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Abstract

We discuss the critical behavior of nonequilibrium anisotropic systems, particularly the driven
lattice gas and its variants. A large series of available numerical results depict a coherent picture
consistent with speci�c predictions drawn from novel �eld theory and its renormalization group
analysis. c© 2000 Elsevier Science B.V. All rights reserved.
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Steady states of many-particle systems that are far from equilibrium, as when a
constant ux of matter goes through the system, are common in physics, biology and
geology [1,2]. In spite of some formal similarity and super�cial resemblance to equilib-
rium phenomena, the properties of such nonequilibrium steady states are not given by
averages over a known probability distribution. Consequently, extending familiar con-
cepts and techniques of statistical physics to these cases is di�cult. This is so even for
the simplest nontrivial scenario, namely, lattice models that violate detailed balance,
which have been attracting considerable interest. As a matter of fact, recent studies
have explicitly shown that nonequilibrium steady states are determined by details of
the lattice microscopic dynamics, which induces a varied and complex phenomenology
and singles out the Ising equilibrium states — which are independent of dynamics —
as a particularly simple situation [3]. These di�culties are naturally reected in our
present understanding of the great diversity of nonequilibrium phase transitions and
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critical phenomena in nature. It is to be reported, however, that a class of nonequilib-
rium anisotropic systems has been intensively studied during more than a decade now,
and a coherent picture seems to have emerged lately.
The main system of interest in this paper is the driven lattice gas (DLG), �rst stud-

ied by Lebowitz and collaborators [4,5]. The DLG is the equilibrium, Ising–Yang–Lee
lattice gas perturbed by a ‘driving force’ thus resulting in a system which is intrinsi-
cally out of equilibrium. More speci�cally, one assumes both a regular d-dimensional
lattice on a torus, i.e., with periodic boundaries, whose sites x=1; : : : ; N hold occupa-
tion variables, s(x) = +1 (‘particle’) or −1 (‘hole’), and a potential energy function
H ({s(x)}) = −T−1∑

|x−y|=1 s(x)s(y); where the sum is over nearest-neighbor (NN)
sites. The con�guration {s(x)} evolves in time by (Kawasaki) particle jumps to NN
holes. The jumps occur with rate per unit time given by !(�H); except for those along
a principal lattice axis for which the rate is !(�H+�E); where �=±1 for the positive
and negative ‘longitudinal’ directions, respectively. Here E¿ 0 represents a constant
‘electric �eld,’ ! is an arbitrary function, T is the temperature (in units of kBoltzman)
of the underlying thermal bath, and �H is the change in H after the jump. When the
�eld that biases longitudinal hopping vanishes, one recovers the lattice gas; in the ther-
modynamic limit, this has a critical point at � ≡ N−1∑

x s(x) =
1
2 and T = Tc(E =0):

Otherwise, the system dissipates to the bath the heat generated by the �eld, and the
rate cannot be derived from any potential energy function. Detailed balance does not
hold but locally (for appropriate choice of !), though one may still speak of energy
and temperature in this ‘perturbed equilibrium’ model. In order to maintain our discus-
sion simple enough, we shall deal below (unless otherwise indicated) with attractive
interactions between NN particles, the Metropolis realization !(�) = min{1; e−�}; an
‘in�nite’ �eld (particles cannot jump backwards), and rectangular d = 2 lattices with
�= 1

2 ; i.e., half �lled with particles (see Ref. [3] for other interesting cases).
A main observation in Monte Carlo (MC) simulations of the DLG is a continuous

(‘second-order’) transition at Tc(E); which monotonically increases with E and satu-
rates at Tc(E =∞) ' 1:4Tc(E = 0): The system exhibits the familiar disordered phase
at high T; and two homogeneous phases at low T: Unlike in equilibrium, the condensed
phase is strongly anisotropic, forming a single ‘liquid’ strip coexisting with ‘gas’ in
the steady state, which holds a net longitudinal current for any non-zero value of E:
The observed shift in Tc(E); as well as other qualitative features of this nonequilibrium
phase transition are now rather well understood [6,7,3]. The early work left the impor-
tant question of critical behavior unsettled, however; in fact, this and a natural concern
about the existence of nonequilibrium universality classes turned out to be di�cult
problems [8,9]. Many studies of nonequilibrium critical behavior have focused on the
DLG since then; as a matter of fact, the DLG remains as the conceptually simplest
system lacking detailed balance which involves strong spatial anisotropies and appar-
ently captures other essential features of nonequilibrium phenomena. There is hope that
a full understanding of the DLG will help elucidating more realistic situations.
The �rst estimate of critical behavior for the DLG suggested rough consistency with

the (order-parameter) critical exponent � ' 1
2 [5]. This result held little surprise 15
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years ago when classical exponents were quite familiar from macroscopic descrip-
tions (in which mean-�eld behavior is implicit) (see for instance Ref. [10]). 1 Further-
more, the pioneering nonequilibrium renormalization-group (RG) prediction [11,12] of
a change-over to classical behavior when a binary liquid is set under shear had been
reported as con�rmed experimentally [13]. (It would be interesting to further examine
such agreement, however, in the light of both the results reported below for the DLG,
which is a closely related problem, and the fact that a nonequilibrium lattice binary
mixture with shear ow indicated �¡ 1

2 [14].)
Motivated by the fact that the ’4 theory plus RG techniques produce an excellent

description, including dynamics, of the Ising problem [15], more continuum nonequilib-
rium models that incorporate uctuations have been developed. In particular, a contin-
uum analog of the DLG, known as the ‘driven di�usive’ system (DDS), was proposed
[16–22]. This incursion in the world of symmetries in nonequilibrium phenomena led,
for any value of the drive, to the conclusion that the critical behavior is controlled
by ’2 (classical) theory with only an indirect inuence of ’4: More explicitly, this
Langevin model solves exactly showing mean-�eld behavior, including classical criti-
cal exponents for any 2¡d¡dc; dc = 5 (weak logarithmic corrections are predicted
for the marginal case d=2): It also ensues the need for two correlation lengths which
diverge with distinct exponents, namely, �‖ = 1 + 1

6(5 − d) and �⊥ = 1
2 ; and e�ective

isotropy of the problem. This means that di�erent �nite rectangular (L‖ × L⊥) lattices
should be comparable to each other, exhibiting standard �nite-size scaling behavior
if one �xes the ratio L

�‖=�⊥
‖ L−1

⊥ (= L3‖L
−1
⊥ for d = 2). The �rst MC study of rect-

angular lattices, including the case L‖/L⊥/1, gave no indication of such behavior,
however, and the exponent � was observed to clearly deviate from both 1

2 and
1
8 ; [23]

the latter being the Ising value. In fact, excluding an optimistic report, [20,21] none
of the several independent MC analysis of the DLG and its variants performed up
to date has provided any convincing evidence that the DDS is the continuum version
of the DLG [24–29]. On the contrary, the results from such great numerical e�ort
can only be summarized by saying that the DLG does not have classical behavior for
E =∞ (the only case which has extensively been analyzed so far). The DDS needs
further elaboration before it can be accepted as the appropriate DLG continuum
analog.
This is perhaps an example of the many surprises one may be confronted with in

nonequilibrium phenomena when expectations are too closely based on the intuition
developed from equilibrium situations. In particular, it is not clear-cut yet the role
played out of equilibrium by symmetries, including those involved by dynamics. It is
true that, lacking a substitute, the DDS should not be questioned based on the available
numerical discrepancies only. (In fact, except for the shear ow mentioned above, no
related experiment has been performed so far.) However, there is much more than just
numerical disagreement. For example, �nite-size scaling analysis of MC data indicated

1 The data backing the report in Ref. [5] clearly showed, for d = 2; 3; respectively, that �¿ 1
8 ;

5
16 (the

equilibrium values); it was interpreted as indicating that � ' 1
2 according to expectations.
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strong surface e�ects to be naturally associated with the existence of a peculiar, linear
liquid–gas interface in the DLG below Tc(E) [24,30]. As a matter of fact, theory has
revealed how strongly the interface details inuence the DLG steady-state properties
[6], which is a rather general fact in nonequilibrium phase transitions [2,10]. This
might indicate that the interface rather than the �eld is relevant for the DLG critical
‘anomaly’. The same is suggested by the behavior of the layered DLG [26]. This
consists of two DLG planes, one on top of the other, such that particles in di�erent
planes never interact — even if they are at NN sites along the transverse direction
— but can jump to an NN hole in the other plane. In addition to the nonequilibrium
phase transition of the standard DLG, the layered system undergoes a continuous phase
transition — isotropic liquid in one plane and gas in the other — at T ∗

c (E)¡Tc(E)
for E¡Ec (the transition is discontinuous for large E): Near T ∗

c (E¡Ec); where no
anisotropic interface tends to be developed — contrary to the situation at Tc(E) —,
one precisely observes Ising exponents, and no dramatic surface e�ects [30]. (It is
also remarkable that the DLG with repulsive interactions undergoes a phase transition
with Ising behavior which exhibits no interface nor surface e�ects.) That is, only
the interface (and not the existence of a current) is able to modify the ubiquitous
Ising behavior. On the other hand, it is remarkable that short-ranged order parameters
including the particle current exhibit a singularity at Tc(E) which is not to be expected
under the assumption of classical behavior [3].
The nonclassical behavior of the DLG is also supported by both quantitative and

qualitative behavior as observed in its ‘variants’, including: (i) the DLG with broken
bonds between NN site pairs oriented parallel to the �eld [31]; (ii) the DLG with spin
ips added to exchanges [32]; (iii) a lattice gas in which longitudinal exchanges occur
at random as in contact with a thermal bath at T → ∞ [33,34]; (iv) the layered DLG
mentioned above; and (v) a lattice gas that involves a parameter such that p=1 mimics
the DLG with E =∞ and p = 1

2 corresponds to the �eld pointing at random along
either the positive or the negative longitudinal directions [29]. Interestingly enough,
this system exhibits precisely the same critical behavior for the two values of p; while
the two versions of the DDS to be associated predict � = 1

2 and �¡ 1
2 , respectively

[35]. Though the precise relation between these and other ‘DLG variants’ has not yet
been established rigorously, it is interesting that their corresponding anisotropies and
numerical values for critical exponents loosely suggest that they all might depict the
same (nonequilibrium) ‘universality class’ [30,3].
These and related questions could be answered by coarse-graining from the detailed

microscopic dynamics. Though this is a di�cult task to be fully accomplished at present
[36,37], steps in this direction may clarify, for example, the dependence of the (meso-
scopic) Langevin coe�cients on microscopic parameters. In a recent attempt (DDS2)
with this aim, the Langevin equation with speci�c symmetries is avoided as the starting
point, and one proceeds instead from the continuum Markovian model:

@Pt(�)
@t

=
d∑

a=1

∑
�=±1

∫
dr[!(��;r; a → �)Pt(��;r; a)− !(� → ��;r; a)Pt(�)] : (1)
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Here, Pt(�) is the probability of con�guration � = {�(r); r ∈ Rd} at time t; where
the �elds �(r) ∈ R sum up all the original spin variables s(x) within a region of
volume 
 around r; and ��; r; a stands for � after changing �(r) to ��; r; a(r) = �(r) +
�
−1∇a�(r − r′), where ∇a = @=@ra, r = {ra; a = 1; : : : ; d}. That is, the elementary
dynamical rule in this ‘soft spin’ master equation consists in transferring an amount

−1 of �eld along a�.
Let us consider the conceptually simplest case of this equation, which consists in

assuming that !(��; r; a → �) = !(�H�; r; a
E ) with �H�; r; a

E = H (�) − H (��; r; a) +
HE(� → ��; r; a) and

H (�) = 

∫
dr

[
1
2
(∇�)2 +

u
2
�2 +

g
4!

�4
]
;

HE (� → ��; r; a) = �E�a;‖
[
1− � (r)2 +O (


−1)] : (2)

There is not rigorously justi�cation from microscopic spin dynamics for these hypothe-
ses – including the assumption that the �eld parameter has at this level the same prop-
erties as in the DLG. In any case, it is to be remarked that local detailed balance holds
to order 
−1, namely, HE(� → ��;r; a) =−HE(��;r; a → �) as for the original DLG.
Next, a Kramers–Moyal expansion of Eq. (1) using parameter 
 leads to a Fokker–

Planck description that can be written as the Langevin equation:

@�(r)
@�

=
d∑

a=1

∇a

[
!(�E

a )− !(−�E
a ) +  �;a

√
!(�E

a ) + !(−�E
a )
]

; (3)

where  �;a stands for a Gaussian noise and

�E
a =−∇a

�H
��

+ E�a;‖(1− �2) : (4)

In addition to the obvious symmetry (E; �) → (−E;−�); this involves the basic mi-
croscopic structure of the lattice system via the explicit dependence on the elementary
rate !(�E

a ); which remains unspeci�ed in (3). In fact, model (1)–(2) has already been
used to study the critical properties of a number of nonequilibrium lattice systems [38].
The critical behavior of the DDS2 may be investigated from the above simple sce-

nario by standard scaling techniques. In addition to some non-physical cases, one �nds
up to four critical theories after assuming either isotropic or anisotropic scaling. That
is, let (3) be written after scaling as

@�
@�
=∇⊥ · j⊥ +∇‖j‖ : (5)

Assuming isotropic scaling, namely, after performing the changes (using standard RG
notation) r⊥ → �−1r⊥; r‖ → �−1r‖; � → �−4� and � → �(d−2)=2�; the following
non-trivial �x point theories emerge as � → 0:
• For E = 0; the critical behavior of (3) corresponds to the Ising one in ‘model B’,
[15] with

j⊥ =−∇⊥
�H
��

+  �;⊥; j‖ =−∇‖
�H
��

+  �;‖ : (6)
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• For 0¡E¡∞; j=j(�; E) has a complex structure with many ‘dangerous irrelevant
operators’ [38]. The corresponding critical behavior is not known.

• For E → ∞; one has

j⊥ =−∇⊥
�H
��

+  �;⊥; j‖ =  �;‖ : (7)

That is, longitudinal random interchanges and model B behavior along the transverse
directions. This implies a new universality class for which the critical dimension is
dc=4 and (to one-loop order in �=dc −d) �= 1

2 +O(�2) and �= 1
2 +

�
12 +O(�2); i.e.,

non-classical critical behavior [39]. It is remarkable that, against the intuition naturally
incorporated in the DDS, this (critical) theory does not involve any net longitudinal
current, though the starting model (3)–(4) does include a current for any E¿ 0:
Assuming anisotropic scaling, r⊥ → �−1r⊥; r‖ → �−2r‖; � → �−4� and � →

�(d−1)=2�; one recovers the standard DDS critical theory as � → 0 for any 0¡E¡∞:

j⊥ =−∇⊥
�H⊥
��

+  �;⊥; j‖ = f1(E)∇‖�+ f′
1(E)�

2 ; (8)

where H⊥ =
∫
dr 12 (∇⊥�)2 + (u=2)�2 + (g=4!)�4: This case with Galilean symmetry

leads to dc =5 and to �= 1
2 to any order in an �-expansion. The functions f1(E) and

f′
1(E) go to zero as E → 0;∞; as a consequence, model B behavior is not recovered.
Summing up, according to this simple picture, the DLG would depict two di�erent

universality classes for 0¡E¡∞ and E→∞, respectively. The latter is not classical.
In fact, the absence of a Gallilean symmetry impedes the cancellations characterizing
the DDS. One recovers the Ising universality class for E = 0. Further consequences of
(1) and (3) are presently under study.
Finally, we briey mention some interesting details concerning the DDS2 critical

mechanism as revealed by the structure function. This can be written for any d¿ 4 as

S(k)˙
F(k; E)
u2 + k2

; (9)

where F(k; E) = 1 for E = 0; and

F(k; E) =
k2⊥ + f2(E)k2‖
k2⊥ + f′

2(E)k
2
‖

for 0¡E¡∞ ; (10)

F(k; E) =
2k2⊥ + k2‖
2k2⊥

for E → ∞ : (11)

Here f2(E) and f′
2(E) go to zero as E → 0; while f2(E)→ 1

2 and f′
2(E)→ 0 as E →

∞: Therefore, one has the length scale �= u−1 for E=0; and the critical point is then
associated to the singular behavior of the structure function as u → 0; � → ∞; this is
the familiar equilibrium situation. For 0¡E¡∞; (10) reveals long-range (algebraic)
correlations at any temperature, which is a main feature of nonequilibrium phenomena
[3]. That is, S(k) has a kind of singular behavior even far away from the critical point
u = 0. This is still dominant, but an extra singularity adds to it. Consequently, the
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nonequilibrium critical point does not have a simple characterization as in equilibrium
but corresponds to a region in parameter space in which two or more singularities
compete. For E → ∞; f′

2(E) vanishes so that the longitudinal structure is washed out
by the �eld. The functions involved show dominant terms ∼ e−E ; consequently, the
crossover from �nite to in�nite �eld is expected to occur for values of E of order of
unity.

Note added in proof

The basic continuum model above involves a rate !(��; r; a → �) = !(�HU +
�HS) where, respectively, the energetic and entropic contributions to the free-energy
change �H�; r; a

E are shown explicitly. Trying to understand further the consequences of
(1), we very recently considered a situation in which the rate factorizes !(��; r; a →
�) = !(�HU )!(�HS) and the �eld enters in �HU . This study strongly con�rmed
the relevance of microscopic dynamics in this class of nonequilibrium models. In fact,
even though such a modi�cation can in a sense be simply interpreted as endowing the
DDS2 with a mass, the resulting Langevin equation (to be denoted ADS) exhibits novel
interesting behavior [40]. The ADS, which also depicts two di�erent classes, for �nite
and in�nite E, respectively, in addition to solve a criticism in Ref. [41] – i.e., the one
concerning structure factors above criticality in the DDS2, which is sensible [40] – ,
predicts for E → ∞ (under the assumption of anisotropic scaling) that � ' 0:63,
� ' 1

2�, �⊥ = �, �‖ = �(1 + �) and � ' 1 for d = 2 (dc = 3). These values for
� and � and the result �⊥ ' 2�‖ are all in perfect agreement with MC observations
[3]. While such agreement may con�rm that using rectangular lattices is not essential
to obtain good MC estimates for the critical properties of the DLG, the ADS also
suggests that looking for standard �nite-size scaling one should �x the lattice sides to
L2‖L

−1
⊥ rather than to L3‖L

−1
⊥ . This might explain why Refs. [27,28], for instance, failed

to obtain good data collapse below Tc (E =∞).
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[40] P.L. Garrido, M.A. Muñoz, F. de los Santos, cond-mat/0001165 preprint.
[41] B. Schmittmann et al., cond-mat/9912286 preprint.


