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Kolmogorov—Sinai Entropy, Lyapunov Exponents, and
Mean Free Time in Billiard Systems
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We petform new experiments on the Kolmogerov-Sinai entropy, Lyapunov
exponents, and the mean free time in billiards, We study their dependence on
the geometry of the scatterers made up of two interpenetrating square lattices,
each one with circular scatterers with different radivs. We find, in partigular,
that the above quantities are continuous functions of the ratio of the scatterer
radius. However, it seems that their derivative is discontinuous around the
radius ratio which sepatates the diffusive and nondiffusive types of geometrics.

KEY WORDS: Billiards; Keolmogorov-Sinai entropy; Lyapunov exponents;
ergodic theary; chaos; numerical experiments.

INTRODUCTION, SOME DEFINITIONS AND
PREVIOUS RESULTS

persing billiards are extremely useful models to study dynamical proper-
‘which are present in many other non-dissipative systerns. Beyond their
cal relevance, their simple definition make them natural candidates to
elop and/or to apply rigorous mathematical tools. On the other hand,
‘simplicity make it also possible to study their behavior by careful
pputer experiments whase results may shed new light on some unsolved
jectures and/or proofs. The interaction between mathematical physics
d:computer experiments has been extremely fruitful in this particular

In this paper we extend and complete a previous computer experi-
ent about billiards.!"” Our goal is to study the influence of the geomerry
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of scatterers on the billiard behavior. We mean here by geometry ofthE
scatterers whether there are collisionless trajecteries (billiards with horizn
denoted by coH), or not (billiards without horizon, denoted 0H), when the
periodicity of the obstacles does not allow one to draw a path to infiniy
avoiding the obstacles, or diamond billiards, denoted D, in the other cag
where the obstacles keep the particle inside a bounded region. In particula
we study the Kolmogorov-Sinai entropy which is related to the number.d
symbols necessary for an optimal coding of the particle trajectory, :
Lyapunov exponents which define the time-scale of the systems chaoticity
and the mean free time between collisions. The latter is used to check the
goodness of the computer simulation by comparing the mean free timg]
numerical results with its well known analytic formula.’ '
_ In order to get an analytic expression for the KS entropy of the Si

billiard, we need more detailed information about the dynamics (see basg
definitions in ref. 2). The two dimensional phase space consists of poinf]
x={(r, ®) where r represents the position of the particle when it hits a
obstacle and @ e (#/2, 37/2) is the incident angle formed by the velocity &
collision and the outer normal to the obstacle, measured counterclockw
The dynamics is the map T mapping one collision x={(r, &) to the p
vious one x' = (v, @'). In fact, it is simple to show that an initial curveig
the phase space, (#, @'(+')), after one collision it becomes (r, D(r}} whei
both curves are related by the differential equation:

1 @A w(r) n 1
—cos @ dr —cos@ 1
L T7 T
—cos @ dr' | —cos &

seg'ment

differential equation:

1 dqs[n) . K(r{ﬁ))
—cos @ @' —cos @™

+ B(n}
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here we set x=x"'=(", @) =T"(T"x) and xP =T /(T"x) and
here /) and @'¥ are the phase space coordinates after then jth collision
trajectory xU”,..., x'”, and:

1
B(n} = 7 (1.4)
f.(n*“ l,n}"!‘ '—2}{(."{”_”)
“cos g T B

ith B(0) =1 and =(n — 1, n) is the distance between collisions n—1 and 1,
nd B(r) depends on x see ref. 2, p. 244. We have also assumed that the -
nap 7 is not singular along the trajectory x'®,..., x.

‘The Kolmogorov-Sinai Entropy is then proved in ref 3 to be given by
he integral over phase space:

WT)= j v(dx) log det 37 .(x) (1.5)

iere 7, is the restriction of the map 7 to the unstable manifold in x and
the invariant measure under 7" given by: dv(x) = — (2P) ' cos(®) dr d
here P 1s the total perimeter of the obstacles.

1n fact suppose that p'(x'} = Ty(x), y= Ty, if y, y are two increasing
gs around x'=Tx and x, 1e, d®/dr>0 and d®’'/dr > 0. Then the
fpansion rate at x’ (using as metric dr® + x ~%d®* and setting ¢ = cos @,
cos @', k =x(r), &' =w{r')) is:

(T~  —¢ (™ *(dD/dr)*+ 1) o 1 . dd’
7 e 0= ()
(L6)

vmg used the elementary trigonometrical relations in ref. 2, p. 244; so
that using that ] v(dx)(F(x) — F(Tx)) =0 by the invariance of v{dx) we get:

h(T") =.J‘ v(dx") log (1 +1r(Tu—cx’) (x’ +%(§:>>
:j v(dx) log(1 + (T~ "x) B,(x)) (1.7)

ng renamed x' with x in the second step, which also defines B(x)
gorous proof of the above derivation of #(7") can be found in ref. 4.
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On the other hand the equation ¢ = @(r) of the expanding manifolﬁ
v.(x), which is easily seen to be a monotonically increasing function o1
{see ref. 2), can be obtained from the relation: ¥

y.(x)= lim T="%(T"x) (15

L e )

mcreasmg function, arbitrarily preﬁxed) see ref. 2,
It is convenient to define, setting ¢, =cos @, x,, = k(r'):

B(j)=B(j) -

.....Cn

and it is easily checked, ref 2, p. 744, that B(n) coincides with (1.4).
Hence:

h(_T"j: lim J dv(x') In (1 +r(n,n+1) (B(n) + ixc" )) (L1

n— oo

=2 A (11]

.1,‘}0

with the Abramov formula:

BS) =

BT
7

where S is the billiard flow, 7 is the mean free time between collisions an
A, arc the system Lyapunov exponents, In the Sinai Billiard case, there
only one positive Lyapunov exponent A and then it is proportional to
KS entropy. The Lyapunov exponent A can be computed directly by us .
its definition (see ref. 5 for more details);

A= lim —ln |C(n) | (1

Liln e o]
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R(m+1)[rcs(m) +t(m, m+1)] R(m) Rim+ 1)yt{m, m+ 1)

Rim) resim+1) res(m) res{m+ 1)
wm, m+ 1) +res(m)+resim+ 1) R{im)res(m+ 1) +w(m, m 4 1)1
R(m) R(m+1) ' Rim+ 1) res(m)

{1.14)

m)= — R(m}) cos @{m), R(m) is the radius of the obstacle at the mth hit
nd'y is any initial vector y = (r, sin @),

Some numerical results -about the KS entropy, the Lyapunov
xponents and the mean free time is available in the literature. Let us make
brief report.

*Benettin and Streleyn'® found in 1978 numerical evidence that the KS
opy of a generalized stadinm billiard is not a monotone decreasing
tion of a topological parameter 6 which controls the stadium
ature.

1984 Benettin'® studied numerically the Lyapunov exponent for the
mond billiard as a function of the sides curvature, &. He found that the
avior i1 ~ ¢! fitted his results very well for all data between 0 <e< 1.
s0, in 1984, Friedman, Oono add Kubo,” studied numerically and
ytically the KS entropy for a two dimensional square and triangular
ce billiards when the radius, R, tend to zero. Thet found that
—2In R when R — 0. They also studied the triangular billiard around
entical radius which Separates the finite horizon behavior from the
ite horizon one. They claimed, without showing it, that the KS entropy
muous and they suggested that it is even continuously differentiable..
‘In 1985 Bouchaud and Le Doussal® studied numerically the KS
tropy for a two dimensional square lattice billiard. They confirmed the
'R behavior found by Friedman er al,” in particular they got
alog B/R with a ~ =2 +02. They also found that 4 grows regularly
=0 until R >~ 1, which is the critical value which separates the infinite
on behavior from the diamond one. They argue that A~ (1 —R)'?
n R -1~ but they do not confirm this point with their numerical
ment. In fact, they observe a quasiconstant value of 4(S) between
099 and R=0.999, before the steep decrease when R is very close

—

-'_Final[y let us mention the works of P. R. Baldwin in 1988 and
@19 In the first one he studied numerically an infinite horizon soft
lard system (i.c., the scatterers are regions with a constant potential, /).



In particular, he argued that h= In U/R* when R*<«U<1. Mo
interesting is his 1991 work where he manage to give an explicit encoding
for the trajectories of a particle in the coH billiard which is near th
optimal one. He computes and confirms the KS entropy results of Frledmau
et al. 7 when R 0 by studying smaller radius than them.

2. THE COMPUTER EXPERIMENT

Qur system is a square with periodic boundary conditions with sid
of unit length, a=1. We take the center of the torus as the or1g1n_
coordinates: (0, 0). There are a circle of radius R and center at {0, 0) an
four more czrcles with radius R’ and centers at (1/2,1/2), (1/2, -1/
(=172, —1/2), {=1/2, 1/2). Obviously only the part of the circles inside
torus 1s relevant (see Fig. 1}.

A point particle is moving freely with un1t velocity, |v] = 1, in the spat
external to the circles and hitting them elastically (conserving the modu
of the total momentum and the energy).

For any fixed R < 1/\/5. there are four different regions in th
parameter space (see Fig. 2):

(T)  Triangle: 12<R<./1/2—- R + R

(D)  Diamond: 1//2— R <R<1/2,

(0#)  Billiards without horizon: 1/2— R’ < R<1/,/2—~R'.
(oo H) Billiards with infinite horizon: 0 < R<1/2-R'.

N
-

y
Fig. 1. General billiard structure with scatterers of radius R and R"in a box with
length 4. '
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»* Four possible billiard configurations for different R and R’ values. Scatterers cover

space in the gray zone, All the (R, R') values studied in this paper are located along
shed line.

In this paper we fix R’ =0.4. Therefore the regions become: 77 0.5 <
0509901..; D:0.307107..< R<0.5; OH: 0.1 <R< 0.307107...; ooH:0
R<0.1. We compute the different observables we explain below on the
jons D, OH and ool as a function of R. Region T is so small, in this
e, that our algorithm becomes very unefficient in CPU computer time,
we do not study it. The algorithm we use is explained with detail in

or each radius R, we have computed the evolution of the following
ables:

a) The curvature operator (Eg. 1.4))

Bon) =< i B,(n) | 21)
(b) The KS entropy (Eq. (1.10}):
R 2l
h(.njz}\? ;} In[l +1,(n,n+1) (B,-(n)%-—:mﬂ (2.2)

) The Lyapunov exponeni:

M) == T 10 [C,0m v 23)

Fa= 1
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Table 1. Number of points N(f} and final collision n,,_.(f] that we have usd
to fit the evolution of the observables: f=H, B and L to be the functioi_
finYy=a,+a,n"*, where nefn, (1 —N(f), n,,[f)] is the collisicn numb@f

and R is the radius studied. ;

R N(R) Ao i1 N(B) M LB ML) Hoe LY
0.0000 10 17 7 17 9 17
0.0200 8 16 9 16 9 16
0.0400 9 16 8 16 9 16
0.0600 8 16 9 16 g 16
0.0800 9 16 9 17 9 16
0.1000 13 17 10 i7 9 17
-0.1200 11 17 10 17 9 17
0.1400 {0 18 10 18 10 18
0.1600 10 I8 1 19 - 10 18
0.1800 10 19 il 20 10 19
-0.2000 11 20 12 21 11 20
0.2200 12 2t 11 22 11 21
0.2400 13 23 13 23 12 23
0.2600 13 24 14 25 13 24
0.2800 14 25 14 25 13 25
0,3000 I6 30 17 33 I6 30
0.3010 16 31 17 33 16 31
(4.3020 16 31 18 34 16 31
(,3030 16 31 I8 34 16 31
(.3040 17 32 18 35 i7 32
0.3050 17 3z I8 35 17 32
03055 17 32 18 35 17 33
0.3060 17 32 9 36 17 33
0.3062 17 32 19 36 18 34
0.3005 18 34 18 34 18 34
0.3070 17 32 19 35 18 35
0.3072 17 32 19 15 19 37
0.3075 17 32 19 . 38 17 32
0.3080 7 3! 18 35 10 40
0.309¢ 4 31 18 34 14 40
0.3160 6 30 18 34 10 40
03110 9 30 3 33 16 30
03120 ki 30 7 33 16 30
0.3130 7 30 18 33 15 .29
0.3140 12 30 18 33 15 29
0.3200 14 23 14 25 13 25
0.3400 8 25 g 25 i3 25
0.3600 14 235 10 25 13 25
0.33G0 16 30 i4 30 15 29
0.4000 17 31 18 33 . 16 30
04200 16 R} 13 30 16 30,
0.4400 18 35 12 35 18 LA
0.4600 6 36 21 40 21 40

0.4800 23 48 26 50 26 50
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(d) The mean free time:

Hoaf

Z 2T n) (2.4)

Feoi i=1 n=|

Where N 1s the number trajectories with dilferent random initial
ditions and #_,, is the number of collisions corresponding one trajectory.
our computer simulation N =107 for all R and, in most of the cases
=50. The different radius that we have studied in this paper appear on
L. Let us remark that the error bars are included in all the figures
wed below. Sometimes they do not appear explicitly because the symbol
s much bigger that the error bar size.

THE RESULTS

he Curvature Operator

“Some typical averaged evolutions for the curvature operator B(n) are
ented in Fig. 3. We see that, depending on the radius, the convergence
ran asymptotic value is reached after 5 to 15 collisions. In fact, we see
here is a kind of critical slowing down as we approach the critical
us R,=0.307107.. which separates the diamond topology and the 0H

1 O T 1 T 1 T T I T T
**xxiéiﬁ&x*ﬁ**ﬁ%xﬂiﬂﬁﬂ**)ﬁﬂ* HESHEME MR MR KKK KR
8 = S PIIDDRHEIIIDIOHIOBOBOORNXXAN KN
B X
% ®?
L
LX)
. .
N -
- :A'Aa L ALAAAAAARA AL DA LBl oo B A B At A5 St B
s :
w 3
ap: T
-':l-:‘-mEJEéEE}GEEE-DE!E!EBEIEJEEEHHBEBGDE!EEEEEEIEDBEBE&BEGBBEBEBQ]
o1 +++++++++++++-L bbb
5060000 06000000 GGG mmmmmmm e e ]
a
0 ; 1 3 1 ) L i i 1 1

' B{n) given by Eq. (1.4) as a function of # for different radius (from top to bottom):
=048, 0.30, 0.40, 0.20, 0.10 and 0. The lines are the corresponding fits (see text).
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one. This is so because for the critical radius case, R, the vertex of il
diamond are tangent and then they are trajectories which may becon )
trapped infinite time in their neighborhood. We are interested in thill
asymptotic value of B(n) when n— co. Because the system chaoticity 2 .I
the initial rounding error propagation through the simulation, we sho
discard the data after some collisions. o
In particular, we can estimate the maximum number of collisions fhd !
we may keep safely. We equate the data statistical error: of B),/\/ETr wil
the expected rounding error propagation after #, (R, B) colhsm
10" exp[ X(R) 1,,.,.{R, B)], where o{B) is the standard deviation for il by
B data, A(R) 1s a rough estimate of the Liapunov exponent and we ha
assumed that the initial error is 107'® because we are working in dou
precision. This implies that n,, (R, B)=min{{16 In(10) —ln(N]/2
In{a(B))}]/A'(R), n,(R)}. As we see in Fig. 3, for some values of R,.
observe a kind of slow decay and therefore, it is risky to 1denh.
B(n,,.{R, B)) with the wanted asymptotic value B=lim,  _ B(n). It 3
more convenient to study the data asymptotic behaviour. In order 1:0
this, we have fitted B(n) to the function :

Bn)=a, + nf?— nenoB, R), n,, (R, B)]

where ny(B, R)=n,,, (R, B)/2.
Then the asymptotic value B is identified with the coefficient &, . Wh :

the error bar for the coefficient a,,0,, is such that a,/n, (R, B)“’
g, < ay/no( R, B)*, that is, when the fitted function variation over the i integ

~ val is smaller than the typical error, we change the strategy. Tn this casg
we define ny(R, B)=(|a,|/r,,)"" and we take as asymptotic value 0§
average of B(n) over the interval ne [ ny(B, R),n,, (R, BY].
The asymptotic value B=lm,_ _ B(n), is plotted it Fig. 4. We
how the curvature Operator behaves in the three regions. In the coH 4 n;
0H regions, B is an increasing function on R. In the D region B i ,.‘
decreasing function on R when R <04 and increasing one when R>_0
We fitted Several functions to these data. The best ones are:

(a) ooH interval (6 points): B(R)=b,+b,R where b, =176
and 5, =45+02. E
(b) OH interval (20 points): B(R)=b, +b, R +by(R, — R}~ wh
by=—=29+07,b,=31+14,b,=34+0.7 and p,=0.21+0.02.

(¢} Re[03,R,=0.30710..] (8 last points from the OH inierval]
B{R)=b\(R.— R) " where b, =226+0.08 and b,=0.25240.005.
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Assymptotic values of B(n) coming from the {it explained in Section 31, as a function
of the radius R.

#(d) oM and O intervals (26 points): B(R)=b, }bzR +by{R,~ R} ™™
ere by = —35+07, b,=13x07, b;=41406 and b,=020£0.02.

e) D interval (18 pointsy: B(R) = (b, + bR + b3 R* + b, RY)
R~ where b, =—-9234+142, 5,=7604+ 1135, b,=—20360+
and b, = 1825 + 258.1.

f) Re[R,,0313] (first 8 points from the D interval). B(R)=
~R)™" where b, =2.6+0.2 and 5,=0.22 £+ 0.01.

Tom these fits we see that the B critical behavior near the radius
. 1s given by a power law divergence with a critical exponent between

ind 0.25.

he KS Entropy

igure 5 shows similar plot as Fig. 3 for the Keolmogorov-Sinai
opy defined by Eq.(2.2). In this case it is more dramatic how after
- collisions the asymptotic value is reached. But, anyway, we have
ried out a similar analysis as in the precedent case. The resulting
ptotic values are plotted in Fig. 6 and Fig. 7. We see that the KS
py is not a monotonic function on R except in the 0.H region in which
reases with R. In the infinite horizon region, the inclusion of a sublat-
f scatterers while keeping the infinite horizon topology, increases the
Buiropy with respect the pure square lattice of scatterers ie., R=0. This
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h{n}

A
0.6 mxmxxmxmﬁ-xaﬁx**x%&*%mx*x*mm*mxmﬂxﬂ**x—;&

o4k .

0.2 1 ! 1 | L I ] 1 |

Fig. 5. Aln) given by Eq.(2.2) as a function of » for different radius {from top to bott
R=0.10,0.0,0.20, 0.30, 0.40 and 0.48. The lines are the corresponding fits (see text).

18 e 9 4 N
1.6 o i

14 -

08 -

4l
4

0.4 | 1 - 1

Fig. 6. The Kelmogorov-Sinai entropy computed from the assymptotic values of]
coming from the fit explained in Section 3, as a function of the radius R
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Detailed behavior of the Kolmogorov-Sinai entropy around the critical radius
,=10.3071... which separates the Diamond topology from the zero horizon one.

pssibly means that the corresponding Marcov Partition will be more com-
ed with respect the R =0 one. When the infinite horizon window is
psed, the KS entropy becomes a, monotonic decreasing function on R in
H region. And therefore, by increasing R in this region, the Marcov
tion will be simpler. In the Diamond region the behavior is more
olved. At the critical radius, R, the KS entropy reaches a. local mini-
g reﬂectmg the fact that the trajectories spend most of the time ai the
; ‘ond vertex, i.e., they are localized at the phase space. By increasing R
nd R, the KS entropy increases and reaches a maximum near R = 0.34.
m here, the KS entropy decreases due to the smaller curvature of the
terers. In Fig. 7 we see how the KS entropy behaves near the critical
Bise R, . It seems that 1s a continuous and no differentiable function in R,.

he Mean Free Time

The computation of the mean free time give us the opportunity to
ck the goodness of our computer simulation. One may compute analyti-
its value and compare with the one obtained with the computer
ion. In fact, the analytical derivation is simple, the mean free time

= j Bv(x) 7(x) (3.2)
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where M is the phase space defined by the coordinates x = (r, @) andf
is the time that the particle takes to go from the initial position aty
the next collision point. Substituting dv(x)= —(2P) "' cos(P) dr dd 1
Eq. (3.2) we get: '

= (2P)" L dt dr dd( —cos @) = (2P) " jG dx dy dep = nAJ P

where G s the phase space available by the flow (see ref. 9), x, y and @’?

the x-axis respectively. Finally, 4 is the available area for the partlcle f
P is the perimeter of the obstacles.
Equation (3.3) would lead to

1 —m({R*+ R'?) 1
= R+R s—
2(R+ R \/5
and
. : o __ 2 2 .
e 1/8 — IR sin{n/4 — §)/2 —oaR'?*/2 — fR*/2 R+R’>~—I—
aR’ + R 2

where

__75 CO‘*[<I2+Rr2_R2)
Tyt 2R’

f=2—cos Zw2+R2—R’2>
4 2IR

and I=1 /\/5 in our case.

Figures 8 and 9 represent the mean free time and its mean sq
displacement, o, for different R. In the ocoH region we see how the u':
square displacement is finite which is against its expected infinite v
This is so because our algorithm discard the collisions which take ||L:
that 100 units of time. That is, in Bq. (2.4) all 7,(n— 1, n) are finite.

The dotted curve in Fig. 8§ and Fig. 9 is the numerical solutiof
Eqs. (3.4) and (3.5). As we see, the formulas fits almost exactly the .
mental data except in the neighborhood of the critical radius where th
of trajectories that spend many time crossing the vertex have a macros '
cal influence on the value numerically obtained of the mean free time. Of

may think on doing larger computer simulations with more collisions’
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Mean free time (diamond symbols) and its mean square displacement {plus symbols)
as a function of R.
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Detsiled behavior of the Mean free time (diamond symbols) and its mean square
displacement (plus symbols) near the critical radius R, =03071....
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as we discussed at the beginning of Section 3, there is an inherent limitafig
on this systems. The precision of the computer and the system chaotl"
limits to a maximum of about 50 collisions per evolution. It is clear iy
near R, it is needed far more collisions in order to study the critid
behavmr cleanly. The present status of computer technology preventus
study with confidence that region. A

We have also carried out several linear fits to our data for the I
square displacement of =

(i) 0.1<R<03055 (11 points). o {R)=d, +d,R where d, =04
0.001 and 4, = —0.956 - 0.006.

(i) R, <R<0S5 (18 points): o (R)=d,+d,R where d, =030}
0.001 and d, = —0.553 £ 0.004.

(i) 03< R<0.315 (20 points): o {R)=d, +d, R where d, :0.3.
0.001 and 4, = —0.549 4+ 0.005.

Let us remark the linear behavior of the mean square displacement
In particular, from the fits (ii) and (iii) we can conclude that the ling
behavior of the D region invades the 0H region up to R~03. T
behavior has a slope of about —1 /2 while the corresponding to the’f,_
region (fit 1)) has the slope of ~

1

Fig. 10. Lyapunov exponent as a function of R computed by using Eq. (1.13) [dia
symbols) and the Abramov’s formula (plus symbols).
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0.3 0.305 4.3 .315

1. Detailed behavior of the Lyapunov exponent near R, computed by using Eq, (1.13)
- (diamond symbols) and the Abramov's formula {plus symbols),

Figures 10 and 11 show the behavior of the Lyapunov exponent as
__]iu__ted by Eq. (1.13). In practice no difference has been found between
h.methods of computing L except near R, where the convergence of
113} is much worse and leads to uncontrolled fluctuation of the
near fits explained in Section 31 (see Fig. 11). The Lyapunov exponent
ases with R from R=0 up to R=~0.3. It reaches there a kind of
eat and decreases slightly near R.. From R, is increases a little bit and
it reaches a new tableau from which it increases with R. From the
eanalysis it seems that, again, the Lyapunov exponent is a continuons
mot differentiable function around R_. :

ONCLUSIONS

The main goal of this paper was to make a generic numerical study of
itfluence of geometry in Billiards for some typical dynamic magnitudes
-mean curvature, the Kolmogorov-Sinai entropy, the mean free time
the Lyapunov exponent. In particular we have studied the effect in
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between OH and ocH is smooth and no pathologies appear. In contrast,;; ;
the transition between D and OH is much more interesting. First, the mean

curvature seems to diverge around the critical radius which separate both
geometries, R., with an exponent approximated equal to 1/4. Second, the:
latter divergence influences the KS entropy behavior but not the mean freg)
time one whose analytical formula i1s well known. The KS entropy seem&
to be a continucus hut not differentiable function in R,
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