
Computer Physics Communications 121–122 (1999) 321–323
www.elsevier.nl/locate/cpc

Driven lattice gases: new perspectives
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Abstract

We report analytical studies of a series of driven systems: the driven lattice gas model, the randomly driven lattice gas, the
two-temperature model and the driven bi-layer lattice gas. All of them are described within a unified framework that preserves
the dynamical specifications present at the discrete level. Thus, we provide a set of Langevin equations for these driven systems
that illustrate how some microscopic details can affect the macroscopic properties. 1999 Elsevier Science B.V. All rights
reserved.

1. Introduction

The physics of Lattice Gases driven out of equi-
librium by an external field is a subject of an ongo-
ing interest. On one hand, it constitutes a large win-
dow into the field of non-equilibrium steady states. On
the other, the Driven Lattice Gas model (DLG) and
many of its relatives exhibit rich behaviour although
its microscopic specifications are utterly simple. First
devised by Katz et al. [1], the DLG consists of ad-
dimensional (hyper)cubic lattice with periodic bound-
ary conditions, coupled to a thermal bath at temper-
atureT . Each lattice site is labeled by an occupation
variable which takes the value 1 or 0 depending on
whether it is occupied by a particle or empty, respec-
tively. Neighboring particles attract each other accord-
ing to an Ising Hamiltonian. The model is also en-
dowed with a particle hopping dynamics which de-
pends on differences in energy,1H , and an exter-
nal uniform driving forceE through[(1H + `E)/T ],
where` = 1 (−1) for jumps along (against)E and
0 otherwise. Most Monte Carlo simulations deal with
systems at half filling and infinite field, which in prac-

1 E-mail: disantos@onsager.ugr.es.

tice means that no jumps against the field are al-
lowed. At temperatureT ∗ ' 1.4Tc, Tc being the On-
sager critical temperature, the DLG undergoes a non-
equilibrium phase transition from a disorded state to
one with spatial structure characterized by a striped
particle-rich region parallel to the drive. We shall not
dwell any further on the system properties and refer
the reader to [2,3] for recent reviews.

2. The Langevin approach

Commonly, it is only after continuum approaches
that analytical understanding in lattice systems arises,
because continuous descriptions can be expected to be
amenable to simpler mathematical treatment. Unfor-
tunately, pitfalls plague the rigorous continuum route
making it an insurmountable task in practice. Instead,
phenomenological approaches are in order and equa-
tions of Langevin can be postulated based on global
symmetries and conservation laws. This is the usual
avenue followed when studying the DLG in the long-
time and large-scale limit. However, this procedure
results in a Langevin equation which is identical for
all choices of the microscopic rules. A second objec-
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tion can be raised to the standard continuum approach.
Time evolution in driven systems involves the driving
force and differences in internal energy. These key in-
gredients are mapped to a current term plus a Model B
[4], respectively, at the level of the Langevin equation.
Nevertheless, mindful of the subtleties present in non-
equilibrium systems we cautiously give up this sort of
linearity assumption and introduce these two ingredi-
ents from the very beginning, i.e., in a continuous mas-
ter equation. Then, their final form in the Langevin
equation is left to the calculus rather than to precon-
ceived notions. When followed, this route leads to a
Langevin equation for the DLG that reads (see [5,6]
for a detailed explanation of the intermediate stages)

∂tφ(r , t)=
∑
a

∇ra
[
h(Λa)+ e(Λa)1/2ζa(r , t)

]
. (1)

Here φ(r , t) is the coarse grained excess particle
density field,a stands for thea direction,

Λa = a ·E(1− φ2)−∇ra
δH
δφ

andζa is a Gaussian white noise.H is the familiarφ-
four Hamiltonian and the functionsh(x) ande(x) are
defined as

h(x)=
∫
R

dηf (η)ηw(ηx),

e(x)=
∫
R

dηf (η)η2w(ηx), (2)

f (η) being an even function ofη and w the tran-
sition rates per unit time (for instancew(x) ∝ 1 −
tanh(x/2)).

Contrary to previous proposals, the dependence
of (1) on microscopic details is apparent. This be-
comes a weighty consideration as one moves to non-
equilibrium scenarios. Also remarkably, Eq. (1) con-
tains the basic symmetries of the DLG: it is invariant
under translations in space and time, and it is also in-
variant under the simultaneous changeE→−E and
φ→−φ. So, it constitutes a continuous counterpart
to the DLG in the same sense as the standard approach
[7] does. Now, after discarding irrelevant terms in the
renormalization group sense by naive power count-
ing in the Langevin equation (1) our major first result
emerges, namely, that theE-infinite case belongs to a
different universality class than theE-finite case [5,6].

Table 1
The three categories into which phase transitions in the DLG, RDLG
and 2T model can be classified

A B C

2T (T‖ =∞) 2T (0< T‖ <∞) DLG (0<E <∞)
RDLG (E =∞) RDLG (0<E <∞)

DLG (E =∞)

For the former, the upper critical dimension follows as
dc = 4 while a dimensional shift todc = 8 occurs in
the latter. The crossover phenomenon between these
two different critical behaviors can be understood on
the basis of an anisotropic structure factor. A renor-
malization group analysis of the infinitely driven sys-
tem is possible and it yields an universality class other
than that obtained from the equation postulated in [7].
The value of the critical exponents found after a calcu-
lation to one-loop order inε = 4− d seem to be con-
sistent with the simulation ones [8]. The occurrence of
microscopic dynamics in (1) is instrumental in getting
these novel results. Numerical work is in progress to
investigate the failure of the Cahn–Hilliard approach
to coarsening dynamics [9] from this new perspective.

It is important to find out whether other driven
systems can be incorporated within the formalism
described above. To this end, we have studied the
randomly driven lattice gas(RDLG) [10], the two-
temperature model(2T) [11] and thedriven bi-layer
lattice gas model[12], and coherently classified the
existing phase transitions in these systems [6]. More
precisely, the infinitely driven DLG, the RDLG with
infinite drive and the two-temperature model with
T‖ = ∞ share the same Langevin equation. The
RDLG with finite average field and the two-tempera-
ture model with finiteT‖ belong to the same universal-
ity class. The DLG withE <∞ is a class by itself (see
Table 1). Finally, the two phase transitions present in
the driven bi-layer lattice gas can also be placed into a
coherent analytical context.

3. Conclusions

We have reported a number of analytical results
concerning driven, conservative, lattice systems. A care-
fully derived Langevin equation for the DLG has been
presented. As a main consequence, a clear-cut dis-
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tinction between theE = ∞ and theE finite cases
emerges: they belong to different universality classes.
Work is in progress to clarify some issues concern-
ing asymmetric growth during phase segregation. Our
formalism also encompasses several extensions of the
DLG: the RDLG, the two-temperature lattice gas and
the driven bi-layer lattice gas. It follows that a coherent
classification of the phase transitions in theses systems
can be provided in the frame of field theory. Many in-
teresting questions await more detailed theoretical in-
vestigations, but our preliminary results already indi-
cate how in some non-equilibrium systems the details
of the microscopic dynamics can be decisive to the ob-
servable behavior.
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