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Langevin equation for driven diffusive systems
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An open controversy exists about the nature of the second-order nonequilibrium phase transition exhibited
by a lattice gas in which particles are driven along one of the lattice directions by an external agent. Field
theoretical predictions and Monte Carlo estimates for the critical exponent values do not seem to agree with
each other. In this paper we introduce a Langevin equation in which the effects of the microscopic dynamics
are carefully taken into account. We show that the order parameter critical exponent when the idfingds
(no backwards jumpss not mean-field-like, in contrast with the prediction for finite values of the drive. This
finding seems to reconcile field theoretical and numerical red@063-651X%97)10012-5

PACS numbgs): 05.70.Fh, 05.66-w, 66.10—X, 64.60.Cn

Much attention has been devoted in the past decade to tHer comprehensive reviewslIn particular, it is well known
study of nonequilibrium stationary staté$S9 [1,2], which  that, for a half-filled lattice in the presence of a nonzero
exhibit instabilities, phase transitions, and critical phenom-driving field, the DLG undergoes at some temperature a
ena much more varied than the equilibrium states. The absecond-order phase transition above dimension 1. The criti-
sence of a general theory for NSS similar to the powerfulcal point separates the high temperature phase, in which the
equilibrium ensemble theory makes the understanding o$ystem is disordered, from the low temperature, highly an-
nonequilibrium phase transitions difficult and challenging.isotropic phase, in which a strip of particles parallel to the
Universalityis often invoked in order to disregard the influ- field direction is exhibited. An interesting question is the role
ence of most microscopic details on critical behavior. Non-of universality in this simple nonequilibrium problem and, in
equilibrium critical phenomena are often studied by postulatparticular, the values for the critical exponents that charac-
ing a Langevin equatiofor field theory which contains the terize the phase transition.
features that are assumed to be relevant near a critical point Valles and Marro[7] concluded from Monte Carlo data
[3,4]. However, the situation concerning universality is lessfor an infinite field(i.e., particles are not allowed to jump
clear-cut here than in equilibrium, and there is at least on@gainst the field directionthat the order parameter critical
case in the literature in which a significant disagreement beexponent,3, seemed to be close to 1/3 for dimension 2. In
tween Monte Carlo results and field theoretical predictiongontrast, Leung and Card§] and Janssen and Schmittmann
seems to occur: the driven lattice g3l G). [9] showed tha{B is obtained from a mesoscopic Langevin

The DLG is one of the simplest nonequilibrium models equation, which is often known as a driven-diffusive system
that illustrates some of the basic features of systems whictPDS), which is assumed to be the coarse grained version of
do not possess a thermodynamic equilibrium state. Théhe DLG, takes the value 1/2, that is, the DDS has classical
DLG, which models some situations of practical intefdgt  or mean-field critical behavior. Further computer simulations
is a stochastic particle system on a lattice in contact with @nd data analysis did not solve the problem. It was claimed
thermal bath at some given temperature. The particles moviéiat if Monte Carlo data are analyzed, taking into account the
according to a probabilistic rule that tries to minimize a localintrinsic anisotropy of the systerfil2], then the classical
energy function. Such a function has two parts: a configuravalue 1/2, forB ensues. However, an analysis of the data in
tional (typically Ising-like) energy and one corresponding to [12] was presented ifil1] that seems to invalidate the pre-
the action of an external constant electric field that drives theious conclusion and confirms thatis close to 1/3, in ac-
particles(say, positive ionsalong a given lattice direction. cordance with the original prediction and with the behavior
This can be implemented as a Markovian master equationf other anisotropic lattice gasés].
that characterizes the model by transition probabilities which In our opinion, the controversy may be due to the fact that
depend on the local energy increments. Periodic boundarthe microscopic DLG master equation and the mesoscopic
conditions are considered, hence the electric field is not de9DS Langevin equation are not describing the same physical
rivable from a global potential. The system can reach, howsituation. In order to support our point, we have derived a
ever, a(nonequilibriun stationary state in which there is a Langevin equation from the DLG master equation. Our study
net current of particles in the direction of the field. On thecasts serious doubts on the validity of the DDS Langevin
other hand, if the field is turned off, the system relaxes to arequation as a continuous representation of the DLG, or at
equilibrium state characterized by a Gibbsian distribution. least on the range of validity of such assumption.

Since the DLG was first propos¢f], mean field analysis We proceed as follows: First we introduce a master equa-
[6], Monte Carlo simulation$7], and field theoretical ap- tion, which defines the DLG. From this equation, after using
proacheg$8,9] have been performed, and most of its qualita-standard techniques in the theory of stochastic processes
tive physics is now quite well understogdee[1] and[10]  [13], we derive a Fokker-Planck equation, and determine its
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stochastically equivalent Langevin equation. By following We have discarded here terms of ordewhich only have
this strategy, we ensure that the details of the microscopisome influence at a technical level.
dynamics are properly taken into account. We then show, in  The first term on the right-hand side of H§) is the local
particular, that the analytic form of the microscopic transi-increment of energy due to the action of the driving field
tion probability and the precise value of the field may affectwhen a density7 is exchanged in tha direction with an
the critical behavior of the DLG. Our study thus clarifies jnfinjitesimal neighbor of . The functionD(2) is any func-
somewhat the concept of universality in nonequilibrium phe+;gp, satisfying the propertyD(z)=e 2D(—2)=0 (for in-
nomena. _ _ _ _ stanceD(z) =[1—tanh@?2)]/2); this constraint ensures that
The o_ngmal mode[5] co_n5|sts (.)f al-dimensional ""?“'Fe' the master equatiofB) satisfies in the limiting cas&=0,
T e e o L . oS e Cetaled baanceDR) property 1], and, consequenty
dvnamics. Let us define at eachg oir?i 74 3 density vari- %he stationary solution to E@3) for E=0 is the equilibrium
y : POITE - y state corresponding td[ @], i.e., Pg(®)xe 1P,

able,®, e R, which is the averaged value of the occupation X o
re g P Once the model has been defined, the next step consists in

variables in a region of volume ™! aroundr. Let us intro- o . on for i ith this ai
duce a dynamics for the density variables which is inspired!€Ving a Langevin equation for it. With this aim, we per-

in the original lattice dynamics. We postulate that the systeni®m @ Kramers-Moyal expansion of the Master equatf@n

evolves from a given configuratio® to another®’ by €@ series expansion in powers of the small paranzeter
choosing at random a particle at poinand exchanging it Pe truncated at the second ordég]. After some algebra,
with its nearest neighbor in thee direction, namely using the Ito prescription, one is led to the following Lange-
vin equation:
Oy =D,+e(8y,— Sxr1a=D2. (1)

_ _ _ 2,0,(N=2 V, [h(A)+e(A) g, (D], (7)
Whene "1 is large enough®, is assumed to be a continuous a
function of x, say ®(x), so that we haved'?={d(x)

+8VX35(X—I’),CI>(X) e @}, rd. We can also generalize this

dynamics to consider exchanges of magniteglenith prob-  Where
ability amplitudef (%), the latter being an even function of
7 eg. n(Aw= [ dn fmaD (A,
f(n)=3[8(n+1)+8(n—1)]. 2
— 2
See[14] for a more detailed explanation of this procedure. e(Aa)= fRdﬂ f(m) n"D(nAa), ®)

The probability of finding the system at some given con-
figuration, P,(®), evolves according to the following Mar-
kovian master equation: with  A,(®,r,E)=a-E[1-®(r)?]-V, (SH[®]/5D(r)).
¥, is a Gaussian white noise, i.e{i, ,(r))=0 and
(Yo, (Np o (r'))=€84p,8(r—r")8(7—7') andr=¢t. We
then sete=1 as no more perturbative expansionsesitare
E ra considered.
—CH(P—DPT)P(P)]. ©) Let us point out that the basic symmetries of the DLG are
indeed present in the Langevin equatiah: it is invariant
under translations in space and time, and it is also invariant
under the simultaneous change-—E and®— —&.
In order to find the relevant part of the Langevin equation,
we perform the following anisotropic scale transformations
CE(®—P")=D(H[®"3]|—H[D]+H[DP—-D"?]), [8,9]: T—u 1, X, —u X, X—u X, and®— u’d,
(4)  where L represents thel—1 orthogonal directions to the
driving field E whose direction is represented hyNext we
whereH[®] is the equilibriumd* Hamiltonian, expand the Langevin equatidf) in powers ofu aroundu
=0, and we keep only the leading terms. The valuezs arfid
6 can be determined by requiring that the coefficients of the
H(<I>):g*1f dr[%(vq)(r))%L p d(r)2+ 9 d(r)?|, transverse noise and of the transverse spatial interaction are
RY 2 4! invariants of the transformation. This implies tizat 4 and
(5) 6= (o+d—3)/2. We still have the freedom to chooseto
look for different critical theories. A way to obtain a renor-
malizable theory is to require that the coefficients of the gra-
dient termsV} ® andVZ® both scale in the same way. Un-
He[ ®—®7?]= na-E[1- ®(r)?]+O(e). (6)  der this assumption, we get=2, and we obtain the critical
theory ford>3:

HP(P)=2) J A7 () J Ar[CH(@TE - @) (071%)

Here, cE(®—®') is the probability of transition per unit
time (or transition ratg from ® to ®’. It is given for the
DLG as

and
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) 4 g . stands when perturbation corrections are considered. Sum-
9, 2(r)=3e(0)| =X, Vid+pA O+ g AP ming up, the scaling-=2 for E= leads to a trivial behav-
1 . . . . .
’ 5 ’ ) ior, so that such substitution is meaningless. In fact 2
—ph"(E)Vi®—-EN(E)V,® was obtained by imposing that the gradient tef¥i{sb and
VZ® scale in the same way. However, in te=x= case,
+ Ve(o); Vi Ar), 9 there is no parallel gradient term appearing in the Langevin

equation. In this case, the theory can be renormalized in a

whereh’ is the first derivative of the function(A ), closely consistent way using = 1. This leads to

related to the first derivative of the transition rdde A,

indicates the Laplacian associated with the 1 directions

orthogonal to the driving field. There are two effective tem- 5 ¢ =1¢(0) —A AD—A2D+pA, D+ g A D3

peratures: one is associated with the transverse directions to 6

the field, p, and the other is associated with the field direc-

tion, ph’(E). Under the renormalization group transforma- e(0)\ 2

tions they flow independently in the parameter space. Let us +1e(0) >, Ve, lﬂi,T(f)Jf(T) Vi, 7).

remark that Eq(9) has precisely the structure of the Lange- +

vin equation postulated by Leung and Cardy as a mesoscopic

description for the DLG8,9], the only difference is that Eq. (1D

(9) exhibits an explicit dependence on the microscopic fieId.I_h. L . tion h imple phvsical int tation:

parameter. That is, Leung and Cardy introduced a coarse: IS Langevin equation has a simple physical interpretation:
. : ' 2 o ) it corresponds to a lattice gas in which particles are ex-

grained driven field that is identified here B&'(E). The chanaed at random in the direction of the field. and the

field theoretical analysis of E¢9) was performed by Janssen 9 ' y

and Schmittmann9]. The upper critical dimension, above follow a Iocal_lncr_ement of the _conf|gurat|onal energy in the
X . . : transverse directions. Interestingly, such a situation would
which mean field results are exact,ds=5. For dimensions

d=5_& ane expansion can be performed. It is imoortant to have been difficult to guess using only heuristic arguments
>~ &, aneexp . per S P and considering symmetries, conservation laws, or other gen-
notice that the term proportional tpis naively irrelevant at

the critical dimension, while it is necessary to take it intoeral properties. Possibly against intuition, it followsliffer-
’ Y ent relevant Langevin equation in the infinite field limit

%Nhich characterizes a critical behavior different from that for
finite values ofE.

(that is, this term is a dangerous irrelevant operg&ot5]).

The field theoretical analysis of the Langevin equati®n Let us make some remarks concerning Bd)

shows that, due to a Galllea_n_ Invariance present in the (i) The fact that no steady particle current is exhibited

theory, the order parameter critical exponent is mean-field- “: . . .

like. i.e. B=1/2 even below the critical dimension explicitly by Eq. (11) does not imply that there is no such
C’o.nt.r,a/iy_to what happens for the Langevin equ'ation pOS_current in our model. It only implies that the current does not

tulated in[8,9], it is possible to seE=c in Eq. (9), which depend on the field values and, consequently, does not affect

: the critical behavior.
corresponds to the case usually analyzed in Monte Carlo (i) The naive power counting leading te=1 does not

simulations. In this limit, all the terms depending on the. S . .
electric field E become identically zerdrhis fact can be imply that the scaling is isotropic. The anisotropy shows up

. i - . when the diagrammatic corrections are taken into account.
checked in the Langevin equatid@r) before rescaling, and 9

also in Eq.(9), which involves rescaling. The resulting criti- (iil) In the scaler=1, Eq.(11) is renormalizable whef

cal theory is the equilibrium one, i.e., mod&I[16] for the is set tooo, while for finite values of the field it can be seen
y 4 P that it is not. In this sense the poikt=~ can be considered

gﬁgai/g;seM%:gcéf&iséit?;dogg ztt:t;tnusre ensues in the parallg a singular one. Similar remarks could be made on the case

' ' E=0, the reason being that they both separate a renormaliz-
able caseE=0 or E=2, and the highly nontrivial on&
finite.

(iv) The critical dimension in the infinite field limit asso-
ciated with Eq.(11) is d=4, and it yields a universality class
other than that obtained from E¢P) for finite fields. The
detailed renormalization and computation of the critical ex-

+ ME V., (7). (10) ponents associated with E@ll) will be presented else-

T ' where. In any case, it is clear already that there is no reason
to expect that the value @ is 1/2.

Physically this is due to the fact that, in the case of infinite In conclusion, we have shown that, in the limit of infinite
field, at a microscopic level, jumps in the direction of the driving field, which is the case studied in Monte Carlo simu-
field occur with probability 1, independently of the field lations of the DLG, the correct field theory that captures the
value, while jumps against the field direction are forbidden.relevant features of the underlying phase transition differs
Therefore, any dependence of configuratibron the drive  from that obtained for finite field values. Consequently, the
disappears in the case of infinite field. This is not to be aserder parameter exponeys is more likely to be different
sociated with any of the approximations or truncations confrom 1/2, in contrast with the prediction from previous work.
sidered; in fact, it may be shown explicitly that the samelt is likely also that, for large field values, a strong crossover

9, d(r)=3e(0)| —A2d+pA D+ g A, D3
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from our theory to the fixed point computed [if] occurs, tion for nonequilibrium systems. Some of the details of the
and that this crossover makes difficult the interpretation oimicroscopic dynamics can be crucial to determine the ob-
Monte Carlo data. Our results shed some light on the physicservable behavior, a fact which is often underestimated in the
of a familiar nonequilibrium phase transition, and the dis-literature.

crepancies between the existing field theory and various

Monte Carlo simulations are clarified. Finally, we mention ~We acknowledge useful comments by J. Marro and J. L.
that even though symmetries, dimensionality, and other gerl-ebowitz, and financial support from DGICYT of Spain,
eral features of the system are very relevant to characterizZ8rant No. PB91-0709. M.A.M. also acknowledges financial
its universality class, it ensues from above that one has to bsupport from the University of Granada and from the Euro-
extremely careful when constructing a continuous descrippean Union through Contract No. ERBFMBICT960925.
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