+
∫

drd
f(
){W [C
r → C]Pt(C
r)−W [C → C
r]Pt(C)} : (16)

If we now split the transition rates W as in Eq. (7), we obtain a Fokker–Planck equation
which gathers the single layer contributions of (8) plus the intra-layer coupling term:

∫
dr
(
∇12

�
��(r)

){
� Th(�s

12; �
H
12)Pt +

�2

2
Te(�s

12; �
H
12)

(
∇12

�
��(r)

)
Pt

}
: (17)
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With ∇12
�
�� we denote the operator �=��1 − �=��2 and �X

12 stands for (∇12
�
��)X (C).

Lastly, we obtain the following Langevin equation:

@t�1 = {plane 1 part}+ Th(�S
12; �

H
12) + Te(�S

12; �
H
12)

1=2 ;

@t�2 = {plane 2 part} − Th(�S
12; �

H
12)− Te(�S

12; �
H
12)

1=2 ; (18)

where “plane i part” represents:

∑
a

∇ra[ Th(�S
a; i; �

H
a; i + �E

a; i) + Te(�S
a; i; �

H
a; i + �E

a; i) 
(i)
a ] ; (19)

i.e., it is the same as in (10), the index i corresponds to either plane and  is a Gaussian
white noise. 4

Eq. (18) can be expressed in terms of the two new 9elds:

m(r) ≡ (�1 + �2)=2; ’(r) ≡ (�1 − �2)=2 : (20)

We shall take m(r) as the conserved order parameter for the 9rst phase transition,
and ’(r) as the (non-conserved) order parameter for the second one. To show that all
observed critical behaviors are contained in (18), we introduce an external momentum
scale ! and perform the following scale transformations: t → !−zt; r → !−$r; ’ →
!�’, and m → !-m. First, the exponents are 9xed to z = 4; $ = 2; � = d=2 and
- = (d − 1)=2, which are the same set of exponents used in the power counting of
the DLG. The resulting Langevin equation for the 9eld m then matches the Langevin
equation for the DLG (11). As for the second transition, the one that occurs at a
lower temperature, we use z = 2; $= 1; �= (d− 2)=2 and -= d=2 for rescaling since
good data collapse is obtained from isotropic 9nite-size scaling. Using the previous
rescaling, the relevant part of the Langevin equation is naively consistent with the
model A, the mesoscopic counterpart of the Ising model [25]. In fact, we found [10]
that the problem in the vicinity of this second transition can be mapped exactly to the
continuum description of the DLG with repulsive interactions [26]. Since that model
has already been studied in [26], we now simply recall the conclusions drawn there:
the evolution equation for the 9eld ’ results, as previously discussed, in a model A.
The driving force does not couple directly to the ordering 9eld and it inMuences the
transition only through the non-ordering 9eld m(r). The native dimension of E turns
out to be (d − 2)=2 so it is naively irrelevant for the Gaussian 9xed point until d
is lower than two and its only eNect consists in generating anisotropies. However,
corrections to order O(E2) show that g and � decrease to an amount that depends of
E. Eventually, both of them may vanish simultaneously, a mechanism that would be
liable for the tricritical point [26].

4 Note that (18) was given incorrectly in [10] since there only the arguments of h appeared.
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6. Conclusions

In this paper, we have revisited our recently proposed method to derive Langevin
equations for anisotropic driven systems from the corresponding Master equations. The
improved method overcomes some drawbacks of the original version of our approach.
In particular, now entropic contributions are properly distinguished from energetic ones,
and this heals a notorious Maw of the emerging Langevin equation for the DLG. Indeed,
the resulting Langevin equation does not present generic infrared singularities. A scaling
analysis of this new equation reveals two main conclusions: (1) for 9nite driving
we recover the Langevin equation (sometimes called the “standard model”) proposed
sometime ago by Leung and Cardy [17,8] in order to represent the DLG. (2) In the
limit of in9nitely large driving 9eld, due to a saturation eNect in the transition rates,
the 9nal equation is diNerent; it has no density-dependent current term, and leads to
a diNerent renormalization group 9xed point. We call this last universality class ADS
(anisotropic driven system).
We have also applied the general method to some other anisotropic DRIVEN sys-

tems. Namely the random driven lattice gas, the two-temperature model and the driven
bi-layer lattice gas. This same task was tackled in [16], and here we revisit the cor-
responding derivation using the improved method. Our main results are: (1) for the
randomly driven lattice gas we recover the ADS Langevin equation for both 9nite and
in9nite driving 9elds, (2) the two-temperature model is also describable by the ADS
Langevin equation for either 9nite or in9nite temperature values, (3) for the bi-layer
driven lattice gas we have obtained a pair of coupled Langevin equations and shown
that they describe properly the two transitions observed in simulations.
To sum up, we have explicitely shown how the results presented in [9,10] can be

improved once entropic contributions are properly taken into account. As a conclusion
we have developed a comprehensive method to build Langevin equations for a par-
ticularly important class of nonequilibrium systems. Hopefully, modi9cations of this
procedure will permit us to study other interesting nonequilibrium situations from a
theoretical point of view.
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