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Bulk dynamics for interfacial growth models
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We study the influence of the bulk dynamics of a growing cluster of particles on the properties of its
interface. First, we define general bulk growth moddby means of a continuum Master equation for the
evolution of the bulk density field. This general model just considers an arbitrary addition of patticlegh
it can be easily generalized to consider subtragtioith no other physical restriction. The corresponding
Langevin equation for this bulk density field is derived where the influence of the bulk dynamics is explicitly
shown. Finally, when a well-defined interface is assumed for the growing cluster, the Langevin equation for the
height field of this interface for some particular bulk dynamics is written. In particular, we obtain the celebrated
Kardar-Parisi-Zhang equation. A Monte Carlo simulation illustrates the theoretical results.

PACS numbsgs): 05.40—a, 05.70.Ln, 68.35.Ct, 68.35.Fx

[. INTRODUCTION servation are taken into account through the values of the
coefficientsyy, v,, ... and the properties of the noise term
In the last 15 years there has been a great interest in thg. Once the Langevin equatioid.l) is defined, one may

study of the growth of surfaces by dynamic processes base&Pply renormalization-group procedures to obtain different
on the addition and subtraction of particlese, for example, universal properties and scaling behaviors. The success of
[1-4)). For instance, the understanding of the conditions unthis scheme is clearly represented by the definition and
der which a growing surface shows a rough structure i@nalysis of the Kardar-Parisi-Zhang equatiGkPZ) [7]
nowadays of the greatest importance in the production ofthich has been a clear breakthrough in the study of the
thin films and/or pure crystals. Surface growth is usuallySPace-time asymptotic behavior of growth models.
studied by using lattice models in which simple stochastic Quité often surface growth is a consequencéulk dy-

rules intend to mimic the relevant phenomena. Their exten2MIC processes. A good example of this is provided by the
rowth of bacterial colonies where bacteria multiply in a

sive computer simulation have been of a major importance i utrient environment, the shape of the colony being the mov-
charat_:terizing and_ understanding the differen_t s_hapeg t.h‘mg interface[8]. In deneral, the dynamics of the particles
oceurin real experiments. H_o_\/\_/ever, due to the_ intrinsic limi-petore and after its aggregation to a substrate may influence
tations of computers capabilities, some very interesting asne system interfacial behavior. For instance, shadowing ef-
pects are usually subject to incomplete analysis and data ifacts may appear as happens in diffusion limited aggregation
terpretation. In particular, let us remark on the inherentp|A) processes and in thin-film growfl®], or they may
difficulty in the study of the surface long-time behavior andinduce different scaling regimes depending on the time inter-
its scaling properties. Nevertheless, for this particular aspecya| studied as it is shown in some molecular-beam-epitaxy
analytical models seem to give us the answers to the quesnodels in which a system bulk dynamics is defifig6,11].
tions that the computers fail to clarify. These are mainlyHowever, interface models are usually expressed in terms of
based in postulating a Langevin equation for the height of height field,h,(x)=0. In doing so, bulklike contributions
the interface measured from a reference substrate. Sugffe neglected since only interfacial degrees of freedom are
Langevin equations intend to mimic the system microscopigeing considered. Unfortunately, the mathematical hurdles to
dynamics and its collective effect at large scales in space angeriving the phenomenological dynamics of interfaces from

time. A general choice has the structure stochastic bulk microscopic models is formidable, and a
comprehensive theoretical picture is still lacking although a
Githy(X)=v1V2he+ v Vhy |2+ w3V2V2h+ - - -+ (%), significant body of rather rigorous work has been devoted to

(1D the subjecf12].

It is well known that the macroscopic behavior of systems
where hy(x) is the height of the interface at timeat the  at nonequilibrium states exhibits a strong dependence on the
substrate positionxe RY and 7,(x) is a white noise term. functional structure of its microscopic dynamictor in-
Generally, a one-to-one correspondence is assumed betwestance, in the so-callado-temperature Ising modgl 3] one
various terms in Eq(1.1) and different physical processes finds that the phase diagram changes radically depending on
(for example see the discussion ] concerning a model for the analytic form for the probability of a spin flipNever-
epitaxial growth, or a general method [ii] to propose an theless, one may expect that this strong relation between mi-
equation such as Eql.1) by using the reparametrization croscopic dynamics and macroscopic behavior should disap-
invariance symmetpy The details of the microscopic pro- pear near a renormalization-gro(RG) fixed point or in the
cesses that are assumed to be irrelevant at this scale of ofealing regime whereniversalityseems to guarantee that the
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c(pr = p) clp— o) Next, we choose the transition rates such that
4 N 2 clp—p') =W(pir), 2.2
L4 L ee namely, they are a function that depends only on the initial
L L configurationp and the specific point where mass is added.

Now, let us assume thd@ is large enough(typically, it
should be much bigger than any microscopic length scale
FIG. 1. Schematic representation of the process described by tHeesent in the original physical problem but much smaller
Master equatiori2.1). than the correlation length of the systemnd expand the
Master equatiorf2.1) on inverse powers of). Then, using
microscopic details are irrelevaiat least, one knows that the expansion
this is true when studying the dynamic properties of equilib-

Pr=p— ééx,r p= {p(l‘),l’ € Rd+1} p’, =p+ $6x,r’

rium systems near éRG) fixed point[14]). However, some c(p—p")=w(p;r), 2.3

recent results on the critical behavior of a nonequilibrium

driven diffusive system show that the microscopic dynamics c(pr—p)=W(p— Q7 5(x—r);r)

may play a relevant role in the determination of the system w m m

universality clas$15]. The influence of the microscopic dy- =3 (-1 9 W(p:r) 2.4

namical details into the critical and noncritical properties of a m=o MQ™ Sp(r)™ 7 '

nonequilibrium model implies, in our opinion, that amy

priori construction of a Langevin equation as Ef.1) may “o(=1)™ M

occasionally disregard important features. P.(p,)= 2 o ——mPsp), (2.5
m=o0 MQ™ Sp(r)

In this paper we introduce a quite general class of non-
equilibrium bulk growth models for which the aforemen-
tioned problems can be address#tere are in the literature
some efforts in this directio[ll6—18). We define a stochas-

we get the so-called Kramers-Moyal expansion of the Master
equation(2.1) [19],

tic bulk local dynamics expressed by an appropriated con- “ (1)

tinuum Master equation in which, for simplicity, only addi- 9P ( ):f dr [W(p:r)P,(p)].
tion of particles is considered. From the Master equation and ~~ ~ PI™ Jraea (& THQT sp(nTt /TP
using a truncated Kramers-Moyal expansion, we derive a (2.6)

Langevin equation for the bulk degrees of freedom in which ) i .
there is an explicit dependence on the analytic form of the The next step we take is to keep only the first two terms in

rates. In order to study surface properties, in a subsequefid- (2:6). Then, we can write down the following Fokker-
section we derive, from this bulk equation, an expression fof /anck equation:

the interfacial height field dynamics. The illustrative ex-
ample we take is that of the KPZ equation and, for consis-
tency, in that particular case we check our results by means
of a Monte Carlo simulation. Some other examples are then
briefly commented on and our conclusions are given in the X[w(p;r)Pi(p)]. 2.7
final section.

1 6 . 1 6
Q Sp(r) 2072 s5p(r)2

0Pio= |, ar

To control the goodness of such an approximation we appeal
Il. GROWTH MODELS: A GENERAL DESCRIPTION to the Kurtz. theoren{ZO], by virtue of which when() — oo,
and for a given timel <« then
Let us consider a particle density fielg(x,7), xe R4*?,
and assume that the probability distributiBr(p) associated sufp.—p.|<t InQ 28
with each field configuration obeys the following continuous TET p-=PA=<la QO .
Master equation:

wherep_ andp, are typical time trajectories on phase space
<7TPT(P)=J 4.,arle(pe—p)P(pr) —c(p—p")P(p)]. which are solutions of the exact Master equati@rl) and
R (2.2) the Fokker-Planck on€2.7), respectively.Z(, is a random
variable whose distribution does not depend(brand satis-
Here,c(p—p') is the probability per unit timéor transition  fying (exp(}\d))><oo for any constant.>0. That is, for a
rate) from one configuratiorp to anotherp’, and p,=p(x) given fixed timeT one can always find a large enough
—Q718(x—r1), p'=p(X)+Q 15(x—r). Note that the den- such that the difference between solving exactly the master
sity field, p, can only grow in steps of siz& . This is  equation or solving the truncated version of it, is of order
consistent with a picture in whicp(r) is a particle density InQ/Q and, therefore, negligible. Moreover, this bound is
that results after coarse graining over blocks of €zeen-  the best one and no new terms of the Kramers-Moyal expan-
tered around in a lattice. Therefore, the Master equation sion give better results. However, wh@r-~ one cannot
(2.1), so defined, could be thought of as if it only describedcontrol, in general, the accumulated influence of the ne-
processes that add one particle per block of the lattice paglected terms in the expansion. But, since the study of
elementary time step. This is represented in Fig. 1. growth models is mainly focused on the understanding of
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their evolution properties, due to Kurtz's theorem thelntegrating inz both sides of Eq(3.2) we find
Fokker-Planck equatiof2.7) is a valid theoretical starting
point. _
Last, the Fokker-Planck equati¢®.7) is equivalent in the athy(x)= JRdZ dp(r,1). 3.3
Stratonovich sense to the Langevin equafib)
Equating this expression faxh,(x), together with Eq(2.9),
will lead us to the desired Langevin equation for the heights.
ap(r,)=w(pir) =7 mW(P;r) To make this a bit more concrete, we now introduce a
particular set of rates. For instance, we choose the probabil-
1 ity of adding mass to the point to be proportional to the
+Q_/'12W(p;r)l/2”t(r)’ (2.9 square of the gradient of the density field in that point:
w(p;r)<|Vp|2. With this election the unwanted effect of
wheret=Q"17, »,(r) is a white noise with zero mean and nucleation of bubbles is avoided. After a bit of algebra, we
(ve(N v (r'))=68(r—r")s(t—t’). We recall thaw(p;r) is g€t
the probability per unit time of adding a particlef mass
Q1) at pointr. If we considered the possibility of particle

D 1
- 211/2
subtractions then we should do the following substitutions in Ah+ [1+(Vh) "™,

&tht:a[1+(vht)2]+29 Ql/Z

Eq.(2.9: w—w, —w_ in the first term andv—w_ +w_ in (3.9
the last two termsw, (_y=w(p;r) . (- is the probability per
unit time of adding(subtracting a particle. which is the celebrated KPZ equation with a different noise

Before we proceed to the next section, let us remark thaterm[a naive power counting argument reduces the relevant
(a) Eqg. (2.9) describes the evolution of the bulk density field part of Eq.(3.4) to the KPZ equatioh The coefficienD has
of a system that growths by addition of particles with, inthe proper dimensions andis positive and depends on how
principle, no other physical assumptions, dbilthe Lange- the® function is regularized. This comes from our particular
vin equation(2.9) depends directly on the functional form of ansatz, but, we would like to stress here that, as far as uni-
the bulk rates. The election of these bulk rates then providegersal properties are concerned, the precise value of the co-
the physical restrictions for the particular growth model thatefficients is immaterial. In fact, it is easy to shdwith naive
is going to be specifically modeled. Also, it is remarkablepower counting that for any bulk dynamics given by
that the influence of the bulk dynamics affects the noise termw(p;r)=|Vp|” with =0, gives rise to a height equation

through a nontrivial factor. falling in the KPZ universality class.
Next, we proceed to check numerically the connection
lIl. HEIGHT DYNAMICS: KPZ EQUATION AND MONTE between Eq(2.1) with w(p;r)=|Vp|? and the KPZ equation
CARLO SIMULATION 3.4).

Numerical resultsThe simple bulk rat¢V p|? can be eas-

We proceed to single out the interfacial degrees of freeily implemented in a Monte Carlo experiment. On a two-
dom of Eq.(2.9). In order to achieve this, we place two dimensional square lattice periodic boundary conditions are
conditions on the solutions of EQ.9). First, let us impose considered in one of the principal axes. Each lattice site is
that our bulk dynamics produces a surface perpendicular tiibeled by an occupation variable, ranging from
the z axis without overhangs and bubbles. This condition isp 1/}, ... to 1. A site is empty ifo,=0 and full if p,=1.
necessary to ensure that we have a well defined interfaggitially the lattice is empty except for a full horizontal bot-
[note that Eq(2.9) contains overhang-vacancy and shadow-tom line. The growth starts when an empty sits chosen at
ing effectd. Second, we neglect any interfacial profile. Then,random from the lattice. Then, according to Hg.1) and
we may assume that the solutions of the Langevin equatiofy«|Vp|?, p, is increased inQ~* with a probability that

(2.9 have the form depends on each nearest neighbor dfirough|V p,|2. The
next site is selected at random from those who are empty or
p(r,t)=0(h(x)—2), (3.)  partially filled. It should be noted that neither filled sites,

p,=1, nor sites in the vacuum phase, i.e., sites surrounded
wherer=(x,z), xe R is a point in the substrate aig(x) is by empty nearest neighbors, can grow. Thus, if we define the
the height of the growing surface at tirhe®(\)=1,1/2,0if  heighth,(x) as the distance to the highéfilly or partially)
A>0,=0,<0, respectively. That is, for a given point in the occupied lattice site directly above the substrate coordiate
bulk r, if its z coordinate is larger, equal or smaller than thewe conclude that growth is restricted to the bulk phase or to
actual position of the surfac(x), then the density field is the vicinity of the interface. Nucleation of droplets in the
p(r,t)=0, 1/2 and 1, respectively. Note that since BBe  empty phase is not possible. In Fig. 2 we show a snapshot of
function is not continuous, when differentiating we shouldthe growing interface fof)=15. Darker regions correspond
use a regularized version of it, e.@,(x) =3[ 1+tanh@x)] to higher densities. The bulk sites below the interface which
with a— oo, are not filled are still evolving and determine the future evo-

We are interested in constructing a dynamical equationution of the interface.

for the hy(x) fields. Therefore, let us make a time derivative ~ Numerically, one has to be very careful with the use of a
in Eq. (3.1 centered-in-space form for the discrete gradient operator,

since this may give rise to bulk vacancies incompatible with

dip(r,t) = dhi(x) (hy(X) — 2). (3.2 Eq. (3.1). That is, a nonfull lattice site with full nearest
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=1. Good data collapse is obtained for a roughness exponent
a=1/2 and a dynamic exponeart 3/2, in agreement with
the KPZ predictior{ 7].

The example we have just provided is by no means
unigue. Our formalism encompasses many other well-known
growth equations. Let us just mention that with the simple
dynamics given bwv(p,r)=|Vp| the equation of Golubovic
and Wang, related to the anharmonic equilibrium thermal
fluctuations of smectic-A phasd&1], is obtained. This is

given by
1
dhy=[1+(Vhy)?] )\+§H) (3.6)
Z
1
X [1+(Vh)?]Y4,, (3.7

* Ql/2
FIG. 2. Snapshot of a growing interface. The greyscale ranges
from white (empty site to black (full site).
where is a coefficient andH is the curvaturdsee[21]). As
neighbors can never be updated. This leads to voids in th#e have mentioned before, this kind of dynamipsopor-
bulk phase in contradiction with our assumption of the ab-tional to [Vp|” with =0), falls in the KPZ universality
sence of bubbles. Therefore, we use the following finite-class. Also, the Edwards-Wilkinson equati@?], which fa-

difference formula for the density derivatives=(x,2)] vors growth at local minima, can also be recovered by con-
sidering subtraction of particles and a rate of the fasm
Vo,=(p(x+x12)—p(x,2),p(x,2) — p(x,2— 1)), (3.5 =|V2p|. In this case, the formalism has to be slightly modi-

fied by linking the election of addition or subtraction of par-

where left and right derivatives are used alternately to avoidicles to the density field configuration. More explicitly, now
asymmetric effects and, for convenience, a unit lattice spadhe Master equation defining the process reads

ing is assumed. With this finite-difference scheme such inert

points into the bulk phase are no longer observed.

Figure 3 shows the scaling plot for the surface width aTPT(p)=J d+ldr[C(p’—>p)PT(p’)—C(p—)p’)PT(p)],
W(L,t)2=L"S[hy(x)—h(t)]* for different system sub- R 3.9
strate size&. h(t) is the mean height of the interface at time
t. The numerical data were averaged over 2000 independent . 5
runs for L=100,200,500, and over 1000 independent rungVith p"=p(x) +aQ™"6(x—r) anda=—1,0,1 forVp less,
for L=800. Different values of) yield similar results for ~€qual and greater than 0, respectively. That is, material is
the particular dynamics given by p,|2. But it cannot be added to those areas where the Laplacian of the density field
guaranteed that this will be the case for other types of rateds negative and taken from those where it is positive. In this
Recall that() is a length scale that must be bigger than anymanner, a balanced distribution of mass is achieved that re-
ishing bulk’s influence on the interface. Here, for reasons oflass.

computational efficiency the results shown corresponfito ~ Many other different rates lead to their corresponding
growth equations, sometimes to the same one, showing that

— T growth models with similar surface behavior may not have
SEEPEERIRCE + 1 the same bulk properties.
aﬁ*ﬁ#ﬂﬂ '
e ,@3‘8 IV. CONCLUSIONS
& & 1
= )pal& =100 + In this paper we have introduced a class of nonequilib-
N f:ggg X rium models in which a stochastic bulk dynamics is defined.
01 o L=50 0O - The bulk evolves by an absorption process represented by a
= ] continuum Master equation. From it, we have derived a
S s T Langevin equation for the bulk density field whose structure
0.0001 0.001 0.01 - 01 ! 10 depends on the details of the underlying bulk dynamics. This

dependence was then extended to an equation of motion for
FIG. 3. Scaling plot for the model defined by the Master equa-the interfacial degrees of freedom. In particular, we have

tion (2.1) with the rate|Vp|?. The data are fot.=100, 200, 500, exemplified the procedure by deriving the KPZ equation

and 800, wheré is the width of the substrate. from a very simple bulk rate. A Monte Carlo simulation of
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the bulk process confirms the predicted scaling behavior fo
the interface. Finally, a number of examples were briefly
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models with adatom mobility, driven lattice-gases or wetting
phenomena by means of lattice gas theories of multilayer

mentioned. In all cases the bulk dynamics determines th@dsorption, to name just a few.

mesoscopic height equation, showing that both scales are

related in a nontrivial form and that their mutual influence
could be far from intuitive.
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