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Abstract. We study a kinetic neural network in which the intensity of synaptic couplings
varies on a timescale of orderp(1 − p)−1 compared with that for neuron variations. We
describe some exact and mean-field results forp→ 0. This includes, for example, the Hopfield
model with random fluctuations of synapse intensities such that neurons couple each other, on
average, according to the Hebbian learning rule. The consequences of such fluctuations on the
performance of the network are analysed in detail for some specific choices of the rate and
fluctuation distribution, including the case in which couplings are asymmetric.

1. Introduction

The Hopfield model for associative memory [1] and its variations comprises a set ofN binary
neurons, sx = ±1, whose activity state evolves with time by some either deterministic or
stochastic process (corresponding to zero and finite temperature, respectively). The neurons
interact with each other according to the Hebb’s rule [2], for example. That is, the neuron
at x is connected with the neuron aty by a synapsewhose intensity is

Jxy = 1

N

P∑
µ=1

ξµx ξ
µ
y (1)

where {ξµx = ±1} ≡ ξµ representµ = 1, . . . , P memorizedpatterns. The valuesJxy
are independent of time. One may interpret either that the synapse intensities have been
determined during a previous learning (plasticity) process, or else that two different, well
defined timescales exist for the time evolution of synapses and neurons, respectively, the
former being much larger than the latter.

One may argue, however, that neglecting time variations of the synapses further than
those during the learning process is not realistic. Indeed a typical situation in biological
systems is that the synapse intensities vary with time also on a timescale smaller than that
for neuron activity. That is, in a time interval,1t , of the order of the time elapsed between
the generation of two consecutive action potentials, the synapses may change substantially,
for example due to variations in the number of vesicles in the synaptic buttons that induce
local fluctuations of the neurotransmitters concentration [3]. Another motivation for (fast)
local variations ofJxy in the models is the fact that biological neurons are, in practice,
connected by more than one synapse [4], each having a different nature, either chemical or
electrical, which, consequently, transmit the action potential at different speeds. These and
many other facts have been described that make synapses very noisy [5–10], and a rather
general belief exists that suchnoise might be at the origin of the observed robustness and
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efficacy of biological networks [5, 9, 11, 12]. As a further effort towards the analysis of such
possibility, in this paper we report on a neural-network model that, in addition to (slow)
learning plasticity, involves relatively fast local fluctuations of the synapse intensities. We
consider the simplest situation consistent with the observation in biological systems, that is,
we assume that the intensitiesJxy vary randomly with time in such a way that its average
over 1t , J̄xy , has the value corresponding to the involved learning rule. For example,
assuming the Hebbian case,Jxy constantlyvisits at random the memorized patterns during
time evolution taking instant valuesξµx ξ

µ
y with some probabilities, and̄Jxy is given by (1).

The influence on emergent properties of such fluctuations happens to be interesting. In
this paper we focus on specific distributions for the fluctuations that produce exact results,
namely, effective Hamiltonians for both symmetric couplings,Jxy = Jyx (section 3), and
asymmetric ones, namely,Jxy 6= Jyx (section 4; see also section 6). In section 5 we then
use the replica trick formalism to obtain explicit results from these effective Hamiltonians.
The most general description here consists of a kinetic mean-field approach (section 6),
which reveals a varied system behaviour. In particular, we show explicitly that allowing
for fluctuations significantly affects the property of associative memory (section 3). For
example, as compared with the ordinary case lacking these fluctuations, the occurrence of
the spin-glass phase at finite temperature is substantially restricted in our model, and it
does not appear at zero temperature (i.e. in the absence of thermal noise) above a critical
value for the number of stored patterns. On the other hand, this version of the model
is not critically affected by theAlmeida–Thouless(AT) line or limit of stability for the
replica symmetry solution. Also interesting is the fact that our model (section 2) admits
more general distributions for the fluctuations, and one may devise more realistic time
processes for the synapses than considered explicitly below. We plan to report soon on
further realizations of the same system [13].

2. Definition of the model

Let us denote bys = {sx = ±1} andJ = {Jxy ∈ R} neuron and synapse configurations,
respectively. The probability of state(s,J) at time t changes stochastically according to
the master equation:

∂tPt (s,J) =
∑
s′,J ′

[Pt(s
′,J ′)c(s′,J ′ → s,J)− Pt(s,J)c(s,J → s′,J ′)]. (2)

We assume that some undetermined agents that include a heat bath at temperatureT induce
transitions(s,J)→ (s′,J ′) whose probability per unit time (rate) is

c(s,J → s′,J ′) = pc1(s→ s′|J)δJ ,J ′ + (1− p)c2(J → J ′)δs,s′ (3)

whereδX,X′ represents the Kronecker delta function,

c1(s→ s′|J) =
∑
y

$J (s;y)δsy,−s ′y
∏
x6=y

δsx,s ′x (4)

and

c2(J → J ′) =
∑
x,y
x6=y

$(Jxy → J ′xy)(1− δJxy ,J ′xy )
∏
u,v

(u,v)6=(x,y)

δJuv,J ′uv . (5)

That is, time evolution proceeds by superposition of two kinds of elementary processes
(one per unit time), namely, transitionssx → −sx that occur with ratep$J (s;x).
For given synapse configurations and transitionsJxy → J ′xy 6= Jxy that occur with rate



Neural networks with fast time-variation of synapses 7803

(1− p)$(Jxy → J ′xy). For simplicity, we shall assume the latter to be independent of the
current neuron configuration. One may write

∂tPt (s,J) = p
∑
x

[$J (s
x;x)Pt (sx,J)−$J (s;x)Pt (s,J)]

+(1− p)
∑
x,y
x6=y

∑
J ′xy

[$(J ′xy → Jxy)Pt (s,J
xy)−$(Jxy → J ′xy)Pt (s,J)] (6)

wheresx represents the configuration obtained froms after the changesx→−sx, andJxy

stands forJ after the changeJxy → J ′xy . We restrict ourselves hereafter to the case

$J (s;x) = 9[2βsxhx(s,J)] (7)

whereβ = (kBT )−1, kB is the Boltzmann constant, and

hx(s,J) =
∑
y 6=x

Jxysy − θx (8)

is a local field with θx, the threshold energy needed to activate the neuron atx. 9

is an arbitrary function except that9(0) = 1, limX→+∞9(X) = 0, and 9(X) =
9(−X) exp(−X); the latter is the so-called detailed balance condition. The functions

9(X) =


e−

X
2 rateV

2(1+ eX)−1 rateK

min{1, e−X} rateM

(9)

are explicitly considered below.
Under well defined limits, these simplifying assumptions, namely (7), (9), and

independence of$(Jxy → J ′xy) ons, reduce the model to familiar cases, which is interesting
for reference purposes. Forp ≡ 1, one hasc(s,J → s′,J ′) = c1(s→ s′|J)δJ ,J ′ , and (6)
transforms into

∂tPt (s,J) =
∑
y

[$J (s
y;y)Pt (sy,J)−$J (s;y)Pt (s,J)]. (10)

This describes synapses that remain frozen-in during the time interval that characterizes the
variation ofs. Thequenchedvalue ofJ is determined, for example, by previous storage of
P patterns,ξµ, and no further synaptic modification occurs (on the timescale ofs). Several
cases associated with different symmetries and learning rules were considered before, such
as for example, as follows.

(i) Jxy = Jyx . This symmetry is not realistic for all biological systems [4], but it reduces
the original problem to a simpler one. That is, detailed balance then implies that the steady
state corresponds to thermodynamic equilibrium at temperatureT for energy

HJ (s) = − 1
2

∑
x,y
x6=y

Jxysxsy +
∑
x

θxsx. (11)

This is the Ising Hamiltonian ifJxy = J for any pair of nearest-neighbour pairs and zero
otherwise. Assuming instead a random spatial distribution for theJxy ’s, one obtains the
Edwards–Anderson model of spin glasses [14], or else one of the familiar variations of it.
Alternatively, the Hebbian learning rule (1) leads to the Hopfield model [1].

(ii) Jxy 6= Jyx . There is no Hamiltonian description, in general, but one may obtain
some information from the master equation. For example, one has from (10) that

∂t 〈sx〉 = −2〈sx9{[2βsxhx(s,J)]〉. (12)
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After introducing the mean local fieldmx(J) ≡
∑
y Jxy〈sy〉 (for simplicity, we assume

θx = 0∀x hereafter), and the mean-field assumptionsx ≈ 〈sx〉, which implieshx(s,J) ≈
mx(J), one obtains for the steady state that〈sx〉 ≈ tanh{βmx(J)}, where the mean local
field follows by self-consistency from

mx(J) =
∑
y 6=x

Jxy tanh{βmy(J)} Jxy 6= Jyx. (13)

This is the solution obtained by Crisanti and Sompolinsky [15].
The preceding discussion indicates that equation (6) characterizes a class of Hopfield-like

models that may allow us to illustrate the influence on emergent behaviour of some features
(a certain type of synaptic noise) not considered before; it may perhaps lead to an evaluation
of the role of fluctuating patterns of synaptic connections in biological systems. As a first
step, we are particularly interested here in the limitp→ 0. This corresponds to a situation
in which, once the learning process is complete, the synapses intensities change (fluctuate)
very fast as compared with neuron changes, in such a way that one may distinguish two
well defined timescales. That is, there is a microscopic timescale,τ , for the fluctuations of
the synapses, in which neurons do not appreciably evolve, and a different scale,t = pτ for
p→ 0 andτ →∞, in which neurons evolve under a steady distribution for the synapses;
we refer elsewhere [16] for a detailed study of such separation of timescales. Under such
condition, which, as discussed in section 1, can be interpreted as an oversimplification of
the actual situation in neurobiology, (6) transforms into

∂τfτ (J) =
∑
x,y
x6=y

∑
J ′xy

[$(J ′xy → Jxy)fτ (J
xy)−$(Jxy → J ′xy)fτ (J)] (14)

for the synapses, and

∂tPt (s) =
∑
x

[$̄ (sx;x)Pt (sx)− $̄ (s;x)Pt (s)] (15)

for the neurons, where

$̄ (s;x) =
∫

dJ f (J)$J (s;x) (16)

with f (J) the stationary solution of (14),f (J) = limτ→∞ fτ (J). In other words, the
system reduces in the limitp → 0 to the Markovian process (15) with effective rate (16).
Note that such a result relies on the assumption that$(Jxy → J ′xy) in (6) is independent
of the current neuron configuration; therefore, the stationary solution of (14) for the fast
variables does not depend on the more slowly varying neurons [16]. The only motivation
for our restriction to such anon-genericcase here is simplicity.

This is the system that we have studied in detail for different choices off (J) and
$J (s;x). We only consider here elementary rates$J (s;x) such that (7)–(9) hold (though
other simple cases may be worked out as well). The choice forf (J) needs to take into
account the symmetric or asymmetric nature ofJxy . In order to deal with variations of the
most familiar case, we assume that the fluctuations described byf (J) are around mean
values corresponding to the involved learning rule, i.e.

J̄xy ≡
∫

dJ f (J)Jxy = 1

N

P∑
µ=1

ξµx ξ
µ
y (17)

for the Hebbian case. A choice consistent with this is

f (J) =
∏
x,y
x6=y

δ

(
Jxy − 1

N

P∑
µ=1

ξµx ξ
µ
y

)
(18)
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however, this impedes any fluctuation in practice, and the model reduces to the Hopfield
one withJxy = Jyx . More interesting is

f (J) =
∏
x,y
x6=y

P∑
µ=1

aµδ(Jxy − ηµxy) (19)

which implies (17) for

ηµxy = λµξµx ξµy λµ = (aµN)−1. (20)

This corresponds to the case in which stored patterns contributeη
µ
xy with probability aµ to

the intensityJxy , independently of the others, so that no spatial correlation exists between
different synapses. A series of results for this case are reported below. Another case of
interest that implies (17) is

f (J) =
P∑
µ=1

aµ
∏
x,y
x6=y

δ(Jxy − ηµxy) (21)

i.e. each patternξµ contributes with probabilityaµ to the synapse configurationJ , so that
spatial correlations exist. A detailed study of this situation by approximate methods for
finite P will be reported elsewhere [13].

3. Exact results for symmetric synapses

Consider synapse fluctuations such that,on average, neurons couple each other according
to some learning rule. In order to determine the consequences of this on the performance
of the model, we first deal with one of its simplest realizations. The aim is to obtain exact
results, namely, to describe the system in terms of aneffective Hamiltonian[17, 18], which
severely restricts the choices for9(X) and f (J). In fact, we only consider rateV (cf
equation (9)) and

f (J) =
∏
x,y
x6=y

f (Jxy). (22)

It then follows that an effective Hamiltonian exists that, as in the Hopfield case, contains
the relevant information about the stored patterns. Both symmetric and non-symmetric
couplings may be considered; the latter are studied in section 4.

Let us assume (19), i.e.f (Jxy) =
∑

µ aµδ(Jxy − λµξµx ξµy ), so that fluctuations are
around mean values given by the Hebb’s rule. One hasλµ = α with α ≡ PN−1 from
normalization

∑
µ aµ = 1 for equal probability,aµ = P−1; cf (20). The fluctuations around

the Hebbian rule are then characterized by

σ 2
xy(ξ) ≡ (Jxy − J̄xy)2 = α2− 1

N2

∑
µ,ν

ξµx ξ
µ
y ξ

ν
xξ

ν
y (23)

which varies between 0 and 2α2. That is, in the thermodynamic limit,N →∞, with α 6= 0
(the numberP of patterns that the system stores is comparable with the lattice size), the
largest value ofσ 2

xy(ξ) is for ξµx ξ
µ
y ξ

ν
xξ

ν
y = −1 ∀µ,ν,x,y. Otherwise,α = 0, and the

last term of (23), which measures correlations between learnt patterns, also vanishes. We
sometimes assume below probabilities

p(ξµx ) = 1
2[δ(ξµx − 1)+ δ(ξµx + 1)] (24)
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it then follows σ 2
xy(ξ) ' α2. A first conclusion is that the effect of fluctuations depends

importantly on the degree of correlation between stored patterns, increasing as the patterns
tend to become independent from one another. Furthermore, fluctuations increase with the
numberα of stored patterns relative to the size of the system. This indicates a great interest
for studying cases in which correlations occur between the fluctuations at different places
[13].

Let us consider in detail the influence of fluctuations on the steady state. For rateV

and (22), one may prove [19, 20] that the stationary solution of (15) is

Pst(s) ∝ exp(−βHeff) (25)

with

Heff(J , s) = − 1
2

∑
x,y
x6=y

Jxysxsy (26)

whereJ = {Jxy} is a set ofeffectivecoupling intensities given by

Jxy = 1

2β
ln

exp(βJxy)

exp(−βJxy)
. (27)

For (19) withaµ = P−1 so that (17) is guaranteed, one has

Jxy = 1

2β
ln

{
1+ ρxy tanh(βα)

1− ρxy tanh(βα)

}
(28)

with ρxy ≡ 1
P

∑
µ ξ

µ
x ξ

µ
y . If, in addition to being equiprobable, the pattern elements are

statistically independent as in (24), one expects small values forρxy in the limitN,P →∞,
and it follows

Jxy ≈ A(α)
N

P∑
µ=1

ξµx ξ
µ
y A(α) = (βα)−1 tanh(βα). (29)

That is, the effective intensities are then in accordance with the Hebbian rule except for the
factorA(α) that contains the relevant information about fluctuations.

The resulting partition function is

Z =
∑
{s}

exp[−βHeff(s)] =
∑
{s}

exp[−βA(α)HH (s)] (30)

whereHH (s) stands for the Hopfield Hamiltonian. Therefore, under the (very special)
conditions stated, the system may be characterized by aneffective temperature, namely,

T̃ ≡ T

A(α) =
α

tanh(αT −1)
. (31)

In general,A (α) < 1. That is, allowing for fluctuations of the synapse intensities, in a
sense amounts to adding an extra noise to the thermal one thus inducing a larger (effective)
temperature. One hasA (α)→ 1 asαT −1→ 0, so that the effective temperature tends to
the ordinary one,̃T → T , either forα 6= 0 asT →∞ (the excess noise becomes irrelevant)
or for T 6= 0 asα→ 0 (the number of stored patterns remains finite in the thermodynamic
limit); in both cases, the model, for which the excess noise is proportional toα2, as shown
above, reduces to the Hopfield one. Also noticeable is the fact thatT̃ = α for T = 0.
It is to be remarked that, contrary to the effect of thermal noise, synaptic fluctuations in
our model do not simply add up to the existing noise. In fact, even in its present simple
version, fluctuations modify the effective strength of synaptic couplings, as demonstrated in
(26) and (27).
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4. Asymmetric synapses

Certain biological synapses are known to be consistent with the symmetryJxy = Jyx ;
however, Jxy 6= Jyx is thought to correspond better to many realistic situations [4].
Therefore, investigating the implications of such lack of symmetry is interesting. Motivated
by experiments [3], and seeking a simple enough case that allows analytical results, let us
assume that asymmetry originates during the learning process. A rather general prescription
consistent with this is

Jxy = 1

N

P∑
µ=1

[A1ξ
µ
x ξ

µ
y + A2ξ

µ
x + A3ξ

µ
y + A4] (32)

for which no Hamiltonian description exists. In this section we discuss the possible extension
of the previous results to deal with such asymmetric couplings (cf section 6 for a further
study of asymmetry).

For asymmetric synapses, the steady state happens to have the canonical structure in
(25) for rateV , some choices off (J) that we accomplish with the factorization property
(22), and

$̄ (s;x) =
[∏
y 6=x
Nxy

]
exp[−β1Hxeff(J , s)]. (33)

The first factor here is for normalization purposes, and1Hxeff(J , s) = Heff(J , sx) −
Heff(J , s). For simplicity, we requireHeff(J , s) to be of the Ising type, (26).

Asymmetry of synapses implies thatJxy andJyx are independent variables. Under this
condition, one obtains that (27) still holds for the coefficientsJxy , and that

Nxy = {exp(βJxy) exp(−βJxy)} 1
2 . (34)

This follows by algebra after combining (11), (15), (25)–(27), (32) and (33); cf the more
explicit derivation in section 3. A key difference with the symmetric case is that the choice
for f (Jxy) in (22) needs to be restricted in order to accomplish withJxy 6= Jyx . The
simplest situation occurs when the latter holds whilst the effective synapses are symmetric,
Jxy = Jyx , which guaranties that (26) is the effective Hamiltonian. With this in mind, we
choose

f (Jxy) =
P∑
µ=1

aµδ(Jxy − ηµxy) (35)

with ηµxy 6= ηµyx . Assuming hereaµ = P−1 ∀µ, and

ηµxy = α(A1ξ
µ
x ξ

µ
y + A2ξ

µ
x + A3ξ

µ
y + A4) α = PN−1 (36)

one obtains fluctuations around mean values given by the learning rule (32).
We obtain

exp(±βJxy) = exp(±A4)

[ 3∏
i=1

coshAi
] 4∑
j=1

λ
j
±κ

j
xy (37)

whereAi = βαAi , i = 1, 2, 3, 4, and

κ1
xy =

P∑
µ=1

aµξ
µ
x ξ

µ
y κ4

xy =
P∑
µ=1

aµ = 1

κ2
xy =

P∑
µ=1

aµξ
µ
x κ3

xy =
P∑
µ=1

aµξ
µ
y .

(38)
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Therefore, the coefficientsJxy in (26) as given by (27) are

Jxy = A4

β
+ 1

2β
ln

[
λ4
+
λ4−
Kxy

]
(39)

where

Kxy =
( 4∑
i=1

θ i+κ
i
xy

)( 4∑
i=1

θ i−κ
i
xy

)−1

(40)

θ i± = λi±/λ4
±, and

λ1
± = ± tanhA1+ tanhA2 tanhA3

λ2
± = ± tanhA2+ tanhA1 tanhA3

λ3
± = ± tanhA3+ tanhA2 tanhA1

λ4
± = 1±

3∏
i=1

tanhAi .

(41)

In order to haveJxy = Jyx , it is to be required thatKxy = Kyx , which depends on the
symmetry ofκ1

xy , namely,κ1
xy = κ1

yx ; κ4
xy = κ4

yx ; κ2
xy = κ3

yx ; κ2
yx = κ3

xy . It turns out to be
convenient to distinguish the following cases (note that the symmetry in (32) is controlled
by parametersA2 andA3).

(i) θ2
+ = θ3

+ and θ2
− = θ3

− and, therefore,A2 = A3. Two possibilities arise: (a)
A2 = A3 = 0; this occurs either forα, β 6= 0 if A2 = A3 = 0 (symmetry), or else for
α = 0, i.e.P is finite in the thermodynamic limit. In the latter case one hasJxy ∼ O (1/N),
while in the former case, (39) reduces to

Jxy = αA4+ 1

2β
ln

[
1+ ρxy tanh(βαA1)

1− ρxy tanh(βαA1)

]
(42)

which is similar to (28) for symmetric synapses. (b)A2 = A3 6= 0, which requires
A2 = A3 6= 0, i.e.ηµxy is symmetric, namely,α−1η

µ
xy = A1ξ

µ
x ξ

µ
y + A2(ξ

µ
x + ξµy )+ A4. One

obtains

Jxy = αA4+ 1

2β
ln

[
1+∏i tanh(βαAi)

1−∏i tanh(βαAi)

]
+ 1

2β
ln

[
1+ ρxyθ1

+ + (ηx + ηy)θ2
+

1+ ρxyθ1− + (ηx + ηy)θ2−

]
(43)

i = 1, 2, 3, with ηx ≡ P−1∑
µ ξ

µ
x .

(ii) A2 6= A3, i.e. the situation is originally asymmetric, andα 6= 0, so that a
macroscopic number of memories,P = αN , is stored. Then one needs to introduce
conditions on the stored patterns in order to haveKxy = Kyx . For example, one may
assumeηx = ηy = η∀x,y, which leads to

Jxy = αA4+ 1

2β
ln

[
1+∏i tanh(βαAi)

1−∏i tanh(βαAi)

]
+ 1

2β
ln

[
1+ ρxyθ1

+ + η(θ2
+ + θ3

+)
1+ ρxyθ1− + η(θ2− + θ3−)

]
. (44)

This is the simplest case with intrinsic asymmetry of synapses that may be described by an
effective Hamiltonian of the Hopfield type. Again, this result indicates that a main effect of
fluctuations is to induce effective values for the synaptic intensities. Interesting enough, the
above shows that symmetric effective synapses may result even forJxy 6= Jyx . To analyse
the implications of (39) in detail is beyond our objectives in this paper; however, we use
this result in section 6. Other, more general cases may be worked out under a mean-field
hypothesis, for example, as shown below.
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5. The replica method

The replica trick may be used to study further the implications of exact results in the
previous sections. We are concerned here with the symmetric case (the case of asymmetric
couplings is considered in section 6); in particular, we wish to solve the partition function
(30). The latter has been computed forA(α) ≡ 1 within a mean-field approximation using
the replica trick and the saddle-point method [21–23]. After replacingβ by β̃ ≡ βA (α) in
the known solution, one has for the free energy per spin:

f = α

2
+ α

2β̃n
Tr ln[(1− β̃)I − β̃q] + 1

2n

n∑
ρ=1

[ k∑
ν=1

(mνρ)
2+ αβ̃

n∑
σ=1
σ 6=ρ

rρσ qρσ

]

− 1

nβ̃
〈ln Trs eβ̃Hξ (s)〉ξ (45)

asn→ 0, whereρ andσ describe then replicas,s ≡ {s1, s2, . . . , sn},

Hξ(s) ≡
n∑
ρ=1

[
αβ̃

2

n∑
σ=1
σ 6=ρ

rρσ s
ρsσ +

k∑
ν=1

(mνρ + hν)ξνsρ
]

(46)

and〈· · ·〉ξ is an average over the distribution of random patterns, (24);I is the identity matrix
of elementsδρ,σ , andq has elementsqρσ for ρ 6= σ and zeros forρ = σ . The physical
meaning of the parametersmνρ , qρσ andrρσ in (45) is given by saddle-point equations. That
is, one obtains

mνρ =
1

N

〈∑
y

ξνy 〈sρy 〉
〉
ξ

(47)

as a measure of the overlap of a given state with a given stored pattern, and

qρσ = 1

N

〈∑
y

〈sρy 〉〈sσy 〉
〉
ξ

rρσ = 1

α

P∑
µ=k+1

〈mµρmµσ 〉ξ (48)

which are the so-called Edwards–Anderson [14] and AGS [22] parameters, respectively.
The indexν in these expressions describes a (finite) number,k, of condensed patterns,
defined as those for which the overlapmν is nonvanishing in the thermodynamic limit. The
non-condensedpatterns, described by the indexµ, for example in (48) and in the expression
for p(ξµx ), have overlapO( 1√

N
). We next study some of the consequences of (45).

Consider replica symmetry, namely,mνρ = mν , andqρσ = q andrρσ = r for ρ 6= σ . It
follows from (45) asn→ 0 that

mν =
[[
ξν tanhβ̃

{
z
√
αr + (m+ h) · ξ}]] (49)

q =
[[

tanh2 β̃
{
z
√
αr + (m+ h) · ξ}]] r = q(1− β̃ + β̃q)−2. (50)

Herem ≡ {mν; ν = 1, . . . , k} andh ≡ {hν; ν = 1, . . . , k} are the corresponding conjugate
fields that appear as an extra term,−∑k

ν=1 h
ν
∑
x ξ

ν
xsx, in the Hamiltonian (26), and

[[ · · ·]] ≡ 1√
2π

∫
dz e−z

2/2〈· · ·〉ξν . (51)

The last average here is similar to the one in (45) but over the condensed patterns only;
the integral shown explicitly corresponds to the Gaussian noise whose origin is the set of
non-condensed patterns.
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The following are principal implications of equations (49) and (50) forhν = 0∀ν. For
T = 0, one has that̃T = α. In this case, one finds a spin-glass solution, i.e.mν = 0
with q 6= 0 for any α < αq = 2.618; the resulting dependence ofq on α is shown in
figure 1. This essentially differs from the resultq = 1, independent of the number of
stored memories, for the Hopfield model [22]. That is, synapse fluctuations tend to impede
the spin-glass phase, and the associated noise is large enough when the number of stored
memories exceeds about 3N the number of sites so that the spin-glass,q 6= 0 solution
is impeded. In a sense, this is an interesting quality of the present version of the model,
because the spin-glass phase is undesirable for its performance, i.e. for the efficiency of
processes such as storing and retrieving memories; the improvement would be real if one
could simultaneously extend the Mattis region closer toαq (cf below). As expected, the
fluctuations vanish asα→ 0, and we then recover the Hopfield result.

Mattis solutions [24],

mν = mδν,ν0 (52)

i.e. those that exhibit a unique non-vanishing overlap, occur (twice for each memory) at
T = 0 for α < αM ' 0.132, slightly smaller than the Hopfield value of 0.138. That
is, fluctuations decrease the efficiency of associative memory somewhat; figure 2 includes
a comparison. Asα → 0, both systems recover without error, i.e.m → 1. The error
increases withα, being slightly larger in the presence of fluctuations. Differences between
the two models are now smaller than for the spin-glass phase, because the Mattis solutions
occur for smaller values ofα and the two models tend to each other asα→ 0. The phase
transition is discontinuous, as suggested in figure 2. One hasq 6= 0 for the Mattis solution,
i.e. it involves spin-glass order. The stability of solutions is similar to that for the Hopfield
model, namely, the ground state only consists of Mattis states forα < αC ' 0.052, and it
consists of Mattis states and spin-glass states forαM > α > αC (while only spin-glass states
occur forα > αM ). The value ofαC is practically the same for the two models, because
fluctuations are relatively small for such small values ofα.

For T 6= 0, this version of the model corresponds to the Hopfield one with effective
temperature (31). The spin-glass phase occurs forT < Tsg(α) with

T −1
sg (α) =


1

2α
ln

{
1− α√α

1− 2α + α√α
}

for α 6= 1

tanh−1 1
2 for α = 1.

(53)

As α→ 0, this transforms into the Hopfield result,Tsg(α) = 1+√α. The phase transition
is of second order, i.e.q is continuous atTsg for any α; cf figure 3. In addition to this
transition, we find two more transition lines (cf figure 4): one isTM(α) such that no Mattis
states occur forT > TM(α); the other isTC(α) (< TM(α)∀α) such that the Mattis states do
not correspond to global minimum of the free energy. The phase transitions atTM(α) and
TC(α) are discontinuous for anyα; these lines are very close to the corresponding ones for
the Hopfield model, given that they occur for smallα, when fluctuations are small.

Therefore, the phase diagram for the present version of our model in the case of replica
symmetry (cf figure 3) is qualitatively similar to the one for the Hopfield model as long asα

is small. However, some important differences occur for largeα when synapse fluctuations
are significant. In particular, it follows that the Hopfield spin-glass states are strongly
influenced by fluctuations, and do not occur for large enoughα.

The solution with replica symmetry is, in general, unstable. This is reflected in the
Sherrington–Kirkpatrick model by the fact that its entropy is negative forT = 0 [21].
The Hopfield model has a parallel behaviour, i.e. the spin-glass solution withqρ,σ = q
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Figure 1. Comparison of the behaviour of the model
presented here with the familiar Hopfield case. The full
curve represents the order parameterq = q(α) obtained
as the solution of equations (49) and (50) formν = 0
andhν = 0 ∀ν, andT = 0 (T̃ = α). The states below
this line, which corresponds to a continuous phase
transition, have a spin-glass, mixture nature. Unlike
the Hopfield model (for whichq = 1, represented by
the broken line),q decreases with increasingα, and
vanishes forα > αq = 2.618 in the present model with
fluctuating synapses.

Figure 2. The overlap parameter associated to the
Mattis solutions forT = 0 in the cases of (A) the
Hopfield model, and (B) the model with fluctuating
synapses.

Figure 3. The phase diagram for the network defined
by (30), for which an effective Hamiltonian of the
Hopfield type exists, namely, (26) with (29), when
replica symmetry holds. Using the magnetic language,
the different regions exhibited here correspond to
paramagnetic (P), spin-glass (SG), and ferromagnetic
(F) phases. The upper full curve, which corresponds to
equation (53), separates paramagnetic from spin-glass
states; the broken curve is the corresponding Hopfield
result. No spin-glass solutions occur forα > αq in the
model with fluctuations, unlike for the Hopfield case (cf
figure 1). The region near the origin is represented in
more detail in figure 4.

Figure 4. Detail near the origin of the phases in figure 3
to illustrate the functionsTM(α) andTC(α), as defined
in the main text, corresponding to discontinuous phase
transitions.

for ρ 6= σ is unstable forT < Tsg = 1+ √α, and the zero-T entropy associated with
either spin-glass or Mattis solutions is negative [22]. A principal question is the stability
of the ferromagnetic solution with replica symmetry, which is the most relevant one for
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associative memory. The limit of stability of the ferromagnetic solution is known as the AT
line [25]. For the Hopfield model [22], the AT line separates stable states of the solution
with replica symmetry from a region in which stability breaks down. The latter is relatively
small, occurs at low temperature nearαM(= 0.138), and its extension decreases quickly as
α → 0, so that it does not significantly affect the associative memory properties. In the
presence of synapse fluctuations, the AT line does not occur, even forT = 0, because of
the excess noise that increases withα. The entropy for the solutions of (49) and (50) of the
Mattis type is

S(β, q,m) = β2(β̃−2− α2)SH (β̃, q,m) (54)

whereSH (β̃, q,m) is the Hopfield result withβ replaced byβ̃. This expression goes to
zero asβ →∞.

6. Further cases of the model

In this section we report on mean-field time evolution equations that provide a detailed
description of several phase transitions. The focus is on simple versions of the model in
section 2, in the limitp → 0, for functions$J (s;x) and f (J) that, in general, do not
allow for the canonical structure (25), (26). One obtains from (15) for the time variation of
the mean neuron activity,∂t 〈sx〉 = −2〈sx$̄ (s;x)〉, that

∂t 〈sx〉 = −2〈sxāx(s)〉 − 2〈b̄x(s)〉 (55)

whereāx(s) and b̄x(s) stand for the average with respect tof (J), as in (17), of

ax(s,J) ≡ 1
2{9[2βhx(s,J)] +9[−2βhx(s,J)]} (56)

and

bx(s,J) ≡ 1
2{9[2βhx(s,J)] −9[−2βhx(s,J)]} (57)

respectively. (Note a dependence onx made explicit here that originates on the spatial
dependence exhibited by memory patterns; cf (8) and (1).) Under the mean-field
approximationsx ≈ 〈sx〉, (55) transforms into

∂t 〈sx〉 ≈ −2ā′x〈sx〉 − 2b̄′x (58)

whereā′x andb̄′x stand, respectively, for̄ax(s) andb̄x(s) with sx ≈ 〈sx〉. The corresponding
stationary solution ismx(J) =

∑
y 6=x Jxy〈sy〉 with

〈sx〉 ≈ − b̄
′
x

ā′x
= 9[−2βmx(J)] −9[2βmx(J)]

9[−2βmx(J)] +9[2βmx(J)]
(59)

where we have used (56), (57) and the fact that one hashx(s,J) ≈ mx(J) under the
mean-field hypothesis.

Note some general features before one specifies the rate in (59). The latter is satisfied
by mx(J) = 0; therefore, non-zero solutions follow by developing around this trivial one
in powers ofmx(J). It leads to first order tomx(J) ≈ β

∑
y 6=x Jxymy(J), or

mx(J) ≈ β
∑
y 6=x

Jxymy(J) (60)

after averaging with respect tof (J). Therefore, there is a phase transition, namely,
mx(J) 6= 0, for

det{δx,y − βJ̄xy} = 0. (61)



Neural networks with fast time-variation of synapses 7813

The following are some illustrative cases.
(i) f (J) is such thatJ̄xy = J/N with J independent ofN∀x,y. One has that

mx(J) = Jm∀x, wherem ≡ N−1∑
x〈sx〉, and (60) givesm ≈ βJm. That is, the

system exhibits a phase transition from ferromagnetic-like to paramagnetic-like behaviour
at Tc ≈ J .

(ii) f (J) is such thatJ̄xy is given by (17) with{ξµx ;µ = 1, . . . , P } a set ofN × P
statistically independent random variables with probabilities (24). After using detailed
balance for9(X) and developing the latter aroundX = 0, one has from (59) to first
order inX that

〈sx〉 ≈ βα
∑
y 6=x

(
P−1

∑
µ

ξµx ξ
µ
y

)
〈sy〉. (62)

ForN,P � 1, the limit central theorem reduces this to∑
y 6=x
〈sy〉δxy(1− αβ) ≈ 0. (63)

This is satisfied by〈sx〉 = 0∀x, i.e.m = 0; non-trivial solutions occur forT < Tc, where
the critical temperature follows from det[δxy(1− αβ)] = 0 asTc = α. This corresponds to
a phase transition of second order from paramagnetic- to ferromagnetic-like behaviour. For
the samef (J), we have studied the order parameter

mµ = 1

N

∑
y

ξµy 〈sy〉 (64)

which describes the overlap with a given patternξµ. One has from (59) thatmµ =
−N−1∑

y ξ
µ
y (b̄
′
x/ā
′
x), and it follows to first order that

P∑
µ=1

mµ
[
δµ,ν − β

N

∑
y

ξµy ξ
ν
y

]
≈ 0 (65)

after developing9(X). The trivial solution, for which the system cannot retrieve any of the
stored patterns, ismµ = 0∀µ. Non-trivial solutions which mark a phase transition to states
that exhibit associative memory may only occur below a critical temperature that satisfies
det{δµ,ν − βN−1∑

y ξ
µ
y ξ

ν
y } = 0. For N � 1, one hasN−1∑

y ξ
µ
y ξ

ν
y ≈ δµ,ν leading to

Tc = 1.
We next consider (55) for different rates whenf (J) is given by (19) and (20). For

rateK, we obtain

āx(s) = 1 b̄x(s) = −tanh[βhx(s,J)] (66)

and, consequently,〈sx〉 = 〈tanh[βhx(s,J)]〉. The latter reads

〈sx〉 =
〈 P∑
µ1=1

. . .

P∑
µN−1=1

aµ1 . . . aµN−1 tanh[βE]

〉
(67)

whereE ≡ ηµ1
xy1sy1 + · · · + ηµN−1

xyN−1syN−1. For rateM, one has

āx(s) = 1
2[1+ exp(−2β|hx(s,J)|)] (68)

and

b̄x(s) = 1
2 sign(hx(s,J))(1− e−2β|hx(s,J)|)

and it follows that

〈sx〉 = −B/A (69)
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where

A = 1

2

[
1+ 1

PN−1

P∑
µ1=1

. . .

P∑
µN−1=1

e−2β|Ẽ|
]

(70)

and

B = 1

2PN−1

P∑
µ1=1

. . .

P∑
µN−1=1

(1− e−2β|E|) signẼ (71)

with Ẽ ≡ ηµ1
xy1〈sy1〉 + · · · + ηµN−1

xyN−1〈syN−1〉. Cases (67) and (69) would require some drastic
simplification before one obtains explicit results.

The case rateV may be worked out explicitly. Consider first the symmetric choice (19)
so that (17) holds. One obtains

ax(s) = Kx cosh

(
β
∑
y 6=x
Jxysy

)
bx(s) = −Kx sinh

(
β
∑
y 6=x
Jxysy

)
(72)

where

Kx =
∏
y 6=x

[cosh2(βα)− ρ2
xy sinh2(βα)]

1
2 (73)

and

Jxy = 1

2β
ln

[
1+ ρxy tanh(βα)

1− ρxy tanh(βα)

]
(74)

with ρxy ≡ P−1∑P
µ=1 ξ

µ
x ξ

µ
y , so thatJxy = Jyx . Under the mean-field approximation

sx ≈ 〈sx〉, the corresponding stationary solution is

〈sx〉 = tanh

(
β
∑
y 6=x
Jxy〈sy〉

)
(75)

and it follows for the overlap that

mµ = 1

N

∑
x

ξµx tanh

(
β
∑
y 6=x
Jxy〈sy〉

)
. (76)

This is the Hopfield result for finiteP with Jxy replacing the Hebb value (1). ForP infinite,
one may still obtain (49) and (50) heuristically from (76) assuming thatJxy is given by
(29) forN,P →∞. For the asymmetric choice (36), one has after some algebra that

ax(s) =
[ 3∏
i=1

cosh(βαAi)

](∏
y 6=x

cxy

)
cosh

(
β
∑
y 6=x
Jxysy

)
(77)

and

bx(s) = −
[ 3∏
i=1

cosh(βαAi)

](∏
y 6=x

cxy

)
sinh

(
β
∑
y 6=x
Jxysy

)
(78)

with

c2
xy = [1+ κ1

xy tanhA2 tanhA3+ κ2
xy tanhA1 tanhA3+ κ3

xy tanhA1 tanhA2]2

−
[ 3∏
i=1

tanhAi + κ1
xy tanhA1+ κ2

xy tanhA2+ κ3
xy tanhA3

]2
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cf section 4. Under the mean-field approximationsx ≈ 〈sx〉, the steady state turns out to
be described by the same equations as for the symmetric case, namely, (75) and (76), with
Jxy given by (39). The detailed study of the implications of these equations is beyond our
objectives in this paper. It is to be remarked that these equations generalize our result at
the end of section 4 to the case in which the stored patterns do not satisfy the (restrictive)
conditionηx = ηy = η∀x,y; the latter was introduced there to obtain a canonical structure
which is not required here.

7. Conclusion

As an extension of previous work on disordered systems [16, 20, 26], we have presented
and studied a model for associative memory. This is a generalized, kinetic version of the
Hopfield neural network in the sense that the synapse intensities do not remain constant after
the learning process but fluctuate with time during neuron activity. Synaptic fluctuations
have been reported to occur rather generally in biological systems, and they are assumed to
play a role essentially different from that of thermal noise, and to influence (in a way to be
determined) on the system performance. In this paper, we have considered explicitly the
case of fast fluctuations around mean values that are determined by the Hebbian learning
rule. As a consequence, the stationary solution of the master equation that characterizes
the system is determined by a complex transition-rate function that enters this equation. (In
fact, due to fluctuations, the steady state is, in general, a non-equilibrium one, as if the
system was acted on by non-Hamiltonian agents.) We have shown that this may induce
interesting effects on the learning, recall and other associative-memory processes.

For certain choices of the rate function, the model reduces to familiar cases such as the
Ising and Hopfield models, for which the synapse intensities do not fluctuate, corresponding
to p ≡ 1 in equation (3). In the limit of very fast fluctuations,p → 0, synapse intensities
become random variables of distributionf (J). Different choices for the latter allow for the
consideration of symmetric,Jxy = Jyx , and asymmetric,Jxy 6= Jyx , couplings. Anyhow the
steady state strongly depends on bothf (J) and the rate. We have studied some general
properties of the model, and have presented here the analytical solution for some choices
of the parameters within a mean-field type of theory. In particular, we have considered
situations in which each synapse is associated to one of the elements of each memory
pattern, for example (19) where the matrixηµxy may be either symmetric or asymmetric. We
present closed equations for order parameters for rateV—cf equation (9)—ifηµxy = η

µ
yx .

The system in this case (but not more generally, e.g. ratesK andM) may be described
by an effective Hamiltonian of the Hopfield type, and synaptic fluctuations are shown to
modify the original temperature,T , so that there is an effective temperature,T̃ > T ; more
generally, fluctuations imply different values for the synaptic strengths. We have applied
the replica trick to obtain the resulting explicit behaviour.

A principal effect of synapse fluctuations is that the critical valueαC for the ratio
between the number of stored patterns and the size of the system,α ≡ P/N , below which
there is efficient associative memory is reduced by some 4%. It is remarkable that the
solution with replica symmetry remains stable in our model nearαC, due to the fact that
T̃ > T , in contrast to the Hopfield case where the AT line excludes stability in a (small)
region of the phase diagram sufficiently close toαC and T = 0. On the other hand,
fluctuations notably reduce the region of the phase diagram where associative memory
might be hampered by the occurrence of spin-glass states. Unlike for the Hopfield model,
this region is finite in our case; there is spin-glass phase only belowTsg(α), which becomes
zero (so that no spin-glass states may occur) forα > 2.618. Closed equations for the steady
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values of the order parameters have been found for rateV if ηµxy = ηµyx . It then follows an
effective Hamiltonian under certain conditions on the stored memories; however, no such
effective Hamiltonian description exists, in general, because the resultingeffectivesynapses
are asymmetric, which is often the actual case in nature. We show that a kinetic mean-field
formalism allows for a more general approach to the case of asymmetric couplings. Further
details on the performance of our system (6) will be reported elsewhere [13].

Therefore, we have shown explicitly that time variations, for example fluctuations of
synaptic intensities during neuron activity, which are known to occur in biological systems,
affect importantly the behaviour of a neuronal network, in general. The interest to study, by
other techniques, versions of our model that are not amenable to the analytical treatments
here is therefore suggested.
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[20] López-Lacomba A I and Marro J 1994Europhys. Lett.25 169
[21] Kirkpatrick S and Sherrington D 1975Phys. Rev. Lett.35 1972
[22] Amit D J, Gutfreund H and Sompolinsky H 1987Ann. Phys., NY173 30
[23] Pastur L, Shcherbina M and Tirozzi B 1994J. Stat. Phys.74 1161
[24] Mattis D C 1976Phys. Lett.56A 421
[25] de Almeida J R L andThouless D J 1978J. Phys. A: Math. Gen.11 983
[26] Garrido P L and Marro J 1991Artificial Neural Networks (Lecture Notes in Computer Science 540)ed A Prieto

(Berlin: Springer) pp 25–33


