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Langevin equation for driven diffusive systems
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An open controversy exists about the nature of the second-order nonequilibrium phase transition exhibited
by a lattice gas in which particles are driven along one of the lattice directions by an external agent. Field
theoretical predictions and Monte Carlo estimates for the critical exponent values do not seem to agree with
each other. In this paper we introduce a Langevin equation in which the effects of the microscopic dynamics
are carefully taken into account. We show that the order parameter critical exponent when the drive isinfinite
~no backwards jumps! is not mean-field-like, in contrast with the prediction for finite values of the drive. This
finding seems to reconcile field theoretical and numerical results.@S1063-651X~97!10012-5#

PACS number~s!: 05.70.Fh, 05.60.1w, 66.10.2x, 64.60.Cn
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Much attention has been devoted in the past decade to
study of nonequilibrium stationary states~NSS! @1,2#, which
exhibit instabilities, phase transitions, and critical pheno
ena much more varied than the equilibrium states. The
sence of a general theory for NSS similar to the powe
equilibrium ensemble theory makes the understanding
nonequilibrium phase transitions difficult and challengin
Universality is often invoked in order to disregard the influ
ence of most microscopic details on critical behavior. No
equilibrium critical phenomena are often studied by postu
ing a Langevin equation~or field theory! which contains the
features that are assumed to be relevant near a critical p
@3,4#. However, the situation concerning universality is le
clear-cut here than in equilibrium, and there is at least
case in the literature in which a significant disagreement
tween Monte Carlo results and field theoretical predictio
seems to occur: the driven lattice gas~DLG!.

The DLG is one of the simplest nonequilibrium mode
that illustrates some of the basic features of systems w
do not possess a thermodynamic equilibrium state.
DLG, which models some situations of practical interest@1#,
is a stochastic particle system on a lattice in contact wit
thermal bath at some given temperature. The particles m
according to a probabilistic rule that tries to minimize a loc
energy function. Such a function has two parts: a configu
tional ~typically Ising-like! energy and one corresponding
the action of an external constant electric field that drives
particles~say, positive ions! along a given lattice direction
This can be implemented as a Markovian master equa
that characterizes the model by transition probabilities wh
depend on the local energy increments. Periodic bound
conditions are considered, hence the electric field is not
rivable from a global potential. The system can reach, ho
ever, a~nonequilibrium! stationary state in which there is
net current of particles in the direction of the field. On t
other hand, if the field is turned off, the system relaxes to
equilibrium state characterized by a Gibbsian distribution

Since the DLG was first proposed@5#, mean field analysis
@6#, Monte Carlo simulations@7#, and field theoretical ap
proaches@8,9# have been performed, and most of its quali
tive physics is now quite well understood~see@1# and @10#
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for comprehensive reviews!. In particular, it is well known
that, for a half-filled lattice in the presence of a nonze
driving field, the DLG undergoes at some temperature
second-order phase transition above dimension 1. The c
cal point separates the high temperature phase, in which
system is disordered, from the low temperature, highly
isotropic phase, in which a strip of particles parallel to t
field direction is exhibited. An interesting question is the ro
of universality in this simple nonequilibrium problem and,
particular, the values for the critical exponents that char
terize the phase transition.

Vallés and Marro@7# concluded from Monte Carlo dat
for an infinite field ~i.e., particles are not allowed to jum
against the field direction! that the order parameter critica
exponent,b, seemed to be close to 1/3 for dimension 2.
contrast, Leung and Cardy@8# and Janssen and Schmittman
@9# showed thatb is obtained from a mesoscopic Langev
equation, which is often known as a driven-diffusive syste
~DDS!, which is assumed to be the coarse grained versio
the DLG, takes the value 1/2, that is, the DDS has class
or mean-field critical behavior. Further computer simulatio
and data analysis did not solve the problem. It was claim
that if Monte Carlo data are analyzed, taking into account
intrinsic anisotropy of the system@12#, then the classica
value 1/2, forb ensues. However, an analysis of the data
@12# was presented in@11# that seems to invalidate the pre
vious conclusion and confirms thatb is close to 1/3, in ac-
cordance with the original prediction and with the behav
of other anisotropic lattice gases@1#.

In our opinion, the controversy may be due to the fact t
the microscopic DLG master equation and the mesosco
DDS Langevin equation are not describing the same phys
situation. In order to support our point, we have derived
Langevin equation from the DLG master equation. Our stu
casts serious doubts on the validity of the DDS Lange
equation as a continuous representation of the DLG, o
least on the range of validity of such assumption.

We proceed as follows: First we introduce a master eq
tion, which defines the DLG. From this equation, after usi
standard techniques in the theory of stochastic proce
@13#, we derive a Fokker-Planck equation, and determine
752 © 1998 The American Physical Society
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57 753LANGEVIN EQUATION FOR DRIVEN DIFFUSIVE SYSTEMS
stochastically equivalent Langevin equation. By followin
this strategy, we ensure that the details of the microsco
dynamics are properly taken into account. We then show
particular, that the analytic form of the microscopic tran
tion probability and the precise value of the field may affe
the critical behavior of the DLG. Our study thus clarifie
somewhat the concept of universality in nonequilibrium ph
nomena.

The original model@5# consists of ad-dimensional lattice,
whose sites have occupation variablesni51 or 0, for sitei .
These variables evolve following a particle-hole exchan
dynamics. Let us define at each pointrPZd a density vari-
able,F rPR, which is the averaged value of the occupati
variables in a region of volume«21 aroundr . Let us intro-
duce a dynamics for the density variables which is inspi
in the original lattice dynamics. We postulate that the syst
evolves from a given configurationF to anotherF8 by
choosing at random a particle at pointr and exchanging it
with its nearest neighbor in thea direction, namely

Fx85Fx1«~dx,r2dx,r1a![Fx
ra . ~1!

When«21 is large enough,Fx is assumed to be a continuou
function of x, say F(x), so that we haveFra5$F(x)
1«¹xa

d(x2r ),F(x)PF%xPRd. We can also generalize thi
dynamics to consider exchanges of magnitudeh« with prob-
ability amplitudef (h), the latter being an even function o
h, e.g.,

f ~h!5 1
2 @d~h11!1d~h21!#. ~2!

See@14# for a more detailed explanation of this procedure
The probability of finding the system at some given co

figuration, Pt(F), evolves according to the following Mar
kovian master equation:

] tPt~F!5(
a
E

R
dh f ~h!E

Rd
dr @cE~Fhra→F!Pt~Fhra!

2cE~F→Fhra!Pt~F!#. ~3!

Here, cE(F→F8) is the probability of transition per uni
time ~or transition rate! from F to F8. It is given for the
DLG as

cE~F→Fhra!5D~H@Fhra#2H@F#1HE@F→Fhra# !,
~4!

whereH@F# is the equilibriumF4 Hamiltonian,

H~F!5«21E
Rd

dr F 1
2 „“F~r !…21

r

2
F~r !21

g

4!
F~r !4G ,

~5!

and

HE@F→Fhra#5ha•E@12F~r !2#1O~«!. ~6!
ic
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We have discarded here terms of order« which only have
some influence at a technical level.

The first term on the right-hand side of Eq.~6! is the local
increment of energy due to the action of the driving fie
when a density«h is exchanged in thea direction with an
infinitesimal neighbor ofr . The functionD(z) is any func-
tion satisfying the propertyD(z)5e2zD(2z)>0 „for in-
stance,D(z)5@12tanh(z/2)#/2…; this constraint ensures tha
the master equation~3! satisfies in the limiting caseE50,
the detailed balance~DB! property @1#, and, consequently
the stationary solution to Eq.~3! for E50 is the equilibrium
state corresponding toH@F#, i.e., Pst(F)}e2H@F#.

Once the model has been defined, the next step consis
deriving a Langevin equation for it. With this aim, we pe
form a Kramers-Moyal expansion of the Master equation~3!,
i.e., a series expansion in powers of the small parameter« to
be truncated at the second order@13#. After some algebra,
using the Ito prescription, one is led to the following Lang
vin equation:

]tFt~r !5(
a

¹ r a
@h~La!1e~La!1/2ca,t~r !#, ~7!

where

h~La!5E
R
dh f ~h!hD~hLa!,

e~La!5E
R
dh f ~h!h2D~hLa!, ~8!

with La(F,r ,E)[a•E@12F(r )2#2¹ha
„dH@F#/dF(r )….

ca is a Gaussian white noise, i.e.,̂ca,t(r )&50 and
^ca,t(r )cb,t8(r 8)&5«da,bd(r2r 8)d(t2t8) andt5«t. We
then set«51 as no more perturbative expansions in« are
considered.

Let us point out that the basic symmetries of the DLG a
indeed present in the Langevin equation~7!: it is invariant
under translations in space and time, and it is also invar
under the simultaneous changeE→2E andF→2F.

In order to find the relevant part of the Langevin equatio
we perform the following anisotropic scale transformatio
@8,9#: t→m2zt, x'→m21x' , xi→m2sxi , and F→mdF,
where' represents thed21 orthogonal directions to the
driving field E whose direction is represented byi. Next we
expand the Langevin equation~7! in powers ofm aroundm
50, and we keep only the leading terms. The values ofz and
d can be determined by requiring that the coefficients of
transverse noise and of the transverse spatial interaction
invariants of the transformation. This implies thatz54 and
d5(s1d23)/2. We still have the freedom to chooses to
look for different critical theories. A way to obtain a reno
malizable theory is to require that the coefficients of the g
dient terms¹'

4 F and¹ i
2F both scale in the same way. Un

der this assumption, we gets52, and we obtain the critica
theory ford.3:
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]tF~r !5 1
2 e~0!F2(

'
¹'

4 F1rD'F1
g

6
D'F3G

2rh8~E!¹ i
2F2Eh8~E!¹ iF

2

1Ae~0!(
'

¹'c',t~r !, ~9!

whereh8 is the first derivative of the functionh(La), closely
related to the first derivative of the transition rateD. D'

indicates the Laplacian associated with thed21 directions
orthogonal to the driving field. There are two effective te
peratures: one is associated with the transverse direction
the field,r, and the other is associated with the field dire
tion, rh8(E). Under the renormalization group transform
tions they flow independently in the parameter space. Le
remark that Eq.~9! has precisely the structure of the Lang
vin equation postulated by Leung and Cardy as a mesosc
description for the DLG@8,9#, the only difference is that Eq
~9! exhibits an explicit dependence on the microscopic fi
parameter. That is, Leung and Cardy introduced a coa
grained driven field that is identified here asEh8(E). The
field theoretical analysis of Eq.~9! was performed by Jansse
and Schmittmann@9#. The upper critical dimension, abov
which mean field results are exact, isd55. For dimensions
d552«, an« expansion can be performed. It is important
notice that the term proportional tog is naively irrelevant at
the critical dimension, while it is necessary to take it in
account to ensure stability below the critical temperat
~that is, this term is a dangerous irrelevant operator@9,15#!.
The field theoretical analysis of the Langevin equation~9!
shows that, due to a Galilean invariance present in
theory, the order parameter critical exponent is mean-fie
like, i.e., b51/2 even below the critical dimension.

Contrary to what happens for the Langevin equation p
tulated in@8,9#, it is possible to setE5` in Eq. ~9!, which
corresponds to the case usually analyzed in Monte C
simulations. In this limit, all the terms depending on t
electric field E become identically zero. This fact can be
checked in the Langevin equation~7! before rescaling, and
also in Eq.~9!, which involves rescaling. The resulting crit
cal theory is the equilibrium one, i.e., modelB @16# for the
transverse directions, and no structure ensues in the pa
direction. More explicitly, one obtains

]tF~r !5 1
2 e~0!F2D'

2 F1rD'F1
g

6
D'F3G

1Ae~0!(
'

¹'c',t~r !. ~10!

Physically this is due to the fact that, in the case of infin
field, at a microscopic level, jumps in the direction of t
field occur with probability 1, independently of the fie
value, while jumps against the field direction are forbidd
Therefore, any dependence of configurationF on the drive
disappears in the case of infinite field. This is not to be
sociated with any of the approximations or truncations c
sidered; in fact, it may be shown explicitly that the sam
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stands when perturbation corrections are considered. S
ming up, the scalings52 for E5` leads to a trivial behav-
ior, so that such substitution is meaningless. In fact,s52
was obtained by imposing that the gradient terms¹'

4 F and
¹ i

2F scale in the same way. However, in theE5` case,
there is no parallel gradient term appearing in the Lange
equation. In this case, the theory can be renormalized
consistent way usings51. This leads to

] tF5 1
2 e~0!F2D'D iF2D'

2 F1rD'F1
g

6
D'F3G

1Ae~0!(
'

¹ r'
c',t~r !1S e~0!

2 D 1/2

¹ r i
c i ,t~r !.

~11!

This Langevin equation has a simple physical interpretati
it corresponds to a lattice gas in which particles are
changed at random in the direction of the field, and th
follow a local increment of the configurational energy in t
transverse directions. Interestingly, such a situation wo
have been difficult to guess using only heuristic argume
and considering symmetries, conservation laws, or other g
eral properties. Possibly against intuition, it followsa differ-
ent relevant Langevin equation in the infinite field lim,
which characterizes a critical behavior different from that
finite values ofE.

Let us make some remarks concerning Eq.~11!.
~i! The fact that no steady particle current is exhibit

explicitly by Eq. ~11! does not imply that there is no suc
current in our model. It only implies that the current does n
depend on the field values and, consequently, does not a
the critical behavior.

~ii ! The naive power counting leading tos51 does not
imply that the scaling is isotropic. The anisotropy shows
when the diagrammatic corrections are taken into accou

~iii ! In the scales51, Eq.~11! is renormalizable whenE
is set to`, while for finite values of the field it can be see
that it is not. In this sense the pointE5` can be considered
as a singular one. Similar remarks could be made on the
E50, the reason being that they both separate a renorm
able case,E50 or E5`, and the highly nontrivial oneE
finite.

~iv! The critical dimension in the infinite field limit asso
ciated with Eq.~11! is d54, and it yields a universality clas
other than that obtained from Eq.~9! for finite fields. The
detailed renormalization and computation of the critical e
ponents associated with Eq.~11! will be presented else
where. In any case, it is clear already that there is no rea
to expect that the value ofb is 1/2.

In conclusion, we have shown that, in the limit of infini
driving field, which is the case studied in Monte Carlo sim
lations of the DLG, the correct field theory that captures
relevant features of the underlying phase transition diff
from that obtained for finite field values. Consequently, t
order parameter exponentb is more likely to be different
from 1/2, in contrast with the prediction from previous wor
It is likely also that, for large field values, a strong crossov
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57 755LANGEVIN EQUATION FOR DRIVEN DIFFUSIVE SYSTEMS
from our theory to the fixed point computed in@9# occurs,
and that this crossover makes difficult the interpretation
Monte Carlo data. Our results shed some light on the phy
of a familiar nonequilibrium phase transition, and the d
crepancies between the existing field theory and vari
Monte Carlo simulations are clarified. Finally, we menti
that even though symmetries, dimensionality, and other g
eral features of the system are very relevant to characte
its universality class, it ensues from above that one has t
extremely careful when constructing a continuous desc
-
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tion for nonequilibrium systems. Some of the details of t
microscopic dynamics can be crucial to determine the
servable behavior, a fact which is often underestimated in
literature.
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