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Effect of Correlated Fluctuations of Synapses in the Performance of Neural Networks
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We consider stochastic neural networks in which synaptic intensities rapidly fluctuate—around mean
given by a learning rule—competing with neuron activity. Each snapshot of synaptic intensities
contains the neuron-neuron correlations in one of the stored patterns chosen at random. The resu
is apparently noisy behavior which induces robustness, including improved associative and patter
recognition processes. The main result here might apply to biological systems that exhibit fluctuating
patterns of synapses. [S0031-9007(98)07250-0]
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It has long since been noticed that, unlike for digi
computers, both redundancy and robustness charact
the functioning of biological neural networks [1]. Re
cent experiments confirm that individual synapses are
tremely unreliable which, however, seems to enhance
system processing power as a whole; see, for insta
Refs. [2–11] (for example,stochastic resonanceor cou-
pling of—apparently—noisy signals might be importa
to the processing of information in biological system
[12]). How redundancy and robustness develop in pr
tice, what is the precise relation between them and the
ferent types of “noise” that one observes, and how th
influence emergent properties are not yet well enough
derstood, however. Neural networks defined by me
of a master equation with competing kinetics [13] pr
vide one of the simplest scenarios in which these
sues may be investigated. Following this approach,
show in this Letter how a stochastic neural network m
be adapted to behave as a sort of filter for the relev
information when synaptic variations are appropriat
included. That is, in addition to thermal noise, we co
sider correlated fluctuations of synaptic intensities suc
that the characteristic time for the fluctuations is mu
smaller than the one for neuronal activity. We demo
strate that such noise may notably increase the efficie
in transmitting the signal. Although we expect this
hold more generally, we explicitly illustrate it here b
a few analytical results and a series of computer sim
lations concerning a simple case, namely, a variation
Hopfield’s neural network [14–16]. The Hopfield mod
is a mathematically well-defined approach that conta
some of the essentials of the processes of interest: c
erative transmission competing with thermal noise wh
exhibits associative memory under certain circumstan
In fact, we have already shown [17] that such overs
plified representation of a biological system allows f
studying the consequences of various types of noise
the network design and performance. Somewhat rela
but showing a behavior which essentially differs from t
one in our model are, for instance, the variations of
Hopfield model in Refs. [18–22] and a system [23]
0031-9007y98y81(13)y2827(4)$15.00
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which neurons evolve fast as compared to synapses a
Langevin-type of dynamics is justified. Further analytic
details of our model, including further comparison wi
related cases, will be published elsewhere [24].

Consider a set ofN (binary) neurons,sx ­ 11 or 21
(“firing” and “silent” states, respectively), coupled to eac
other by synapses of intensitiesJxy; x, y ­ 1, . . . , N . The
configurations ­ hsxj changes at each time assuming
value for J ­ hJxyj chosen at random from a given dis
tribution, psJd. In general, such a competition betwee
variations ofs and J induces asymptotically anonequi-
librium steady state. That is, a conflict exists whose
fect is similar to the one that an external agent act
on s would cause: Contrary to better understood cas
the stationary state resulting from the stochastic evo
tion implied by the agent together with the underlyin
heat bath at temperatureT is not solely determined by
the values forT and for the configurational energy tha
characterizess. One may represent such dynamic co
flict by assuming that the transition probability per un
time (rate) for the change (flip) sx ! 2sx is a super-
position,vssx ! 2sxd ­

R
dJ psJdwJssxd, wherewJssxd

stands for the (elementary) rule when synapses are s
the valueJ. In practice, we simulated this evolution i
the computer starting from an initial configuration,s0, in
which each variablesx is given any of the two possible
values at random, and then choosing a neuron at rand
and attempting the flipsx ! 2sx with one of the follow-
ing rates

v1 ­ min

(
1, exp

"
2P
T

√
1
N

2 sx
1
P

X
m

jm
x mm

!#)
,

v2 ­ exp

"
2

P
T

√
1 1 sx

1
P

X
m

jm
x mm

!#
,

v3 ­
1
P

X
m

exp

"
2

P
T

s1 1 sxjm
x mmd

#
.

(1)

It is assumed here that the system storesP patterns,
jm ; hjm

x ­ 61j with m ­ 1, . . . , P, and that mm ­
N21

P
x j

m
x sx measures the overlap of the current neur
© 1998 The American Physical Society 2827
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state with themth “memorized” pattern. ( It is likely tha
the condition of sequential updating which is implied he
is not essential to our results.)

The choicesv1 and v2 correspond to the Hopfiel
case with psJd ­ dsJ 2 J0d, where J0 ­ hJ0

xyj corre-
sponds to the Hebbian rule,J0

xy ­ N21
P

m j
m
x j

m
y . One

obtainsv1 after using the Metropolis rule, namely,wJ ­
minh1, exps2DyT dj, whereD is the change of energy—
as given by the Hopfield-Hebb HamiltonianHJssd ­
2

1
2

P
xfiy Jxysxsy for given J—brought about by the at

tempted flip. One obtainsv2 after using instead the rul
wJ ­ exps2Dy2T d, introduced before in another prob
lem [13], and normalizing to unity. The casev3 char-
acterizes our model. This corresponds to a simplifi
version of the following, more general stochastic proce
Assume that one performs the changesx ! 2sx with
probabilityqwJ and, with probabilitys1 2 qdf, where—
for simplicity—f is independent ofs, one performs the
changeJxy ! J 0

xy; q [ s0, 1d. For q ­ 1, this process
leads asymptotically to the equilibrium state forT and
HJssd; both v1 and v2 drive any s0 to this state (the
two cases exhibit a different relaxation, however). T
simplest nontrivial situation that involves competition b
tween different tendencies, each for a different value oJ
in HJ, occurs forq ! 0. In this limit, two relevant time
scales exist (once the previous plasticity learning proc
is completed): a fine time scale,t, in which neurons do
not appreciably evolve but synapse intensities fluctuate
cally; and a coarse scale,t ­ qt for q ! 0 andt ! `,
in which neurons evolve as in the presence of a steady
tribution for the synapses,psJd. Such distinction of well-
separated time scales has been reported to occur in
biological systems [25–27]. Under this limiting conditio
(but not for1 . q . 0, an interesting case that we do n
consider explicitly here), assuming that

psJd ­
1
P

X
m

Y
x,y

d

µ
Jxy 2

P
N

jm
x jm

y

∂
, (2)

the effective rate isvssx ! 2sxd ­ P21
P

m wJm
ssxd,

where Jm ­ hjm
x j

m
y j. This, which equalsv3 for wJ ­

exps2Dy2T d after proper normalization, implies tha
synaptic intensities randomly fluctuate about means g
by the Hebbian values, i.e.,Jxy ;

R
dJ psJdJxy ­ J0

xy;
this feature is convenient in order to have a well-kno
reference. The choice (2) induces two more features
are essential to the result below, namely, (i) that memo-
ries are held in the system as fluctuating patterns of sy
tic connections, such that each patternjm contributes to
dynamics with certain probability, and, even more i
portant, (ii ) that local fluctuations are the result ofJ
taking at random one of theP possible synaptic configu
rations, Jm, so that the spatial correlations within th
memorizedjm are influencing dynamics. In fact, the an
lytical results in [17], where different rates correspond
to a factorized functionpsJd were studied, indicate tha
lacking such correlations does not significantly enha
2828
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robustness—though some interesting behavior is still
duced. Of course, one may think of other choices forpsJd
having convenient properties. For example, assuming
psJd is a sum of appropriate Gaussians would gene
ize (2) while allowing for more synaptic noise, which—
in light of our results—is worth being investigate
explicitly (one may also avoid in this way the assumpti
Jxy ­ J0

xy above).
By standard methods, in the limitN ! ` [13,17],

some explicit analytical results may be obtained
v3, assuming that one may replacesx by its ensemble
average—which is expected to be a realistic hypothe
for this highly connected system. For example, one
demonstrate the unusual property that mixture states
not locally stable forv3; instead, a transition occurs aeT sPd towards pure (Mattis) states, with

eT sPd ­

Ω
1 for P , 3
P
u scoshu 1 P 2 1d sinhu for P . 3 ,

where u 1 sP 2 1d su coshu 2 sinhud 2 sinhu coshu

­ 0; the valuessT ­ 1, P ­ 3d mark a tricritical point.
That is, the overlapmm behaves discontinuously forP .

3 at eT sPd, as in a phase transition of first order, so that t
process of associative memory is then very efficient.
other words, the system withv3, unlike the corresponding
Hopfield case, is characterized by large overlaps beeT for any P . 3, the error associated with the retriev
process being negligible, except for very smallP near
T ­ 1. ( It is to be remarked that the observed tre
for large P indicates that our results, obtained for fini
P, hold for P ! ` as well [24].) In order to further
investigate such interesting behavior, which can only
demonstrated exactly for orthogonal memorized patte
we performed computer simulations of a network w
(up to) N ­ 2500 and P ­ 10, assumingJxy ­ Jyx —
though the model admits asymmetric couplings, wh
would require using a different choice for the effecti
ratev.

A principal conclusion is that our analytical results a
fully confirmed by the Monte Carlo study, e.g., stea
mixture states were never observed. Some main feat
of the behavior revealed by the simulations are depic
in Figs. 1–3. Figure 1 shows the time variation of t
overlapsmm, m ­ 1, . . . , P, at a given—relatively low—
temperature. The noisy horizontal behavior shown
most evolutions in the inset of Fig. 1 is the familia
(Hopfield) behavior implied byv1. That is, starting from
any initial state, there is a rapid evolution (not visible
the scale of this figure) in which the overlap with on
of the P memorized patterns becomes relatively lar
(about 0.7 in this simulation) while the others dec
practically to zero. The situation remains stationa
except for thermal noise, which is added to the sig
in this case; increasing temperature would finally impe
associative memory. For comparison purposes, we
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FIG. 1. Evolution with time at temperatureT ­ 0.8 of the
normalized overlapmm ­ N21

P
x j

m
x sx for N ­ 2500; differ-

ent lines are form ­ 1, . . . , 10. (Note: the unit of time is the
number of “flips” attempted per site, i.e., Monte Carlo ste
and we set Boltzmann’s constant to unity.) The main graph
lustrates the case with correlated synaptic fluctuations,v3. The
inset contains the corresponding Hopfield result; all of the no
horizontal behaviors are forv1 (Metropolis rule); the line in-
creasing with time is forv2 and m such thatmm fi 0. This
illustrates how correlated fluctuations of synapsis can nota
enhance both the stability and efficacy of the retrieval proc
in a neural network; the convergence time is also reduced.

illustrate the behavior forv2, i.e., a different choice for
the rule wJ. This is represented by the line increasi
with time in the inset of Fig. 1, which corresponds
the only nonzero overlap. The retrieval process in t
version of the Hopfield model is slower but more robu
against thermal noise; one should have expected the l
fact given that exps2Dy2T d favors low “energy” states

FIG. 2. The distribution of the fluctuations of the overlap wi
time as exhibited by the system in Fig. 1, during the station
regime, for two typical values ofm, normalized to unity. The
scale on the left side corresponds to the bell-shaped c
(centered about 0.0 and 0.7, respectively) that occur forv1. The
scale on the right side corresponds to distributions (cente
around 0.0 and very near 1, respectively) forv3 that are
hardly indistinguishable (on the scale of this figure) from Dir
delta functions.
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more than the Metropolis rule. As illustrated in the ma
graph in Fig. 1, the performance of the retrieval proce
is further improved if the evolution proceeds according
v3, namely, in the presence of fluctuations as describ
by (2). That is, although the convergence to the desi
result is slower forv3 than for v1 —but not for v2 —,
both the evolution and the stationary state are very rob
and the retrieval error is negligible for the parame
values in the figure. We observed the same qualita
behavior varyingN , P, andT within wide ranges (which
is confirmed by analytical results mentioned above, as w
be reported elsewhere [24]). It should be remarked t
the additive nature of (2), which makes dynamics resp
the spatial correlations that characterize the stored patt
jm, is essential for this result. In particular, as mention
above, assuming that the effects from different patte
are multiplicative inpsJd induces a synaptic noise which
in a sense, simply adds to the thermal one, and differen
ensue which are not so dramatic, though also interes
[17]. Figure 2, for the distribution ofmm values, confirms
the result in Fig. 1. This graph clearly shows thatv3,
unlike v1, leads to saturation and induces a very hi
level of robustness (note two different scales for t
vertical axis here, as described in the figure caption).

Figure 3 illustrates another interesting feature ofv3.
The evolutions here start with a state obtained by p
turbing substantially any of the memorized (random) p
terns. The main graph illustrates howv3 always drives
the system to the “right” pattern forT ­ 0.6. Further
decreasing ofT increases the relaxation time, but n

FIG. 3. Semilogarithmic plot showing independent evolutio
at T ­ 0.6 for N ­ 400 and P ­ 10 (random) memorized
patterns starting with the same initial state. The latter
obtained by perturbing one of the given patterns in such
way that 236 (out of 400) randomly placed neurons remain
the same state. The main graph shows six independent typ
evolutions withv3. The inset shows four independent typic
evolutions with v1. This illustrates that pattern recognitio
processes in a neural network may be notably improved
the presence of correlated fluctuations of synapses as desc
by v3.
2829



VOLUME 81, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 28 SEPTEMBER1998

th

th
la
-
ly
d
n
t

-
y

a
h
o

ly

on

p
n
h
d

.g
r
e
x-
in
e
e
a
o
-

,
e
n
n
i
e
o
r
a
x

ni-
-

A.

,

s

,

-

v.

tt.

,

ys.

-
d,
other qualitative effects are evident. The inset shows
corresponding result for the Hopfield casev1. The sys-
tem becomes then much less efficient in recognizing
right pattern, and eventually destabilizes after some re
tively short time (note that time in Fig. 3 is in loga
rithmic scale in order to show the details of the ear
evolution). The situation depicted in Fig. 3 is confirme
in much larger evolutions; that is, contrary to the situatio
shown by the inset, one never observes escape from
“saturated” state forv3 (in fact, this involves a phase tran
sition of first order for which fluctuations are relativel
much weaker).

In summary, we have described the basic features
a dynamic neural network as obtained from some an
lytical results and a series of computer simulations. T
model assumes time evolution of the neuron-synapse c
figuration, ss, Jd, according to a Markov process, with
qs1 2 qd21 as the rate of variation ofs relative to that of
J. We studied the effective transition rates in (1), name
Hopfield’s cases (v1 and v2) corresponding toq ! 1,
and a case (v3d for q ! 0 which describes synapse
intensities fluctuating rapidly—as compared to neur
changes—and randomly with distributionpsJd, [Eq. (2)].
A principal conclusion is that competition between syna
tic and neuron activities induces a nonequilibrium co
dition and, consequently, it influences essentially t
emergent behavior. Our model explains memory as a
namic stochastic, fluctuating property of thewhole net-
work, instead of being stored as a sort of average (e
Hebbian) value. As a consequence, the process of lea
ing consists of modifying the dynamical mechanism rath
than a kind of topological plasticity. We considered e
plicitly here the synapses oscillating synchronously
such a way that each connection fluctuates around a m
value corresponding to a learning, e.g., Hebbian valu
and the correlations characterizing the stored patterns
present in the fluctuating mechanism. That is, the set
synaptic couplings keeps (very quickly) visiting, at ran
dom, each of theP available patternsJm. It follows,
which is likely to hold under more general conditions
that, as compared with the situation in which such typ
of fluctuations do not occur, the evolution and the statio
ary state are much more robust, and the retrieval error a
the convergence time are smaller in our model. This
consistent with, and gives a simple interpretation to, r
cent observations in biological systems. That is, some
the synaptic noise which is reported to occur in Natu
could be the most relevant part of the (dynamic) retriev
mechanism. Confirming this would require specific e
perimental studies.
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