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We study a stochastic neural-network model in which neurons and synapses
change with a priori probability p and 1& p, respectively, in the limit p � 0.
This implies neuron activity competing with fast fluctuations of the synaptic
connections��in fact, random oscillations around values given by a learning (for
example, Hebb's) rule. The consequences for the system performance of a
dynamics constantly checking at random the set of memorized patterns is thus
studied both analytically and numerically. We describe various nonequilibrium
phase transitions whose nature depends on the properties of fluctuations. We
find, in particular, that under rather general conditions locally stable mixture
states do not occur, and pattern recognition and retrieval processes are substan-
tially improved for some classes of synaptic fluctuations.

KEY WORDS: Neural network; synaptic noise; stochastic Hopfield model.

1. INTRODUCTION, AND DEFINITION OF MODEL

The Hopfield neural network(1) was recently re-formulated as a kinetic
stochastic system in which synapse intensities change with time, namely,
they have their own local dynamics competing with neuronal activity.(2) It
was argued that such a competition may occur in biological systems. For
example, biological neurons typically connect each other by more than one
synapse, each having a different nature, therefore transmitting the action
potential at different speed, (3) and emission of neurotransmitters and
related mechanisms have an essential random component.(4, 5) These
features of biological systems induce apparently-noisy behavior of synaptic
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patterns. The observed variability of response to the same stimulus of a
given neuron(6) also suggests random synaptic variations with time. Such a
possibility is, in fact, appealing, as a growing literature which reports on
noisy, unreliable behavior of individual biological synapses (see, for
instance, refs. 7�14) coexists with the spreading belief (see refs. 7, 9, 12, 13,
and 15�18, for instance) that ``noise'' is likely to be at the origin of the
observed robustness and high processing power of biological networks. In
summary, various recent observations support that neuron updates are
slow and they occur under the action of a rapidly varying, apparently noisy
stimulus from the synapses.

As a step further towards incorporating these features and better
understanding the consequences of synaptic variations on the network
behavior, we studied in some detail a set of N binary neurons with con-
figurations s=[sx=\1; x=1,..., N ] which evolve by stochastic equations,

�tPt(s)=:
x

[|(sx; x) Pt(sx)&|(s; x) Pt(s)] (1)

where the transition probability per unit time (rate) is a superposition,
namely,

|(s; x)=| dJ f (J) .[2T &1sxhx(s, J)] (2)

Here sx is the configuration obtained from s after the change sx � &sx ,
J=[Jxy # R] stands for synapse configurations, and T is the temperature
of the heat bath involved; hx(s, J)=�y{x Jxy sy&%x is a local field with %x

the threshold energy needed to activate the neuron at x (for simplicity, we
assume %x=0 \x hereafter). The function . stands for the elementary
dynamic rate, which��for simplicity��we assume satisfies detailed balance,
.(X )=.(&X ) exp(&X ), and .(0)=1 and limX � +� .(X )=0; we con-
sider explicitly

e&X�2, rule V
.(X )={2(1+eX )&1, rule K (3)

min[1, e&X ], rule M

The interpretation of the above(2) is that, once a learning ( plasticity) pro-
cess is completed, the neuron subsystem varies on a (coarse) time scale t,
whilst the synapse subsystem also varies but on a finer time scale, e.g.,
{=tp&1 for small p. For p � 0, and { � �, synapses change very fast com-
pared to neuron changes, and one may consider the couplings Jxy as random
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variables of distribution f (J). The result is the effective rate for transitions
sx � &sx given in (2). This indicates that the evolution of s is by a com-
petition of different canonical mechanisms, .[2T &1sxhx(s, J)], each corre-
sponding to a different local field hx(s, J), such that the superposition (2)
will not satisfy detailed balance in general. Therefore, the system evolves
asymptotically towards a nonequilibrium steady state which is expected to
exhibit a strong dependence on both f (J) and .(X ), i.e., on the fluctuating
properties of the synapses.

The consequences of the competition (2) were studied explicitly in ref. 2
for

f (J)= `
x, y

x{y

:
P

+=1

a+$(Jxy&' +
xy) (4)

�P
+=1 a+=1. The factorization in this function implies that fluctuations at

different synapses are not correlated with each other (though one may
imagine a kind of stationary waves propagating in the network). Assuming
that the system has previously stored P patterns, ! +#[! +

x =\1] with
+=1,..., P, an interesting choice is ' +

xy B ! +
x ! +

y , i.e., each synapse intensity
is associated to one of the elements of a memorized pattern. This case
admits a quasi-canonical representation in terms of an effective
Hamiltonian, (19) and some exact results may then be obtained. In spite of
such simplicity, the resulting behavior is rather involved for some rates ..
For the cases in ref. 2, however, fluctuations simply modify the temperature T,
which changes to some ``effective'' (larger) value, as in the presence of some
excess noise. Consequently, the value :C , for the ratio :#P�N below which
there is efficient associative memory (slightly) decreases, and the region of
the phase diagram where the occurrence of mixture (``spin-glass'') states
hampers memory is notably reduced, and it does not occur at zero tem-
perature above a certain value for :.

The only motivation for the choice (4) was simplicity; for example, the
model in ref. 2 can be solved exactly. In this paper we try to understand
better the influence of synapse dynamics on the performance of neural-
network models by studying synapse fluctuations that can be spatially
correlated. In particular, we report on the emergent behavior following
from (1)�(3) for

f (J)= :
P

+=1

a+ `
x, y

x{y

$(Jxy&' +
xy) (5)

�P
+=1 a+=1. The choice ' +

xy B ! +
x ! +

y then implies that each pattern ! + con-
tributes with some probability to the configuration J; therefore, in general,
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correlations between the fluctuations at different synapses exist in this case
due to the spatial correlations in ! +. In order to have a well-known
reference, we shall assume that the random variations with time of each
intensity Jxy are such that its average, Jxy , along the characteristic time
interval for neuronal activity has the value corresponding to a given learn-
ing rule. For example, assuming ' +

xy=(Na+)&1 ! +
x ! +

y , we have

Jxy #| dJ f (J) Jxy=
1
N

:
P

+=1

! +
x ! +

y (6)

i.e., fluctuations are around mean values corresponding to Hebb's learning
rule.(20) It is also to be noted at this point that our analytical results in the
following concern the thermodynamic limit or infinite network, N � �, and
that explicit behavior is only reported for finite P; however, we believe, and
present some evidence that our conclusions most likely hold well for
arbitrarily large P, i.e., they belong to the asymptotic regime for P � �.
A preliminary account of some of our results here (mostly the ones obtained
numerically) has been published elsewhere.(21)

2. CONTINUOUS PHASE TRANSITIONS

The mean activity follows from (1) after using (2) and (5):

�t(sx) =&2 �sx :
P

+=1

a+A+
+, x(s)�&2 � :

P

+=1

a+A&
+, x(s)� (7)

where A\
+, x(s)= 1

2 [.[2T &1 �y ' +
xysy]\.[&2T &1 �y ' +

xysy]]. The field
hx(s, J)=�y{x Jxy sy involves interaction between a given neuron and the
rest. A simple ansatz consistent with such long-range interactions is sx=
(sx). (The analytical consequences of this agree with the results from
Monte Carlo simulations within statistical errors; see Section 6.) It follows
the stationary solution

(sx)= :
P

+=1

a+[.(&` +
x )&.(` +

x )] { :
P

+=1

a+[.(&` +
x )+.(` +

x )]=
&1

(8)

where ` +
x #2T &1 �y ' +

xy (sy). As this holds for (sx) =0 \x, nontrivial
solutions corresponding to continuous phase transitions may be obtained
by expanding (8) in powers of (sx) , which leads to first order to

(sx)r
1
2 :

+

a+` +
x (9)
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That is, (sx) {0 (only) below a critical temperature, Tc , which is the solu-
tion of det[T &1 �+ a+' +

xy&$xy]=0. In spite of some similarities with the
equilibrium transition of second order, this has a nonequilibrium nature(19)

which reflects, for instance, in the fact that Tc depends on the choice for
' +

xy , i.e., on f (J) and, consequently, on the (effective) rate (2). It is true
that, in the present case, Tc is independent of .; however, the validity of
(9) breaks down as T is lowered so that, in general, the stationary states
below Tc depend also on .. More explicitly, they exhibit a dependence on
the asymptotic properties of .(X ) as X � \�; in fact, due to detailed
balance, only the value of limX � &� .(X )=\ exp(&2X )��where \=1,
2=1�2 for rule V; \=2, 2=0 for rule K; and \=1, 2=0 for rule M��
matters at sufficiently low T.

As a first example, consider ' +
xy=N&1' +, i.e., one has Jxy=N&1' +,

\x, y with probability a+ . Equation (9) then predicts a transition from
paramagnetic- to ferromagnetic-like states at Tc=�+ a+' +. As T � 0, one
has from (8) that (sx)=\�+ a+ sign(' +) for �+ a+ sign(' +)>0 and
(sx)=0 otherwise for both rules K and M (2=0), and (sx)=\1 for
sign(':)>0 and (sx) =0 otherwise for rule V (2{0). The index : stands
for the pattern for which |':|=max+ |' +|.

As a further example, consider ' +
xy=*+ ! +

x ! +
y with *+>0. The interest

is then on the conditions for which (7) has stationary solutions whose over-
lap with a given pattern ! +, defined as

m+(s)#
1
N

:
x

! +
x sx (10)

is nonzero. We obtain from (9) that such solutions occur when

:
+

m+ \$+&&T &1 :
x

a+*+! +
x !&

y+=0 (11)

where m+ stands hereafter for m+(s) with sx=(sx) \x.
Approaching analytically the properties of our system becomes simpler

for orthogonal patterns. This names those patterns whose elements, ! +
x , are

either orthogonal to each other, namely, N&1 �x ! +
x !&

x=$+& , or else quasi-
orthogonal, as when [! +

x ] is a set of P_N statistically-independent ran-
dom variables, so that N&1 �x ! +

x !&
x � $+& as N � � (with finite P), which

is the limit we consider for the analytical results hereafter. For orthogonal
patterns, (11) implies m+{0 for T<Tc , where Tc is independent of the
rate .. More explicitly, a continuous phase transition occurs at Tc=
max+ a+ if *+=N&1 and Tc=1 if *+=(Na+)&1. The latter case, which
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corresponds to fluctuations around the Hebbian rule, is studied below. On
the other hand, as T � 0, one obtains for ' +

xy=*+! +
x ! +

y , independently of
the choice for *+ , that m+=\a+ for rules K and M, and m+=$+$ sign(m$)
\+ for rule V; $ stands for the pattern for which |m$|=max+ |m+ |. The fact
that the behavior near the ground state depends qualitatively on (2) deserves
analysis in subsequent sections.

3. FLUCTUATIONS AROUND HEBB'S RULE

Though the following restriction is not necessary to obtain our main
result in this paper, we study here fluctuations around values determined
by a given learning rule; in this section (and in Section 6) we consider
explicitly the Hebbian case. This corresponds to the choice ' +

xy=
(Na+)&1 ! +

x ! +
y , which induces fluctuations of mean (6), and

_2
xy(!)=(Jxy&Jxy)2=\P

N+
2

&
1

N 2 :
+, &

! +
x ! +

y !&
x !&

y (12)

where ! stands for the set [! +; +=1,..., P] of all memorized patterns. In
this case, for sx=(sx) and orthogonal patterns, (1) transforms for (5) into

�t m+=&2m+ :
P

&=1

a&B+
& &2a+B&

+ (13)

where B\
+ = 1

2[.((2�a+T ) m+)\.(&(2�a+T ) m+)]. The stationary solu-
tion is m=(m1,..., mP ) with

m+=&a+ B&
+ \ :

P

&=1

a&B+
& +

&1

(14)

This admits the trivial solution (0, 0,..., 0), and solutions (m1,..., mn, 0,..., 0)
with n�P and 1�|m+ |�0 for T<Tc=1. The stability of these solutions,
which in general depends on ., is studied in Section 4.

The property of associative memory relies on solutions with n=1, i.e.,
the so-called Mattis or pure states;(22) for P stored patterns, ! +, there are
2P Mattis states, namely, the elements of the two set ! + and &! +. The
mixture or ``spin-glass'' solutions with n>1 are m=mn(1,..., 1, &1,..., &1,
0,..., 0) for a+ independent of +, i.e., a+=P&1 so that all the stored patterns
contribute the same to the synaptic intensities. These states are said to be
symmetric if either the number, k, of 1s or else the number, s, of &1s,
n=k+s, are zero, and asymmetric otherwise.
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Explicit results generally depend on .. For rule K, (14) is m+=
a+ x0(T ) with x0=tanh(T &1x0), i.e., m+ B a+ for given T. The behavior
near Tc=1 is

m+t\- 3 a+ Tc(Tc&T )1�2, T � T &
c (15)

and m+=\a+ as T � 0. For a+=P&1, m+ for given T is either 0 or
\P&1 |x0(T )|, i.e., the overlap decreases as the number P of patterns
increases.

For rule M, (14) is

|m+ |=
a+[1&exp(&2T &1a&1

+ |m+ | )]

�P
&=1 a&[1+exp(&2T &1a&1

& |m& | )]
(16)

i.e., m+ depends on a+ and on the other P&1 overlaps, unlike for rule K.
The low temperature behavior depends on the type of solution (m1 ,..., mn ,
0,..., 0). For n=P (all overlaps are nonzero), one has |m+ |=a+ at T=0, as
for rule K; for P&n (>0) zero overlaps, however, the other n nonzero
overlaps at T=0 are |m+ |=a+[1+�P

&=n+1 a&]
&1. If the stored patterns

are equiprobable, a+=P&1, m+ is either 0 or \|mn | for any T, and it
follows below Tc=1 that

|mn |={(P&n)&1 Tc(Tc&T ),
- 3 P&1Tc(Tc&T )1�2,

n<P
n=P

as T � T &
c (17)

This transforms continuously into |mn |=(2P&n)&1, n�P, as T � 0.
For rule V, (14) reads

m+=a+ sinh(T &1a&1
+ m+) _ :

P

&=1

a& cosh(T &1a&1
+ m&)&

&1

(18)

so that m+ depends on a+ and on the other P&1 overlaps, as in (16). At
zero-T:

m+=a+ \ :
n$

&=1

a&+
&1

sign(m+) $$+ (19)

|m$ |=max+ |m+ |, where n$ is the number of overlaps |m+ |=|m$ |. It
follows m+=sign(m+) $$+ for n$=1, i.e., the system recovers without error
at T=0.

For T>0, we studied the simplest case, i.e., a+=P&1 with m+=0,
\|mn |, where mn depends on T, n, and P. Unlike for rules K and M, two
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Fig. 1. The variation with P of stable solutions mn(T ) for n=1 (pure, Mattis states) as
obtained from (18), rule V (solid lines). (a) For P=1, 3, 5, and 10, from left to right. Monte
Carlo data for N=3600 and P=1 (m), 5 (g), and 10 (h) are also shown. The dashed lines
correspond to the discontinuity that occurs at T� (n, P) for any P>3n. (b) The same for
P=50, 500, and 1000, which illustrates the tendency shown for large P. The dashed lines here
correspond to unstable solutions which connect T� (1, P>3) with T=1.
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different types of mixture may occur: For n> 1
3P, one has mn=0 for

T>Tc=1, and |mn |=- 6[P(3n&P)]&1�2 Tc(Tc&T )1�2 as T � T &
c . For

n� 1
3P, however, mn behaves discontinuously at T� (n, P)#m~ nP%&1

n , where
%n is the solution of

n%n+(P&n)(%n cosh %n&sinh %n)&n sinh %n cosh %n=0 (20)

and

m~ n=sinh %n(n cosh %n+P&n)&1 (21)

is mn for T=T� (n, P); T� (n, P<3n)=Tc . The fact that this transition is of
first order, in general, allows for large overlaps m~ n just below T� , which
corresponds to a good performance of the system. In any case, |mn |=n&1

as T � 0.
This behavior for rule V is illustrated in Figs. 1 to 3 for the Mattis

case. The graphs indicate, in particular, the existence of a nonequilibrium
tricritical point at P=3. In fact, the solutions (14) correspond, in general,
to a saddle point with a number of instability directions, the details
depending on the function .(X ). It follows that, for rule V, only the Mattis

Fig. 2. The isotherms mn=mn(P) for n=1 and rule V, for indicated values of T, showing
a (nonequilibrium) tricritical point. The dashed lines represent unstable solutions for P>3
when T<T� (1, P). The solid lines represent the stable, continuous behavior for any P if
T<Tc=1.
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Fig. 3. Phase diagram for n=1 and rule V, as implied by (18), indicating T� (1, P) for small
(inset) and large (main graph) P; the latter��showing T� (1, P) increasing less than linearly for
3�P�104��suggests good behavior as P is increased. The graphs indicate (nonequilibrium)
phase transitions of first (dashed lines) and second (solid line in the inset) order.

states (n=1) are locally stable, while local stability holds only for mixture
states with n=P if the rule is either K or M; this interesting result is
worked out explicitly in the next section.

4. STABILITY, AND FIRST-ORDER PHASE TRANSITIONS

The (local) stability of solutions of (13), m+, 0 , may be studied by
linearizing:

�t n += :
P

&=1

Q+& n&+O(n2) (22)

where n=(n1,..., nP) with n +#m+&m+, 0 \+ (see ref. 23, for instance). That
is, the local stability of m=m0 corresponds to the one of n=0, which
requires that the eigenvalues of the matrix Q=(Q+&) are negative. A first
conclusion is that the stability of (14) depends, even qualitatively on .(X );
see ref. 13.

For rule K,

Q+&={ 2T &1

cosh2(T &1a&1
+ m+)

&2= $+& (23)
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where m+ is given in (14), whose eigenvalues are

*� +=
2T &1

cosh2(T &1a&1
+ m+)

&2 \+ (24)

For T<Tc=1, *� +<0 for m+{0 and *� +>0 for m+=0. Therefore, (m1 ,...,
mn , 0,..., 0) is a saddle point with P&n instability directions, so that any
mixture with n<P��in particular, the Mattis states (n=1)��is unstable;
local stability only holds for mixtures with n=P, corresponding to nonzero
overlaps with the P patterns. In other words, the steady state does not
show associative memory when the case (5) of the model is implemented
with rule K.

For rule M,

Q+&=2T &1 |m+ | 5&+$+& {[2T &15&]& :
P

:=1

a:(1+5:)= (25)

where 5&#exp(&2T &1 |m& | a&1
& ) and |m+ | is given in (16), which can

hardly be diagonalized, in general. For a+=P&1 \+, T<Tc , and mixtures
with n�P nonzero overlaps, one finds the eigenvalues

*� 1=
2
T

(n |mn |+1) e&2T &1P |mn |+
n
P

(1&e&2T &1P |mn | )&2

*� 2=
2
T

e&2T &1P |mn |+
n
P

(1&e&2T &1P |mn |)&2 (26)

*� 3=
2
T

+
n
P

(1&e&2T &1P |mn | )&2

where mn is solution of (16); *� 2 and *� 3 have multiplicity (n&1) and
(P&n), respectively. *� 3>0 so that mixtures (and Mattis states) with n<P
are unstable; for n=P, *� 3 does not occur, and 0>*� 1 , *� 2 , so that local
stability holds.

For rule V,

Q+&={T &15 C
+ & :

P

:=1

a: 5 C
: = $+&&T &1m+5 S

& (27)

with 5 [S][C]
& =2[sinh][cosh](m& �a&T ), where m+ is solution of (18). If

a+=P&1, one may diagonalize Q for both symmetric mixtures (n�P non-
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zero overlaps mn) and asymmetric mixtures (k overlaps +mn>0, and n&k
overlaps &mn). The resulting eigenvalues are

*� 1=&
2
P

[P&n+(n&T &1P) cosh(T &1Pmn)+nT &1Pmn sinh(T &1Pmn)]

*� 2=&
2
P

[P&n+(n&T &1P) cosh(T &1Pmn)] (28)

*� 3=&
2
P

[P(1&T &1)&n+n cosh(T &1Pmn)]

where mn is solution of (18), with multiplicity one, (n&1) and (P&n),
respectively. One obtains *� 2>0, so that mixtures with n>1 (n=P, in par-
ticular) are unstable; however, *� 2 does not occur when diagonalizing Q,
and both *� 1 and *� 3 are negative, so that the Mattis states (n=1) are stable
both for a continuous phase transition at T� (1, P<3)=Tc=1 and for a
discontinuous phase transition at T� (1, P�3); see Section 3. Therefore, the
system exhibits, at least locally, associative memory.

The resulting phase diagram for n=1 and rule V is in Fig. 3, and Figs. 1
and 2 illustrate the nature of the solutions. Figure 4 depicts the variation

Fig. 4. (a) The percentage of error, as measured by 1
2 (1&m1), as a function of P and T,

during a typical retrieval process in our model with rule V (main graph) and in the corre-
sponding Hopfield case (inset). The darkness is proportional to the error, as indicated.
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with T and P of the percentage of error during retrieval processes, and a
comparison with the corresponding Hopfield case. A definite conclusion
here is that synaptic noise of the sort considered here significantly improves
the system performance as a device for associative memory.

Our results above concern finite P, and the limit N � � (which is
either explicitly taken in some examples or implicitly assumed when one
uses a mean-field condition). In practice, better performance generally
requires larger and larger values of P�N, so that studying the behavior for
large P is interesting. (In Section 6 we numerically study finite values for
both P�N and N.) We have concluded in Section 3 that the relevant phase
transition occurs at temperature T� (n, P)=m~ nP%&1

n , where %n and m~ n are
defined in (20) and (21), respectively. The variation with P of the latter,
which represents the value of the overlap mn(T ) for T=T� (n, P), is depicted
in Fig. 5 for the Mattis case n=1; this illustrates the tendency m~ n � 1 as
P � �. The behavior of %n for large P is illustrated in Fig. 6; the situation
here seems to confirm our belief that most analytical results in this paper
belong to the asymptotic regime for P � �. In fact, one may notice that
Eqs. (2) and (5) imply that a relevant parameter in our case is P�T rather
than P�N.

Fig. 5. Semilogarithmic plot of the variation with P of the critical value (at Tc) of m~ n

for n=1, as defined in (21), corresponding to the characteristic overlap for stable Mattis
states for rule V. This shows that m~ 1 becomes small (only) for very small P, and m~ 1 � 1 as
P � �.
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Fig. 6. Semilogarithmic plot of the variation with P of %n , as defined in (20), for the Mattis
case, n=1 (solid curve). The dashed line is a rough linear fit to %1 for P # [104, 1013] giving
%1 &2.663+1.051 ln P.

5. ASYMMETRIC SYNAPSIS

The theory we have just described for fluctuations around the Hebbian
rule may be generalized to include other learning rules and, in particular,
those that allow for asymmetric synapsis. As an illustration, we consider
next distributions f (J) as in (5) with ' +

xy{' +
yx . A relatively general case of

this corresponds to ' +
xy=(a+N )&1 (A! +

x ! +
y +B! +

x +C! +
y +D), which induces

mean values:

J� x, y=
1
N

:
P

+=1

(A! +
x ! +

y +B! +
x +C! +

y +D) (29)

Parameters B and C determine the grade of asymmetry. One obtains from
(7) that

�t (sx)=&2 �sx :
+

a+A+(s)�&2 �:
+

a+[! +
x +C+(s)] B+(s)� (30)
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where

A+(s)= 1
2 [[1&C+(s)] .(X +

+ (s))+[1+C+(s)] .(X &
+ (s))]

B+(s)= 1
2 [.(X +

+ (s))&.(X &
+ (s))] (31)

C+(s)=[Cm+(s)+Dm(s)][Am+(s)+Bm(s)]&1

with X \
+ (s)#\(2�a+T )[(A\C ) m+(s)+(B\D) m(s)]. The overlap

m+(s) has been defined in (23), and m(s)#N&1 �x sx is the mean activity.
Equation (30) leads under the mean-field condition to a set of coupled
equations that, assuming that the patterns are orthogonal (see Section 2),
imply to first order that

�t M=&2M :
+

a+A+&2N (32)

where M and N are (P+1)-dimensional vectors of components M0=m,
N0=�+ a+C+B+ , M+=m+ , and N+=a+B+ , and m, m+ , A+ , B+ and C+

stand for m(s), m+(s), A+(s), B+(s) and C+(s), respectively, with sx replaced
by (sx) .

The stability of (32) may be studied as in Section 4. After linearization,
the matrix whose eigenvalues determine local stability follows as

Qij=&2 :
k

ak[$ ijAk+Mi D
+
kj +$ik D&

kj +($ik&Mi )(Ck D&
kj +BkEkj )]

(33)

where

D\
ij =

1
Ta i

[9(X +
i )[(A+C ) $ ij+(B+D) $0 j ]

\9(X &
i )[(C&A) $ij +(D&B) $0 j ]] (34)

and

Eij=(AD&BC )(Mi $0 j&M0$ ij )(AM i +BM0)&2 (35)

with 9(X \
i )#[�.(X )��X ]X=Xi

\ . The stationary behavior of m+ and m as
a function of T and P may then be obtained numerically from (32) and
(33). A key result is that, as for the symmetric case, the asymmetric
network exhibits stable Mattis states for rule V, but not for rules K or M.
Furthermore, one obtains that the properties of the associative memory
which occurs for rule V strongly depend on the value for the asymmetric
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Fig. 7. This illustrates the nature of stable Mattis states, for which only the overlap (m1)
with one of the patterns is nonzero, as in Fig. 1(a), but for asymmetric synapses. Different
graphs here correspond to the stationary solution of (32) as a function of T for P=10 and
different choices of the asymmetric parameters, namely, A=1, D=0, and (from right to left)
B=C=0 (I), C=&B=0.1 (II), and B= 1

2C=0.1 (III).

parameters in (29). It follows, in particular, that asymmetric rules such that
A, B{0 and C=D=0 imply C+=0, which reduces (32) to (13) for
orthogonal patterns, i.e., this situations is equivalent to considering fluctua-
tions around the Hebbian rule. For any other choice, the resulting retrieval
processes are quite varied. Figure 7 illustrates the nature of the Mattis
states for different choices of the asymmetric parameters; corresponding
results for fluctuations around the Hebbian rule are depicted in Fig. 1(a).
Note that, as for symmetric rules, the transitions are discontinuous here.

6. SOME MONTE CARLO RESULTS

We have also simulated in the computer the stationary regime of our
model using the Monte Carlo method. Our simulations concern N binary
neurons, where N is between 400 and 3600, and P=10 memorized patterns
generated at random. Typically, the system starts with a random initial
configuration, and evolves by flips, sx � &sx , according to the transition
probability (2). This is implemented by one of the rules in (3). In practice,
the flips are performed by using one of the following rates:
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|1=min[1, e (2P�T )(1�N&sx(1�P) � + Sx
+ )],

|2=e&(P�T )(1+sx(1�P) �+ S x
+)) (36)

|3=
1
P

:
+

e&(P�T )(1+sx Sx
+ )

S +
x#! +

x m+(s), after normalizing to unity. The choices |1 and |2 correspond
to the Hopfield case with the Hebbian learning rule Jxy=N &1 �+ ! +

x ! +
y .

|1 is for rule M, i.e., the Metropolis algorithm, .(2)=min[1, e&2�T ],
where 2 is the change of energy brought about by the attempted flip as
given by HJ(s)=&1

2 �x{ y Jxysxsy . The rate |2 is similar to |1 but using
rule V instead of M. The rate |3 characterizes our model with (5) and rule
V. That is, it corresponds to random fluctuations of the synaptic intensities
around mean values given by the Hebbian rule, as in (6). In any case, the
symmetry Jxy=Jyx is involved.

As expected, the data for |3 fit quite well our analytical results above,
which generally concern a mean-field condition, except for familiar finite-
size effects. That is, the condition that we have often used in previous
sections to simplify analytics holds for the model with long-range interac-
tions, in which any two neurons are in fact interconnected. This result is
illustrated in Fig. 1(a) for N=3600.

Figure 8 depicts another interesting feature of the system. The noisy
horizontal behavior is the familiar (Hopfield) one implied by |1 . That is,
starting from any random initial state, s0 , there is a rapid evolution (not
visible on the scale of this figure) in which the overlap with one of the P
memorized patterns becomes relatively large (around 0.7 in this simula-
tion) while the others (of which only one case is shown) decay to very near
zero. The situation remains stationary except for the thermal noise which
is added to the signal; increasing T (equal to 0.8 in this simulation) would
finally impede associative memory. For comparison purposes, Fig. 8 also
illustrates the behavior for |2 , i.e., the Hopfield case but a different choice
for the elemtary rate .(2). The retrieval process is then slower but more
robust against thermal noise. Robustness here is a consequence of the fact
that e&2�2T favors low ``energy'' states more than the Metropolis algorithm.
As illustrated in the figure, the performance of the retrieval process is
further improved if the evolution proceeds according to |3 , namely, in the
presence of synaptic fluctuations such as those in (5). That is, although the
convergence to the desired results is slower for |3 than for |1 ��but not
than for |2 , which corresponds to the same function .(2)��both the
evolution and the stationary state are very robust, and the retrieval error
is negligeable for these parameter values. The same qualitative behavior is
observed varying N, P and T within wide ranges. It should be remarked
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Fig. 8. Evolution with time (MC steps) of the normalized overlap m+(s) for N=2500 and
+=1, 2 at temperature T=0.8 for different models, i.e., effective rates (see Eqs. (2) and (36)),
as indicated. The two noisiest horizontal behaviors (|1) are for the standard Hopfield model
with the Metropolis algorithm; the line slowly increasing with time, and the other one also
marked |2 are for the same model with rule V. The lest noisy behaviors (|3) correspond to
our case with synaptic fluctuations (5) and rule V.

that the additive nature of (5), which allows for the existence of correla-
tions between the fluctuations at different synapses as induced by the spa-
tial correlations contained in the patterns ! + themselves, is essential for this
result. In particular, assuming that effects from different patterns are multi-
plicative in f (J) as in (4), induces a simpler noise, which in a sense adds
to the thermal one, and differences ensue not so dramatic, though also
interesting.(2)

The above illustrates how correlated fluctuations of synapsis can
notably enhance both the stability and efficacy of the retrieval process in a
neural network. Figure 9 confirms the good performance of the model
presented here, namely, that |3 , unlike |1 , leads to saturation and induces
a high level of robustness. The evolutions here always begin with a state
obtained by perturbing greatly any of the memorized (random) patterns.
Figure 9(a) shows that |3 generally leads to the ``right'' pattern for T=0.6.
Further decreasing of T increases the relaxation time, even importantly,
but no other qualitative effects are evident. Figure 9(b) shows the corre-
sponding result for the Hopfield case |1 . This system is much less efficient
in recognizing the right pattern and, eventually, desestabilizes after some,
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Fig. 9. This shows independent evolutions at T=0.6 for N=400 and P=10 (random)
memorized patterns starting with the same initial state. This is obtained after perturbing by
a 180 one of the given, memorized patterns. For |3 (a) and |1 (b). This illustrates that pat-
tern recognition is also notably improved in the presence of correlated fluctuations of synapses
as in (5).
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relatively short time (note that time in Fig. 9(b) is in logarithmic scale in
order to show the details of the early evolution).

7. DISCUSSION

The idea that, in addition to thermal noise, some sort of synaptic
variations during neuronal activity are essential to the properties of
biological neural networks has recently revived, because of a number of dif-
ferent observations in biology, physiology and psychology (see references
in Section 1). Our analytical and numerical studies of a simple model that
allows for a systematic study of the influence of such variations on
emergent properties seems to confirm that belief. The basic model that we
have analyzed in this paper is a kinetic generalization of familiar neural
networks. That is, our system belongs to a class of variations of the
Hopfield�Hebb network that try to capture essential features of nature (see
refs. 24�29, for instance). However, a similar role of synaptic variations
should probably be expected for other models.

An important feature of our model is that it evolves by competing
dynamics which, in general, induces nonequilibrium steady states, the com-
petition being between synapse and neuron variations. The simplest case
of interest assumes that the neuronal configuration evolves according to
Eq. (1) with the effective rate (2). This represents synapsis that, besides a
��relatively slow, or previous��learning plasticity process, undergo rapid
random fluctuations, i.e., synaptic intensities vary on a time scale much
smaller than that for neuronal activity. (Note that��as it is implied by the
results in ref. 30, for instance��the system would behave quite differently
for neurons evolving much faster than synapses.) In this paper we report
on synaptic fluctuations that have distributions f (J) as given in (5), which
in a way respects the spatial correlations that characterize the stored pat-
terns. This induces full nonequilibrium behavior, as it occurs when a
system is acted on by a non-Hamiltonian agent, unlike the choice (4) that
we analyzed in ref. 2. We also conclude that such sort of apparent noise
notably increases the efficiency in transmitting the signal.

Our analytical results involve a mean-field assymption, and they con-
cern the case of finite P in the thermodynamic limit N � �. We present
strong evidence, however, that our conclusions are not affected by these
restrictions; see Figs. 1(a), 5 and 6, for instance. In fact, the ratio P�T is
more relevant in our model than P�N, as discussed above. For certain
dynamical rules that are familiar from related studies, (19) the only (locally)
stable solution in the model is a mixture state that has nonzero overlaps
with any of the P stored patterns. Therefore, the system does not exhibit
in this case associative memory. However, associative memory holds for a

856 Marro et al.



different rate (rule V ), namely, (pure) Mattis states occur for T<T� (1, P)
such that T� (1, P<3)=Tc ; see Figs. 1 to 3. For large enough T, only the
trivial solution exists in such a way that Tc and T� (1, P) correspond to
(nonequilibrium) continuous and discontinuous phase transitions, respec-
tively; these transitions are between a paramagnetic-like phase without
associative memory at high temperature, and a low-temperature ferro-
magnetic-like phase exhibiting this property. Another principal fact is that
the discontinuity at T� (1, P) allows for large (close to either +1 or &1)
overlaps for the interesting case of large values of P.

Unlike for the ordinary Hopfield case, our model does not show below
T=0.46 locally stable mixture states, which importantly hamper the per-
formance of Hopfield networks at low temperature. Consequently, the error
when recovering any of the stored patterns, defined as 1

2 (1&m+), rapidly
decreases towards zero in our model with increasing P for given T, and it
remains bounded for given P as T (<Tc) is increased, going to zero
as P becomes large enough. This behavior is illustrated in Fig. 4, which
contains a comparison with the Hopfield case (in this case, the same error
is independent of P at given T, and increases without bound as T=1 is
approached). Our model may also be worked out for asymmetric synapses;
see Fig. 7; it ensues that associative memory depends on the value for the
asymmetry parameters in (29). Monte Carlo simulations allow for further
comparisons with some related models, and confirm and extend the
analytical results; see Figs. 8 and 9. Further study of the consequences of
synaptic fluctuations on the processing power of a neural network is
strongly suggested.
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