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Universality classes of driven lattice gases
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Motivated by some recent criticisms to our alternative Langevin equation for driven lattice ({83
under an infinitely large driving field, we revisit the derivation of such an equation, and test its validity. As a
result, an additional term, coming from a careful consideration of entropic contributions, is added to the
equation. This term heals all the recently reported generic infrared singularities. The emerging equation is then
identical to that describing randomly driven diffusive systems. This fact confirms our claim that the infinite
driving limit is singular, and that the main relevant ingredient determining the critical behavior of the DLG in
this limit is the anisotropy and not the presence of a current. Different aspects of our picture are discussed, and
it is concluded that it constitutes a very plausible scenario to rationalize the critical behavior of the DLG and
variants of it.

PACS numbses): 64.60—i, 05.70.Fh

The driven lattice ga$DLG) [1-3] is a simple nontrivial —analysig. This is a main indication that the DDS Langevin
extension of the kinetic Ising model, and constitutes certainlyequation does not describe properly the DLG at criticality.
a main archetype of out-of-equilibrium system. Fully under- Moreover, there are some other hints suggesting strongly
standing the critical properties of the DLG would be a fun-that the discrepancies between the predictions of the standard
damental milestone on the way to rationalizing the fast detheory and Monte Carlo results are more fundamental than a
veloping field of nonequilibrium phase transitions. The DLG simple numerical difference iB. In particular, the intuition
is defined as a half filledJ-dimensional kinetic Ising model developed from Monte Carlo simulations of the DLG and
with conserved dynamics, in which transitions in the direc-variants of it[3,8] (performed under large external driving
tion (against the directigmof an external field, are favored  fields) suggests that, contrarily to what happens for the DDS
(unfavored [1-3]. The external field induces two main non- equation, it is the anisotropy and not the presence of a cur-
equilibrium effects: the presence of a net current of particlesent the most relevant ingredient for criticality. For instance,
in its direction, and anisotropic system configurations. Atin a modification of the DLG in which anisotropy is included
high temperatures the system is in a disordered phase, whily means other than a currefi], the scaling behavior at
below a certain critical point it orders by segregating intocriticality remains unaltered upon the switching on of an
high and low density aligned-with-the-field stripes. infinite driving (see the Appendix an®,3]). Other compel-

In order to analyze the DLG critical nature, and determindling evidences supporting this hypothesis can be found in
its degree of universality, a Langevin equation intended t43,10].
capture the relevant physics at criticality was proposed and In order to shed some light on this puzzling situation and
renormalized more than a decade agh. This elegant reconcile theory with numerics, different possible scenarios
theory, thedriven diffusive systefDDS) seems to capture have been explored; but so far, no satisfactory clarification
the main symmetries and conservation laws of the discrethas been reached. Within this context, we have recently re-
DLG (including a current term as the most relevant nonlin-visited the time-honored DDS equation and questioned its
earity), and is therefore a suitable and very reasonable cargeneral validity[11,12. In particular, we have tackled the
didate to bethe canonical continuous model, representativetask of constructing a coarse-grained procedure in a more
of the DLG universality class. detailed way such that, starting from a master equation rep-

Unfortunately, the most emblematic prediction comingresenting the DLG, would give as output a continuous
from the analysis of the DDS equation, namely, the mearLangevin equation. This approach permits us to keep track of
field behavior of the order parameter critical exponéft microscopic details that could eventually be overlooked
=1/2[4]), has not been compellingly verified in any Monte when writing down a Langevin equation respecting naively
Carlo simulation of the DLG in spite of the huge computa-the microscopic symmetries and conservation constrpits
tional effort devoted to test it. In particular, systematic de-This approach has given rise to a rather unexpected and quite
viations from scaling are observed bothdr2 [3,5] and in  interesting output: The limit of infinitely large driving.e.,
d=3 [6] if data collapse is attempted usifgy=1/2 [7]. On  the limit in which attempted jumps in the direction of the
the other hand, different Monte Carlo numerical simulationsfield are performed with probability one and jumps agakfst
(performed in different geometries and using different finiteare strictly forbiddehis singular[11]. Let us stress that in
size scaling ansatydead systematically to a value g8  order to enhance nonequilibrium effects most of the avail-
around 0.3 with error bars apparently excludjig 1/2 (we  able computer studies are performed in this limit. The main
refer the interested reader [8] for a review of simulation results derived so far using our approach are
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(i) For vanishing values of the driving field it leads to the Ising energetics that becomes negligible in the limit of large
standard equilibrium modeB [13], capturing the relevant driving fields. In a coarse-grained description we should
physics of the kinetic Ising model with conserved dynamicstherefore separate energetic from entropic terms. With this

(i) For nonvanishing, bufinite driving fields we repro- guiding idea, we have reconsidered our derivation of (&j.
duce the standard DDS Langevin equati@]. and rewritten the transition rates|ihl,12 as the product of

(iii) In the limit of infinitely large driving, where the de- two contributions: one controlling the energetics and the
pendence of jumps in the direction of the field on energetic®ther one the entropic pdrt7]. By performing a calculation
is replaced by a zero-or(all-or-nothing condition, a differ-  analogous to that if11,12, but including the transition rates
ent Langevin equation emerges. This new equation has theritten in this modified way, it is a matter of algebra to see
main property of not including any relevant term couplieg that a new termimissing in[11,12,14) emergespV ¢(x,t)
to the density field) [11], and the presence of anisotropy is [18]. It is straightforward to verify that apart from properly
its main relevant ingredient. keeping track of entropic contributions, this extfimas$

i ) o term heals all of the aforementioned problems in Eqg.

The new Langevin equation for the DLG under infinitely (1). o spurious conservation laws are involved and ge-
large dnvm_g proposed_ in11,12 and .renormahzed in14] neric infrared singularities disappear.
has some important virtues to be discussed afterwards, but | ot s now discuss how this new additional term affects

seems also to' exhibit some pathologies, as _recently pointefle results presented ifl4]. Performing a naive scaling
out by Caraccioleet al.[15] and also by Schmittmanet al. analysis, one sees that~x? [19], and upon elimination of

[16]. In what follows we show that such anomalies can benaively irrelevant terms and absorbiaginto the time scale,

healed in a.f?ther natural way, and do not dlsprov_e at all th‘8ne obtains our final result: the critical Langevin theory un-
general validity of our new approadias could be inferred der infinitely large driving

from [16]).
Let us now present the Langevin equation derived in g >

[11,12 for the infinite driving limit, report on its deficiencies op=pA p— Af G+TA P+ A, PP+ —V &,

[15,16, and discuss the way to heal them. The equation 3! Veo

reads[11,12] i)

e that we call theanisotropic diffusive syster(ADS). This
dp= _O|:_AAL¢_Ai¢+ A+ EAL @3 turns out to be a well known Langevin equation: the con-
2 3! tinuous representation of the randomly driven D[£D,2),
e i.e., a DLG in which the external field changes sign ran-
+\eV, - & + \ﬁvg, (1)  domly in an unbiased fashion. The main difference between
2 this theory and the DDS is that the ADS does not include an
overall current. The current terfeV,¢? appearing in the
whereV, (V) is the gradient operator in the direction par- DDS (and constituting its most relevant nonlineayity ab-
allel (perpendicularto the driving field, and is a conserved sent here. In the random DLG such a term cannot appear for
Gaussian white noigd.1,14]. This equation is analogous to a symmetry reasons, while in the infinite driving case dis-
model B in the directiorts) perpendicular to the field, cussed in this paper it is the saturation of the transition rates
coupled to a simple random diffusion mechanism in the parin the field direction that prevents such a current term from
allel direction. The origin of all the difficulties pointed out in appearing.
[15,16] can be traced back to the following property: Defin-  The cubic operator and the Laplacian term in the parallel
ing the total density for each value of;, Y(r,t) direction in Eq.(2) are both marginal at the critical dimen-
=[d% r ¢(r,,r,), itis not difficult to segafter averaging siond=23. The results up to first order in anexpansion of
over the noisgthat Y(r;) is a conserved quantity for all Eq. (2) aroundd=3 are[20,2]: v, =1/2+¢/12, andpB
values ofr [15]. Observe also that'(r;) is nothing but the =1/2—¢/6 [21]. Observe that irdl=2 one obtaings=1/3
zero Fourier mode of the density at each column. Tligge-  (slightly modified by two-loop correction20]), in remark-
rious) conservation laws, absent in the DLG, are at the originable good agreement with Monte Carlo results. For instance
of the infrared singularities appearing in Ed) [15,16. (see Table | an@i23]): the best available Monte Carlo result
In order to investigate the causes of this deficiency in ouffor the random DLG ig8~0.33[20]; for the infinitely driven
Langevin equation and eventually overcome the problem oDLG B~0.30+0.05[3]; and 8~ 0.34 for the closely related
the extra conservation laws and associated infrared divemodel studied (9], called anisotropic lattice gas automa-
gences, we have re-analyzed our derivation of Bg.in  tion (ALGA), and argued to belong to the same universality
[11,12. One can easily see that the transition rates in thelass(see the Appendix
microscopic master equation ji1,12 were written as de- Some further comments on the validity of our approach
pending on the variations of two adding contributions: thefollow: (i) Our complete theoryincluding constant and ir-
free energy functionalthe usual Ginzsburg-Landau free en- relevant termps does have a net currept1,12, though it
ergy) and the external driving-field contribution. The transi- does not enter the final Langevin equati¢in. An infinitely
tion rates, written in that way, saturate to zero or one in thdarge field is, in practice, any for which transitions against
field direction, in the limit of infinite driving. This saturation the field never occur. Given that all commonly used transi-
erases any further dependence on the free energy densiign rates depend ok through exponential functions, field
(which includes both entropic and energetic contributions values much larger that unity can be considered infinite for
On the contrary, in the DLG it is only the dependence on theall practical purposes in Monte Carlo experiments. For
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TABLE I. Universality classes for different models as a function should describe properly the long wavelength properties
of the driving field value. The reported values @fcorrespond to  around the critical pointiii ) The limit of infinitely fast driv-
the best-to-date numerical results dr=2. The theoretically pre-  jng js singular: the current is irrelevant, and the anisotropy
dicted value is8=1/2 for the DDS an¢3~0.33 for the ADS. becomes the main relevant properfyhe leading critical
properties in this case are expected to be described by the
ADS, Eq.(2). The reason for this being that in the presence

Net current Net current

Model No net current Finite driving Infinite driv. T . -
of infinite driving the transition rates saturate to(Q for
DLG Model B DDS ADS allowed (forbidden) transitions in the driving direction, and
B=0.125 B~0.3 no further track of coupling betweds and the density field
Random DLG ADS DDS ADS survives in the resulting Langevin equation. We want to
B~0.33 stress at this point that this property was not obviaysi-
ALGA ADS Undefined ADS ori, but emerges as a natural output from our model building
B~0.34 B~0.34 strategy.

The proposed Langevin equation for large external field
provides a quite plausible scenario shedding some light on a
smaller fields, we expect crossover effects from the infinitedifficult problem. In particular, it justifies the observed lack
field regime(ruled by the AD$ to the finite-driving standard of differences(for large field$ in simulations in systems
DDS behavior to occur. These crossovers could obscure th#ith and without a current, and provides a likely justification
numerical observation of the DDS mean-field exponent bet@f why the standard predictiog=1/2 is not confirmed in
for large but finite driving fields(iii) The introduction of the Monte Carlo simulations, and instead a vaJgre 0.33 is ob-
new term in the parallel direction heals all the possible probserved.
lems in relation to infrared singularities, extra conservation In order to test numerically the picture presented in this
laws, and anomalies in the structure functj@6]. In particu-  Paper, it would be highly desirable to perform extensive
lar, the structure function presents a discontinuity singularitysimulations for finite driving field £~1), and study
as happens in the DLE2]. (iv) Given the absence of any whether differences Wl_th respect to the available Monte
relevant current term in Eq2), the critical theory has “up- Carlo resglts for large f_|ellds appear. _It would al_so be inter-
down” symmetry ($— — ). This symmetry, in principle, is esting to improve the finite size scaling analysis following

absent in the microscopic model, as the presence of nonvér—‘e strategy used if24,13.

nishing three-point correlation functions seems to indicate |tijs g pleasure to acknowledge J. Marro and J. L. Lebow-
[2]. However, it is not clear whether such correlations arejtz for useful discussions and encouragement. We thank with
relevant at Cr|t|Ca||ty or not. As an indication that in fact they Specia| gratitude S. Caracciolo and collaborators for Sharing
could well be irrelevant, we discuss here the problem ofyith us extremely useful and valuable unpublished results.
triangular anisotropief22]: In both the DLG and the DDS, This work has been partially supported by the European Net-
droplets of the minority phaséf any) develop triangular work Contract No. ERBFMRXCT980183 and by the Minis-

shapes, closely related to the existence of nonvanishingyrio de Educadio under Project No. DGESEIC, PB97-
three-point correlations. However, triangles orientate in oppg42.

posite directions in the microscopic DLG and in the continu-
ous DDS. This difference seems to be not universal, as
shown by recent Monte Carlo studigz?], i.e., it depends on
microscopic details and can be modified by changing them
both in the DLG and in the DDS. This fact supports the idea As an evidence aimed to transmitting the intuition that,
that nonvanishing three-point correlation functions might notfor infinitely large driving, the current is not relevant at criti-
be a relevant ingredient for a description of the DLG at criti- cality, let us briefly discuss in this appendix a rather compel-
cality. More significatively, simulations show thedr large  ling Monte-Carlo observation. It corresponds to a variation
enough driving fields, the triangular anisotropy is sup- of the DLG, named ALGA; sef9] for a detailed definition.
pressedsee[22]), providing an indication that the up-down This model is placed by definition at the limit of infinite
symmetry is restored in the infinite driving limit. This con- driving: jumps in the anisotropy direction are performed
stitutes, we believe, another strong backing of our picture. randomly without attending to energetic considerations.
In summary, we have discussed the plausibility of theSimulations are performed both in the presence of an overall
alternative field-theoretical approaches to driven lattice gasesurrent (case p#1/2 in [9]) and in the absence of itp(
under the effect of an infinitely large external driving field. = 1/2); the curves for the order parameter versus the distance
Some deficiencies recently pointed out are overcome by into the critical point are indistinguishable in the cases with
troducing an extra Laplacian term in the direction of the fieldand without a currenfFig. 3 in[9] is particularly illuminat-
in the Langevin equation first proposed[itl,12. This new ing). It could be argued that the details of this modified
term, coming from a proper consideration of entropic contri-model[9] render it not completely equivalent to the original
butions, had been overlooked in previous papers. Our a@LG. However, we do not think these microscopic differ-
proach leads to the following global picture(i) For E=0, ences have any relevance at a coarse-grained level. In fact,
modelB reproduces the equilibrium critical properties of iso- we expect this model to be represented by &j. in one
tropic diffusive systemdii) For finite driving field, the stan- direction particles tend to stay together, and it is natural to
dard DDS Langevin equation, including a current term,assume that their coarse-grained behavior is controlled by a

APPENDIX
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modelB in this direction. In the other direction, jumps occur ALGA. As a further evidence supporting this hypothesis let
regardless of energetics and, therefore, the dynamics b&s mention that the measurgdexponent in the ALGA is
comes purely diffusive. With these two ingredients we re-B~0.34 (again very close to the valyé~1/3) in both cas-
cover the ADS, Eq(2), as the Langevin equation for the es: with and without current.
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