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Universality classes of driven lattice gases
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Motivated by some recent criticisms to our alternative Langevin equation for driven lattice gases~DLG!
under an infinitely large driving field, we revisit the derivation of such an equation, and test its validity. As a
result, an additional term, coming from a careful consideration of entropic contributions, is added to the
equation. This term heals all the recently reported generic infrared singularities. The emerging equation is then
identical to that describing randomly driven diffusive systems. This fact confirms our claim that the infinite
driving limit is singular, and that the main relevant ingredient determining the critical behavior of the DLG in
this limit is the anisotropy and not the presence of a current. Different aspects of our picture are discussed, and
it is concluded that it constitutes a very plausible scenario to rationalize the critical behavior of the DLG and
variants of it.

PACS number~s!: 64.60.2i, 05.70.Fh
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The driven lattice gas~DLG! @1–3# is a simple nontrivial
extension of the kinetic Ising model, and constitutes certa
a main archetype of out-of-equilibrium system. Fully und
standing the critical properties of the DLG would be a fu
damental milestone on the way to rationalizing the fast
veloping field of nonequilibrium phase transitions. The DL
is defined as a half filled,d-dimensional kinetic Ising mode
with conserved dynamics, in which transitions in the dire
tion ~against the direction! of an external field,E, are favored
~unfavored! @1–3#. The external field induces two main non
equilibrium effects: the presence of a net current of partic
in its direction, and anisotropic system configurations.
high temperatures the system is in a disordered phase, w
below a certain critical point it orders by segregating in
high and low density aligned-with-the-field stripes.

In order to analyze the DLG critical nature, and determ
its degree of universality, a Langevin equation intended
capture the relevant physics at criticality was proposed
renormalized more than a decade ago@4#. This elegant
theory, thedriven diffusive system~DDS! seems to capture
the main symmetries and conservation laws of the disc
DLG ~including a current term as the most relevant nonl
earity!, and is therefore a suitable and very reasonable c
didate to bethe canonical continuous model, representat
of the DLG universality class.

Unfortunately, the most emblematic prediction comi
from the analysis of the DDS equation, namely, the me
field behavior of the order parameter critical exponent~b
51/2 @4#!, has not been compellingly verified in any Mon
Carlo simulation of the DLG in spite of the huge compu
tional effort devoted to test it. In particular, systematic d
viations from scaling are observed both ind52 @3,5# and in
d53 @6# if data collapse is attempted usingb51/2 @7#. On
the other hand, different Monte Carlo numerical simulatio
~performed in different geometries and using different fin
size scaling ansatzs! lead systematically to a value ofb
around 0.3 with error bars apparently excludingb51/2 ~we
refer the interested reader to@3# for a review of simulation
PRE 611063-651X/2000/61~5!/4683~4!/$15.00
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analysis!. This is a main indication that the DDS Langev
equation does not describe properly the DLG at criticality

Moreover, there are some other hints suggesting stron
that the discrepancies between the predictions of the stan
theory and Monte Carlo results are more fundamental tha
simple numerical difference inb. In particular, the intuition
developed from Monte Carlo simulations of the DLG a
variants of it @3,8# ~performed under large external drivin
fields! suggests that, contrarily to what happens for the D
equation, it is the anisotropy and not the presence of a
rent the most relevant ingredient for criticality. For instanc
in a modification of the DLG in which anisotropy is include
by means other than a current@9#, the scaling behavior a
criticality remains unaltered upon the switching on of
infinite driving ~see the Appendix and@9,3#!. Other compel-
ling evidences supporting this hypothesis can be found
@3,10#.

In order to shed some light on this puzzling situation a
reconcile theory with numerics, different possible scenar
have been explored; but so far, no satisfactory clarificat
has been reached. Within this context, we have recently
visited the time-honored DDS equation and questioned
general validity@11,12#. In particular, we have tackled th
task of constructing a coarse-grained procedure in a m
detailed way such that, starting from a master equation r
resenting the DLG, would give as output a continuo
Langevin equation. This approach permits us to keep trac
microscopic details that could eventually be overlook
when writing down a Langevin equation respecting naiv
the microscopic symmetries and conservation constraints@4#.
This approach has given rise to a rather unexpected and q
interesting output: The limit of infinitely large driving~i.e.,
the limit in which attempted jumps in the direction of th
field are performed with probability one and jumps againsE
are strictly forbidden! is singular@11#. Let us stress that in
order to enhance nonequilibrium effects most of the av
able computer studies are performed in this limit. The m
results derived so far using our approach are
R4683 ©2000 The American Physical Society
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~i! For vanishing values of the driving field it leads to th
standard equilibrium modelB @13#, capturing the relevan
physics of the kinetic Ising model with conserved dynami

~ii ! For nonvanishing, butfinite driving fields we repro-
duce the standard DDS Langevin equation@2,4#.

~iii ! In the limit of infinitely large driving, where the de
pendence of jumps in the direction of the field on energe
is replaced by a zero-one~all-or-nothing! condition, a differ-
ent Langevin equation emerges. This new equation has
main property of not including any relevant term couplingE
to the density fieldf @11#, and the presence of anisotropy
its main relevant ingredient.

The new Langevin equation for the DLG under infinite
large driving proposed in@11,12# and renormalized in@14#
has some important virtues to be discussed afterwards,
seems also to exhibit some pathologies, as recently poi
out by Caraccioloet al. @15# and also by Schmittmannet al.
@16#. In what follows we show that such anomalies can
healed in a rather natural way, and do not disprove at all
general validity of our new approach~as could be inferred
from @16#!.

Let us now present the Langevin equation derived
@11,12# for the infinite driving limit, report on its deficiencie
@15,16#, and discuss the way to heal them. The equat
reads@11,12#

] tf5
e0

2 F2D iD'f2D'
2 f1tD'f1

g

3!
D'f3G

1Ae0“'•j'1Ae0

2
¹ ij i , ~1!

where¹ i (¹') is the gradient operator in the direction pa
allel ~perpendicular! to the driving field, andj is a conserved
Gaussian white noise@11,14#. This equation is analogous to
model B in the direction~s! perpendicular to the field
coupled to a simple random diffusion mechanism in the p
allel direction. The origin of all the difficulties pointed out i
@15,16# can be traced back to the following property: Defi
ing the total density for each value ofr i , Y(r i ,t)
[*dd21r'f(r i ,r'), it is not difficult to see~after averaging
over the noise! that Y(r i) is a conserved quantity for a
values ofr i @15#. Observe also thatY(r i) is nothing but the
zero Fourier mode of the density at each column. These~spu-
rious! conservation laws, absent in the DLG, are at the ori
of the infrared singularities appearing in Eq.~1! @15,16#.

In order to investigate the causes of this deficiency in
Langevin equation and eventually overcome the problem
the extra conservation laws and associated infrared di
gences, we have re-analyzed our derivation of Eq.~1! in
@11,12#. One can easily see that the transition rates in
microscopic master equation in@11,12# were written as de-
pending on the variations of two adding contributions: t
free energy functional~the usual Ginzsburg-Landau free e
ergy! and the external driving-field contribution. The trans
tion rates, written in that way, saturate to zero or one in
field direction, in the limit of infinite driving. This saturatio
erases any further dependence on the free energy de
~which includes both entropic and energetic contribution!.
On the contrary, in the DLG it is only the dependence on
.

s

he

ut
ed

e
e

n

n

r-

n

r
f
r-

e

e

ity

e

Ising energetics that becomes negligible in the limit of lar
driving fields. In a coarse-grained description we sho
therefore separate energetic from entropic terms. With
guiding idea, we have reconsidered our derivation of Eq.~1!
and rewritten the transition rates in@11,12# as the product of
two contributions: one controlling the energetics and
other one the entropic part@17#. By performing a calculation
analogous to that in@11,12#, but including the transition rate
written in this modified way, it is a matter of algebra to s
that a new term~missing in@11,12,14#! emerges:r¹ if(x,t)
@18#. It is straightforward to verify that apart from properl
keeping track of entropic contributions, this extra~mass!
term heals all of the aforementioned problems in E
~1!: no spurious conservation laws are involved and
neric infrared singularities disappear.

Let us now discuss how this new additional term affe
the results presented in@14#. Performing a naive scaling
analysis, one sees thatxi;x'

2 @19#, and upon elimination of
naively irrelevant terms and absorbinge0 into the time scale,
one obtains our final result: the critical Langevin theory u
der infinitely large driving,

] tf5rD if2D'
2 f1tD'f1

g

3!
D'f31

2

Ae0

“'•j' ,

~2!

that we call theanisotropic diffusive system~ADS!. This
turns out to be a well known Langevin equation: the co
tinuous representation of the randomly driven DLG@20,2#,
i.e., a DLG in which the external field changes sign ra
domly in an unbiased fashion. The main difference betwe
this theory and the DDS is that the ADS does not include
overall current. The current termE¹ if2 appearing in the
DDS ~and constituting its most relevant nonlinearity! is ab-
sent here. In the random DLG such a term cannot appea
symmetry reasons, while in the infinite driving case d
cussed in this paper it is the saturation of the transition ra
in the field direction that prevents such a current term fr
appearing.

The cubic operator and the Laplacian term in the para
direction in Eq.~2! are both marginal at the critical dimen
sion d53. The results up to first order in an« expansion of
Eq. ~2! around d53 are @20,21#: n'51/21«/12, andb
51/22«/6 @21#. Observe that ind52 one obtainsb51/3
~slightly modified by two-loop corrections@20#!, in remark-
able good agreement with Monte Carlo results. For insta
~see Table I and@23#!: the best available Monte Carlo resu
for the random DLG isb'0.33@20#; for the infinitely driven
DLG b'0.3060.05@3#; andb'0.34 for the closely related
model studied in@9#, called anisotropic lattice gas autom
tion ~ALGA !, and argued to belong to the same universa
class~see the Appendix!.

Some further comments on the validity of our approa
follow: ~i! Our complete theory~including constant and ir-
relevant terms! does have a net current@11,12#, though it
does not enter the final Langevin equation.~ii ! An infinitely
large field is, in practice, any for which transitions again
the field never occur. Given that all commonly used tran
tion rates depend onE through exponential functions, field
values much larger that unity can be considered infinite
all practical purposes in Monte Carlo experiments. F
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smaller fields, we expect crossover effects from the infin
field regime~ruled by the ADS! to the finite-driving standard
DDS behavior to occur. These crossovers could obscure
numerical observation of the DDS mean-field exponent b
for large but finite driving fields.~iii ! The introduction of the
new term in the parallel direction heals all the possible pr
lems in relation to infrared singularities, extra conservat
laws, and anomalies in the structure function@16#. In particu-
lar, the structure function presents a discontinuity singula
as happens in the DLG@2#. ~iv! Given the absence of an
relevant current term in Eq.~2!, the critical theory has ‘‘up-
down’’ symmetry (f→2f). This symmetry, in principle, is
absent in the microscopic model, as the presence of no
nishing three-point correlation functions seems to indic
@2#. However, it is not clear whether such correlations
relevant at criticality or not. As an indication that in fact the
could well be irrelevant, we discuss here the problem
triangular anisotropies@22#: In both the DLG and the DDS
droplets of the minority phase~if any! develop triangular
shapes, closely related to the existence of nonvanish
three-point correlations. However, triangles orientate in
posite directions in the microscopic DLG and in the contin
ous DDS. This difference seems to be not universal,
shown by recent Monte Carlo studies@22#, i.e., it depends on
microscopic details and can be modified by changing th
both in the DLG and in the DDS. This fact supports the id
that nonvanishing three-point correlation functions might
be a relevant ingredient for a description of the DLG at cr
cality. More significatively, simulations show thatfor large
enough driving fields, the triangular anisotropy is su
pressed~see@22#!, providing an indication that the up-dow
symmetry is restored in the infinite driving limit. This con
stitutes, we believe, another strong backing of our pictur

In summary, we have discussed the plausibility of t
alternative field-theoretical approaches to driven lattice ga
under the effect of an infinitely large external driving fiel
Some deficiencies recently pointed out are overcome by
troducing an extra Laplacian term in the direction of the fie
in the Langevin equation first proposed in@11,12#. This new
term, coming from a proper consideration of entropic con
butions, had been overlooked in previous papers. Our
proach leads to the following global picture:~i! For E50,
modelB reproduces the equilibrium critical properties of is
tropic diffusive systems.~ii ! For finite driving field, the stan-
dard DDS Langevin equation, including a current ter

TABLE I. Universality classes for different models as a functi
of the driving field value. The reported values ofb correspond to
the best-to-date numerical results ind52. The theoretically pre-
dicted value isb51/2 for the DDS andb'0.33 for the ADS.

Model No net current
Net current

Finite driving
Net current
Infinite driv.

DLG Model B DDS ADS
b50.125 b'0.3

Random DLG ADS DDS ADS
b'0.33

ALGA ADS Undefined ADS
b'0.34 b'0.34
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should describe properly the long wavelength proper
around the critical point.~iii ! The limit of infinitely fast driv-
ing is singular: the current is irrelevant, and the anisotrop
becomes the main relevant property. The leading critical
properties in this case are expected to be described by
ADS, Eq. ~2!. The reason for this being that in the presen
of infinite driving the transition rates saturate to 1~0! for
allowed ~forbidden! transitions in the driving direction, and
no further track of coupling betweenE and the density field
survives in the resulting Langevin equation. We want
stress at this point that this property was not obviousa pri-
ori, but emerges as a natural output from our model build
strategy.

The proposed Langevin equation for large external fi
provides a quite plausible scenario shedding some light o
difficult problem. In particular, it justifies the observed lac
of differences~for large fields! in simulations in systems
with and without a current, and provides a likely justificatio
of why the standard predictionb51/2 is not confirmed in
Monte Carlo simulations, and instead a valueb'0.33 is ob-
served.

In order to test numerically the picture presented in t
paper, it would be highly desirable to perform extensi
simulations for finite driving field (E'1), and study
whether differences with respect to the available Mo
Carlo results for large fields appear. It would also be int
esting to improve the finite size scaling analysis followi
the strategy used in@24,15#.

It is a pleasure to acknowledge J. Marro and J. L. Lebo
itz for useful discussions and encouragement. We thank w
special gratitude S. Caracciolo and collaborators for sha
with us extremely useful and valuable unpublished resu
This work has been partially supported by the European N
work Contract No. ERBFMRXCT980183 and by the Mini
terio de Educacio´n under Project No. DGESEIC, PB97
0842.

APPENDIX

As an evidence aimed to transmitting the intuition th
for infinitely large driving, the current is not relevant at crit
cality, let us briefly discuss in this appendix a rather comp
ling Monte-Carlo observation. It corresponds to a variati
of the DLG, named ALGA; see@9# for a detailed definition.
This model is placed by definition at the limit of infinit
driving: jumps in the anisotropy direction are perform
randomly without attending to energetic consideratio
Simulations are performed both in the presence of an ove
current ~case pÞ1/2 in @9#! and in the absence of it (p
51/2); the curves for the order parameter versus the dista
to the critical point are indistinguishable in the cases w
and without a current~Fig. 3 in @9# is particularly illuminat-
ing!. It could be argued that the details of this modifie
model@9# render it not completely equivalent to the origin
DLG. However, we do not think these microscopic diffe
ences have any relevance at a coarse-grained level. In
we expect this model to be represented by Eq.~2!: in one
direction particles tend to stay together, and it is natura
assume that their coarse-grained behavior is controlled b
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modelB in this direction. In the other direction, jumps occ
regardless of energetics and, therefore, the dynamics
comes purely diffusive. With these two ingredients we
cover the ADS, Eq.~2!, as the Langevin equation for th
s
e,

a
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ALGA. As a further evidence supporting this hypothesis
us mention that the measuredb exponent in the ALGA is
b'0.34 ~again very close to the valueb'1/3! in both cas-
es: with and without current.
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