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Effect of Correlated Fluctuations of Synapses in the Performance of Neural Networks
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We consider stochastic neural networks in which synaptic intensities rapidly fluctuate—around means
given by a learning rule—competing with neuron activity. Each snapshot of synaptic intensities
contains the neuron-neuron correlations in one of the stored patterns chosen at random. The result
is apparently noisy behavior which induces robustness, including improved associative and pattern
recognition processes. The main result here might apply to biological systems that exhibit fluctuating
patterns of synapses. [S0031-9007(98)07250-0]

PACS numbers: 87.10.+e, 05.40.+j, 75.10.Nr

It has long since been noticed that, unlike for digitalwhich neurons evolve fast as compared to synapses and a
computers, both redundancy and robustness characterizangevin-type of dynamics is justified. Further analytical
the functioning of biological neural networks [1]. Re- details of our model, including further comparison with
cent experiments confirm that individual synapses are exelated cases, will be published elsewhere [24].
tremely unreliable which, however, seems to enhance the Consider a set oN (binary) neuronss, = +1 or —1
system processing power as a whole; see, for instanc€firing” and “silent” states, respectively), coupled to each
Refs. [2-11] (for examplestochastic resonancer cou-  other by synapses of intensiti¢s,; x,y = 1,...,N. The
pling of—apparently—noisy signals might be importantconfigurations = {s,} changes at each time assuming a
to the processing of information in biological systemsvalue forJ = {J,,} chosen at random from a given dis-
[12]). How redundancy and robustness develop in practribution, p(J). In general, such a competition between
tice, what is the precise relation between them and the difvariations ofs and J induces asymptotically aonequi-
ferent types of “noise” that one observes, and how theskbrium steady state. That is, a conflict exists whose ef-
influence emergent properties are not yet well enough urfect is similar to the one that an external agent acting
derstood, however. Neural networks defined by meanen s would cause: Contrary to better understood cases,
of a master equation with competing kinetics [13] pro-the stationary state resulting from the stochastic evolu-
vide one of the simplest scenarios in which these istion implied by the agent together with the underlying
sues may be investigated. Following this approach, wé&eat bath at temperatur® is not solely determined by
show in this Letter how a stochastic neural network mayhe values forT and for the configurational energy that
be adapted to behave as a sort of filter for the relevantharacterizes. One may represent such dynamic con-
information when synaptic variations are appropriatelyflict by assuming that the transition probability per unit
included. That is, in addition to thermal noise, we con-time (rate) for the change flip) s, — —s, IS a super-
sider correlated fluctuations of synaptic intensities such position,w (s, — —s,) = [dJ p(J)ej(s,), wheregy(s,)
that the characteristic time for the fluctuations is muchstands for the (elementary) rule when synapses are set to
smaller than the one for neuronal activity. We demon-he value]J. In practice, we simulated this evolution in
strate that such noise may notably increase the efficienayie computer starting from an initial configuratiag, in
in transmitting the signal. Although we expect this towhich each variable, is given any of the two possible
hold more generally, we explicitly illustrate it here by values at random, and then choosing a neuron at random,
a few analytical results and a series of computer simuand attempting the flip, — —s, with one of the follow-
lations concerning a simple case, namely, a variation oing rates
Hopfield’s neural network [14—16]. The Hopfield model
is a mathematically well-defined approach that contains  —_ min{l {2_1) <L _ 1 S e ﬂﬂ]

. . 1 ,ex Sy Efm s
some of the essentials of the processes of interest: coop-
erative transmission competing with thermal noise which
exhibits associative memory under certain circumstances. w, = exp{
In fact, we have already shown [17] that such oversim- ©
plified representation of a biological system allows for 1 P
studying the consequences of various types of noise on %3 = FZex T (1 + s:8m*) |.
the network design and performance. Somewhat related H
but showing a behavior which essentially differs from thelt is assumed here that the system stoRegatterns,
one in our model are, for instance, the variations of the¢* = {8 = =1} with u=1,...,P, and thatm* =
Hopfield model in Refs. [18—22] and a system [23] inN 'Y, ¢'s, measures the overlap of the current neuron
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state with theuth “memorized” pattern. (It is likely that robustness—though some interesting behavior is still in-

the condition of sequential updating which is implied hereduced. Of course, one may think of other choicesgtF)

is not essential to our results.) having convenient properties. For example, assuming that
The choicesw; and w, correspond to the Hopfield p(J) is a sum of appropriate Gaussians would general-

case with p(J) = §(J — Jo), where Jo = {ny} corre- ize (2) while allowing for more synaptic noise, which—

sponds to the Hebbian rulé,%, :N—le &gl one in light of our results—is worth being investigated

obtainsw, after using the Metropolis rule, namely; =  explicitly (one may also avoid in this way the assumption
min{1, exp(—A/T)}, whereA is the change of energy— J«y, = J5, above). _ o
as given by the Hopfield-Hebb Hamiltoniaft{j(s) = By standard methods, in the limiy — o [13,17],

_% S 4y Juyses, for given J—brought about by the at- SOmMe explicit analytical results may be obtained for
tempted flip. One obtaine, after using instead the rule @3, @ssuming that one may replase by its ensemble
@y = exp(—A/2T), introduced before in another prob- avera_ge_—whlch is expected to be a realistic hypothesis
lem [13], and normalizing to unity. The case; char- for this highly connected system. For exgmple, one can
acterizes our model. This corresponds to a simplifiedlémonstrate the unusual property that mixture states are
version of the following, more general stochastic processhot locally stable forws; instead, a transition occurs at
Assume that one performs the change— —s, with  7(P) towards pure (Mattis) states, with
probability g o3 and, with probability(1 — ¢)¢, where— N ! for P < 3
for simplicity—¢ is independent of, one performs the T(P) = {ﬁ (coshd + P — 1)sinhg forP > 3
change/,, — Ji,; ¢ € (0,1). For g = 1, this process 0

leads asymptotically to the equilibrium state ffrand (P — o o

Hjy(s); both w; and w, drive anys, to this state (the v:vh(()e;r?hz Val(lis(Tl):(ﬂfng%) rﬁg]rrl](e;tricfiltrilgael ;%?rr\]ta

two cases exhibit a different relaxation, however). Thep, ... o overlap” behaves discontinuously fat >

simplest nontrivial situation that involves competition be- . N :

tween different tendencies, each for a different valug of 3atT(P),asina Ph"?‘se transition of first order, SO _that the

in %, occurs forg — 0. In this limit, two relevant time process of associative memory is then very efficient. In
) ' ’ Sgther words, the system withs, unlike the corresponding

scales exist (once the previous plasticity learning proce S onfield ‘s oh ed by | | bel
is completed): a fine time scale, in which neurons do JoPfield case, Is characterized Dy large overlaps below

not appreciably evolve but synapse intensities fluctuate lol’ for any P > 3, the error associated with the retrieval
cally; and a coarse scale= gr for g — 0 andr — «, ~ Process bemg negligible, except for very smaAllnear

in which neurons evolve as in the presence of a steady did- = 1. (It is to be remarked that the observed trend
tribution for the synapse,(J). Such distinction of well-  for large P indicates that our results, obtained for finite
separated time scales has been reported to occur in sofie hold for P — o as well [24].) In order to further
biological systems [25—27]. Under this limiting condition investigate such interesting behavior, which can only be
(but not for1 > ¢ > 0, an interesting case that we do not demonstrated exactly for orthogonal memorized patterns,

consider explicitly here), assuming that we performed computer simulations of a network with
1 p (up to) N = 2500 and P = 10, assumingJ,, = Jy,—
) = ana(ny - ﬁfffff), (2) though the_mode_l admlt_s asymmetric couplings, Wh|ch
moxy would require using a different choice for the effective
the effective rate isw(sy — —s.) = P7'>, ¢),(sy), ratew.
whereJ, = {e¥ &l'}. This, which equalsws for @5 = A principal conclusion is that our analytical results are

exp(—A/2T) after proper normalization, implies that fully confirmed by the Monte Carlo study, e.g., steady
synaptic intensities randomly fluctuate about means givemixture states were never observed. Some main features
by the Hebbian values, i.eJ,, = [dJ p(J)J.y = J)?y; of the behavior revealed by the simulations are depicted
this feature is convenient in order to have a well-knownin Figs. 1-3. Figure 1 shows the time variation of the
reference. The choice (2) induces two more features thaiverlapsn*, u = 1,..., P, at a given—relatively low—
are essential to the result below, namely,that memo- temperature. The noisy horizontal behavior shown by
ries are held in the system as fluctuating patterns of synaprost evolutions in the inset of Fig. 1 is the familiar
tic connections, such that each pattg contributes to (Hopfield) behavior implied by,. That is, starting from
dynamics with certain probability, and, even more im-any initial state, there is a rapid evolution (not visible on
portant, {i) that local fluctuations are the result gf the scale of this figure) in which the overlap with one
taking at random one of thB possible synaptic configu- of the P memorized patterns becomes relatively large
rations, J,, so that the spatial correlations within the (about 0.7 in this simulation) while the others decay
memorizedé* are influencing dynamics. In fact, the ana- practically to zero. The situation remains stationary,
lytical results in [17], where different rates correspondingexcept for thermal noise, which is added to the signal
to a factorized functiorp(J) were studied, indicate that in this case; increasing temperature would finally impede
lacking such correlations does not significantly enhanceassociative memory. For comparison purposes, we also
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more than the Metropolis rule. As illustrated in the main
graph in Fig. 1, the performance of the retrieval process
is further improved if the evolution proceeds according to
w3, hamely, in the presence of fluctuations as described
by (2). That is, although the convergence to the desired
result is slower forw; than for w;—but not for w,—,
both the evolution and the stationary state are very robust,
and the retrieval error is negligible for the parameter
values in the figure. We observed the same qualitative
behavior varyingv, P, andT within wide ranges (which
is confirmed by analytical results mentioned above, as will
be reported elsewhere [24]). It should be remarked that
e the additive nature of (2), which makes dynamics respect
0 t (MCS) 5x10 the spatial correlations that characterize the stored patterns
&#, is essential for this result. In particular, as mentioned
FIG. 1. Evolution with time at temperaturé = 0.8 of the  above, assuming that the effects from different patterns
normalized overlapn® = N~'Y &5's, for N = 2500; differ-  are multiplicative inp(J) induces a synaptic noise which,
ent lines are foru = 1,...,10. (Note: the unit of time is the iy 3 sense, simply adds to the thermal one, and differences
number of “flips” attempted per site, i.e., Monte Carlo Steps,qq 6 \which are not so dramatic, though also interesting

and we set Boltzmann’s constant to unity.) The main graph il- . . .
lustrates the case with correlated synaptic fluctuatiansThe  [17]. Figure 2, for the distribution ok values, confirms

inset contains the corresponding Hopfield result; all of the noisythe result in Fig. 1. This graph clearly shows thag,
horizontal behaviors are fap, (Metropolis rule); the line in- unlike w,, leads to saturation and induces a very high
lustrates how correlatad luciuations of synapsis can notablyc S| Of robustness (note two different scales for the
enhance both the stability and efficacy of the retrieval proces)g(_:‘rt.Ical axis here, as descrlbed.ln the f!gure caption).
in a neural network; the convergence time is also reduced. Figure 3 illustrates another interesting feature «f.

The evolutions here start with a state obtained by per-
. , . ) ) turbing substantially any of the memorized (random) pat-
illustrate the behavior fow,, i.e., a different choice for terns.g The main g)r/aphyillustrates haw aIwEslys driV()e_f
the rule ¢y. This is represented by the line increasing,q system to the “right’ pattern fof = 0.6. Further

with time in the inset of Fig. 1, which corresponds 10 yecreasing ofr increases the relaxation time, but no
the only nonzero overlap. The retrieval process in this

version of the Hopfield model is slower but more robust

against thermal noise; one should have expected the lattet
fact given that exp-A/2T) favors low “energy” states 1.0 7]
m1
0.015 : — 1.0
p(m")
I/
0.0 - :
10° 10° 10°
t (MCS)
0.000 m - 00
) m* : FIG. 3. Semilogarithmic plot showing independent evolutions

at T = 0.6 for N =400 and P = 10 (random) memorized
FIG. 2. The distribution of the fluctuations of the overlap with patterns starting with the same initial state. The latter is
time as exhibited by the system in Fig. 1, during the stationarypbtained by perturbing one of the given patterns in such a
regime, for two typical values oft, normalized to unity. The way that 236 (out of 400) randomly placed neurons remain at
scale on the left side corresponds to the bell-shaped casdélse same state. The main graph shows six independent typical
(centered about 0.0 and 0.7, respectively) that occuwfoiThe  evolutions withw;. The inset shows four independent typical
scale on the right side corresponds to distributions (centeredvolutions with w;. This illustrates that pattern recognition
around 0.0 and very near 1, respectively) feg that are processes in a neural network may be notably improved in
hardly indistinguishable (on the scale of this figure) from Diracthe presence of correlated fluctuations of synapses as described
delta functions. by ws.
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