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We have studied the compressible antiferromagnetic Ising Model on a triangular lattice using Monte Carlo
simulations. It is found that the coupling to the strain removes the frustration of the rigid model and the
simulations show a transition from the disordered to an ordered, striped phase at low temperatures. This
transition involves two broken symmetries: the Ising symmetry and a three-state Potts symmetry characteristic
of the triangular lattice. In the absence of bond fluctuations, this transition is always strongly first order. Using
finite-size scaling analysis, we find evidence that, in the presence of fluctuations, the transition becomes weakly
first order and possibly second order when the coupling to the lattice is increased. We discuss the relevance of
this model to certain phase transitions in alloys.@S0163-1829~96!04918-1#

I. INTRODUCTION

Frustrated Ising antiferromagnets play an important role
in the study of order-disorder transitions in alloys. Many
metallic solid solutions form a face-centered-cubic lattice
and ordering implies a preference for unlike neighbors which
translates into antiferromagnetic interactions in the Ising lan-
guage. These order-disorder transitions are often accompa-
nied by adisplacivestructural transition where a homoge-
neous strain transforms the lattice from one form to another.1

It has been argued, on the basis of theoretical calculations of
the stability of metallic alloys,2–4 that an appropriate model
for describing a large class of these alloys is thecompress-
ible Ising model on a frustrated lattice with some additional
terms arising from difference in atomic sizes.5 This model
embodies, in its simplest form, a competition between elastic
terms preferring a face-centered-cubic or a triangular lattice
and an attractive interaction between unlike atoms which
cannot be completely satisfied on such a lattice. Moreover, it
is the simplest model which can describe an order-disorder
transition accompanied by a displacive structural transition.

In order to understand the basic physics embodied in this
model, we have performed simulations on a model two-
dimensional system which undergoes a transition from a dis-
ordered alloy on a triangular lattice to an ordered alloy on a
sheared triangular lattice. This two-dimensional transition
corresponds, in three dimensions, to a transformation from a
face-centered-cubic to a face-centered-tetragonal lattice. For
the sake of simplicity, we have ignored the size-effect term
and are, therefore, studying a pure compressible Ising model
on a frustrated lattice. The physics of this model is different
from the compressible ferromagnetic model since elasticity
serves to remove the frustration in this system.6 It is also
different from models of alloys where only size-effect terms
are retained.5

The elastic antiferromagnet on a triangular lattice has re-
ceived prior attention. The model has been solved within the
magnetothermomechanics approximation in which fluctua-
tions in the bond lengths are neglected.6 In this approxima-
tion, it has been shown that the ground state is a striped
phase and there is a single, strong first-order transition from
the disordered phase to the striped phase for all parameter
values. The transition involves two broken symmetries, the
Ising symmetry and a three-state Potts symmetry associated
with the directions of bonds on the triangular lattice. The role
of bond fluctuations in this model had not been investigated
earlier. The appearance of a three-state Potts symmetry in a
two-dimensional system raises the question of how these
fluctuations affect the nature of the transition and the appear-
ance of two broken symmetries introduces the possibility of
two distinct transitions. We have addressed both these ques-
tions by including fluctuations of the bonds through Monte
Carlo ~MC! simulations of the model.

The simulations were carried out onL3L triangular lat-
tices with L ranging from 8 to 64. There areN5L2 spin
variables and 2N continuous variables describing the posi-
tions of the atoms. This and the strong first-order transition
found for a large range of the parameters, dictated the choice
of small system sizes in the interest of obtaining good statis-
tics. We find that the transition is not really different from
that observed in Ref. 6. However, the strength of the transi-
tion, as deduced from finite-size-scaling analysis, decreases
with increasing value of the coupling to the lattice. This is
reminiscent of the behavior of the two-dimensional, three-
state Potts model, where the fluctuations make the transition
second order.7 In the absence of any exact results in our
model, more extensive simulations are needed to make a
definitive statement about whether or not there is a critical
coupling at which the transition becomes second order. The
simulations show no evidence for two distinct transitions.

PHYSICAL REVIEW B 1 MAY 1996-IIVOLUME 53, NUMBER 18

530163-1829/96/53~18!/11985~8!/$10.00 11 985 © 1996 The American Physical Society



The contents of the paper are organized as follows: the
Hamiltonian for the compressible triangular Ising lattice and
the ground states of this model are discussed in Sec. II; the
algorithm for the Monte Carlo simulation including spins
and lattice displacements is given in Sec. III; general features
of the simulations are presented in Sec. IV and the finite-size
scaling analysis performed to assess the strength of the tran-
sition is presented in Sec. V. A discussion of open problems
is presented in Sec. VI.

II. THE MODEL

The compressible Ising model involves two sets of vari-
ables, the spinss(m,n)561 and the displacements
u(m,n) which define the displacement of the spin from the
original lattice site (m,n). On a triangular lattice, the posi-
tions of the spins on the undistorted lattice are defined by
r0(m,n)5ma11na2 with a15(1,0) and a25(1/2,A3/2).
The actual positions of the spins are, therefore, given by
r (m,n)5r0(m,n)1u(m,n). The interaction between the
spins depends on thedistancebetween them and, in our
model as in usual compressible Ising models,6 a linear de-
pendence is assumed:

J~mn;m8n8!5J0~mn;m8n8!

3$12e@ ur ~m,n!2r ~m8,n8!u21#%. ~1!

Heree defines the strength of the coupling between the spins
and the displacements and the bare spin-spin interaction is
given by J0. For the nearest-neighbor antiferromagnet, we
take J051 for nearest neighbors and zero otherwise. All
energies are therefore measured in units of the the nearest-
neighbor spin interaction. The value ofe is chosen to be
positive which ensures that the antiferromagnetic interaction
gets stronger as the spins get closer to each other.

Besides the spin-spin interaction, the Hamiltonian in-
volves a harmonic lattice Hamiltonian defining the deform-
ability of the lattice: a quadratic form in the displacements
which involves the dynamical matrix.8 If the displacements
vary slowly over length scales comparable to the lattice spac-
ing, a coarse-grained form of this Hamiltonian, written in
tems of the strain fields is appropriate.8 We use this coarse-
grained form in our model. Choosing the nearest-neighbor
directions to express the strain tensor,6 the elastic Hamil-
tonian can then be written as

Hel5(
ab

(
m,n

Dabea~m,n!eb~m,n!. ~2!

Here the strain tensor components$ea ,a51,2,3% are related
by a linear transformation to the usual Cartesian components
exx , exy , and eyy , and this transformation definesDab in
terms of the elastic constants:

D51/2*S E L L

L E L

L L E
D . ~3!

The constantsE andL are related to the Young’s modu-
lus Y and Poisson ratios:6

Y5E~22L!~11L!/~21L!, ~4!

s5~215L!/3~21L!. ~5!

The strain fieldsea(m,n) are related to the displacement
u(m,n) through the relation

ea~m,n!5
@u~m8,n8!2u~m,n!#a@r0~m8,n8!2r0~m,n!#a

ur0~m8,n8!2r0~m,n!u2
.

~6!

We choose our length scale such thatur0(m8,n8)
2r0(m,n)u251.

For displacements with amplitudes much smaller than 1,

ea~m,n!.ur ~m8,n8!2r ~m,n!ua21[na~m,n!, ~7!

where r (m8,n8) and r (m,n) are positions of nearest-
neighbor spins along thea direction. The total Hamiltonian
can then be written as

H5(
a

(
m,n

@12ena~m,n!#Qa~m,n!

1(
ab

(
m,n

Dabna~m,n!nb~m,n!. ~8!

Here Qa(m,n)5s(m,n)s(m8,n8) and s(m,n) and
s(m8,n8) are nearest neighbor spins alonga direction. In
our simulations, we use Eq.~8! and therefore, assume that
the strain field is approximated well by Eq.~7!.

The coarse-grained elastic Hamiltonian, expressed in Eqs.
~1! and~7!, is the natural and most convenient form to use in
investigating the effect of strain fluctuations on the phase
transition to the striped phase, studied by Chen and Kardar6

within the mean-field approximation. In this approximation,
the spins are treated exactly but the strain fields are uniform:
ea(m,n)5ea . The coarse-grained form is valid only when
the displacement fields vary slowly over the length scale of
the lattice8 and by adopting this form, we are restricting our-
selves to this class of displacements. The alternative would
be to allow arbitrary displacements and work with the more
microscopic Hamiltonian defined in terms of the displace-
ments. The two approaches are equivalent as long as long-
wavelength fluctuations play the dominant role in the phase
transition.

Ground states of model

The nature of the antiferromagnetic Ising model on the
triangular lattice is well known from the work of Wannier.9

There is no long-range order because of the degeneracy of
the ground state and theT50 state is a critical state with
power-law correlations.10 Chen and Kardar6 have shown that
the introduction of elasticity in the magnetothermomechanics
approximation where allea(m,n)5ea , removes the degen-
eracy of the ground state, and at low temperature, the system
orders into a striped phase consisting of alternating rows of
spin up and spin down and a distorted lattice with the
(11) and (22) bonds longer than the (12) bonds. The
striped phases are the only ground states of the model de-
fined by Eqs.~1! if one imposes the condition of slow varia-
tion of displacement fields, implicit in the definition of the
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coarse-grained elastic Hamiltonian. An interesting aspect of
this model is that if no constraints are imposed, the model
defined by Eq.~1! has an infinite number of new ground
states whose logarithm grows with the linear dimensions of
the system and which do not have a Bravais lattice
structure.11 These ground states are obtained from joining
together minimal triangles which are triangles that have two
short (12) bonds and one long (11) or (22) bond. The
model can then still be frustrated, at least in two dimensions.
However, the displacements required to reach these ground
states vary on the same scale as the lattice spacing and the
approximations leading to the coarse-grained, strain-field
Hamiltonian@Eq. ~8!# are not valid. To compare the energet-
ics of these states with the striped phases, one has to go back
to the elastic Hamiltonian written in terms of the displace-
ment fields.8 By doing so, we can show that these new
ground states are higher in energy than the striped phase with
the cost in energy increasing as.@e/(E1L)#2. Therefore,
we do not believe these ground states are physically realiz-
able. In our simulations, the constraint of slow variation is
explicitly imposed.

The striped phase can have the expanded bonds oriented
along one of the three nearest-neighbor directions on the tri-
angular lattice. Therefore, a continuous-spin, three-state
Potts variable can be associated with each of the triangles on
the lattice with the Potts variables located at the center of the
triangles and the Ising variables located at the vertices. At
the transition from the disordered to the striped phase, two
symmetries are broken: the Ising symmetry and the three-
state Potts symmetry. It is well known that in the two-
dimensional, three-state Potts model, fluctuations change the
order of the transition from first to second. One of the inter-
esting questions that can be addressed in our simulations is,
therefore, whether bond fluctuations convert the strongly
first-order transition to the striped phase6 into a second-order
transition.

The lattice distortion in the ground state can be easily
calculated and is described by a homogeneous strain defor-
mation defined by

e15
e~E13L!

~E12L!~E2L!
, ~9!

e25e35
2e~E1L!

~E12L!~E2L!
. ~10!

The spin structure in the ground state is such that the
spins are aligned parallel to each other in the direction along
which the bonds are stretched and aligned antiparallel to
each other in the other two directions.

In this paper, we specialize to the case whereL50. Ac-
cording to Eqs.~3! and ~4!, this implies that the Young’s
modulus is identical toE and the Poisson ratio iss51/3.
This is not a special point in the parameter space of this
model and the mean-field phase diagrams of Ref. 6 demon-
strate that this point has a generic phase diagram. The corre-
sponding ground state deformations are given bye15e/E
ande25e352e/E. The ground state energy~per unit bond!
is then

E0~e,E!52
1

3
2

m

2
. ~11!

The parameter,m5e2/E appearing in this equation is the
effective coupling constant of our mode.6 It is seen clearly
that the interaction with the lattice reduces the energy of the
striped phase compared to a rigid antiferromagnet and makes
it stable under small perturbations. The stability of the
striped phase increases with increasingm. In our simula-
tions, this is reflected in the transition temperature increasing
with increasing values ofm. At m>1, the distortion of the
lattice in the ground state is such that the spin-spin interac-
tion along the expanded bond (e1) changes sign and is fer-
romagnetic for larger values ofm. This is an example of the
effectiveness of the lattice distortions in removing frustra-
tion.

From an investigation of the stability of the ground state,
it is clear that the triangular lattice collapses to a line for
e/E>1/3. Theparameter range considered in the simula-
tions was restricted to the region where the triangular lattice
is stable.

Since the striped phase is threefold degenerate corre-
sponding to the three possible directions of spin ordering on
the triangular lattice, we have to introduce three order param-
eters to describe the ordering along each of the three direc-
tions. They are defined as follows:

C@1#5(
m,n

~2 !ms~m,n!, ~12!

C@2#5(
m,n

~2 !ns~m,n!, ~13!

C@3#5(
m,n

~2 !m1ns~m,n!. ~14!

In addition, we need to define the strain order parameters:
ea5(1/N)(m,nea(m,n) which also acquire a nonzero value
in the striped phase. There are three components of the en-
ergy: the spin-spin energyEs determined by the nearest-
neighbor spin-spin correlation functions^s(m,n)s(m8,n8)&;
the spin-lattice energy,Es,l , determined by the spin-strain
correlation functionŝQa(m,n)ea(m,n)& and the lattice en-
ergy, Eel , determined by the strain-strain correlation func-
tions ^ea(m,n)eb(m,n)&. The distribution of these energies
is monitored in order to investigate the nature of the transi-
tion to the striped phase.

III. SIMULATION METHOD

We are interested in simulating the model defined by Eq.
~1! which has two sets of variables, the discrete Ising spins
and the continuous strain fields. We define the strain fields in
terms of the distance between two spins using Eq.~6!. The
distances are changed by allowing displacementsu(m,n) at
each site. The displacementsu(m,n) as well as the spins
s(m,n) are subjected to periodic boundary conditions. This
implies that the homogeneous strain deformations have to be
treated separately. Therefore, besides the spin and displace-
ment variables, the simulations have to allow for changes in
the shape and the size of the simulation box.
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As discussed in Sec. II, the displacements,u(m,n), which
define the fluctuations of the strain fields, have to be slowly
varying to justify the coarse-grained Hamiltonian. One way
to impose this constraint would be to deal exclusively with
long-wavelength distortions by working in Fourier space.
We choose to work in real space and impose a constraint on
the amplitude of the displacements to indirectly guarantee a
slow variation on the length scale of the lattice. It should be
emphasized that the amplitude of the homogeneous strain
fields are not restricted, only the amplitude of the fluctua-
tions are. By adopting this procedure, we study the effects of
long-wavelength small (,,1) amplitude fluctuations on the
transition to the striped phase.

One MC step consists of two parts. The first part involves
changing the shape and volume of the box. This is done once
per MC step. This MC move is similar to the one used by
Dünweg and Landau,5 in their work on the size-effect model,
where the volume of the lattice was allowed to change. The
only difference between the two algorithms is that we do not
rescale the position of each individual spin after we change
the shape and volume of the lattice and, therefore, our simu-
lations do not involve the additional logarithmic term in the
effective energy@cf. Eq. ~2.14! in Dünweg and Landau#.5

This rescaling would have involved a more complicated
function in the presence of the shape changes that are al-
lowed in our simulations.

In Monte Carlo simulations12 involving continuous vari-
ables, it is necessary to choose an amplitude which defines
by how much the continuous variable is changed in a Me-
tropolis trial. The shape and volume of the box are changed
by allowing changes in the lattice parameters and the angle
between the lattice vectorsa1 and a2 . The amplitude for
each of these changes is normally a very small number, of
the order of 0.01, and is chosen by requiring a Monte Carlo
acceptance rate of 50–60%.

The second part of the MC involves updating the spins
and displacements at each node (m,n) of the newly defined
lattice, with updateda1 anda2 , and involvesN trials where
N is the number of spins. Each trial is composed of one
attempt to flip a spin and one attempt to change the position
of the spin. To update the position of a spin, keeping in mind
the constraint of slow variations of displacements, we choose
a random position inside a circle of radiusumax centered on
an updated lattice site. This sets an upper limit on the ampli-
tude of the displacements. Choosingumax.e/E, guarantees
that the variation in displacements over one lattice constant
is at most twice the ground state distortion. It also ensures
that the displacements do not lead to exchanges of sites
which would certainly violate the assumption of slowly vary-
ing fields.

IV. GENERAL RESULTS FROM THE SIMULATIONS

We have carried out Monte Carlo simulations for different
values of the parameterm which measures the coupling to
the lattice. The ratioe/E was held constant at 0.3. This en-
sures that the ground state distortion remains the same as
m is varied, and allows us to monitor the changes in the
transition between exactly the same two states.

For each value ofm, two sets of simulations were per-
formed, one allowing only global changes of the lattice pa-

rameters, corresponding to a homogeneous strain deforma-
tion, and the other including bond fluctuations according to
the algorithm described earlier.

The results of Chen and Kardar6 are exact in the limit of
no bond fluctuations and our simulation results from finite-
sized systems are compared to their exact results in Table I.
Form50.18, two sets of results are quoted, one for a system
of size 10310 and the other for a system of size 64364. As
expected, the transition temperature is reduced upon intro-
duction of bond fluctuations. One also observes a trend of
increasing effects of fluctuations onTc

L , the transition tem-
perature for system sizeL, as the couplingm is increased.
For example, the relative change inTc

L , upon introduction of
bond fluctuations, is only 3% form50.18, whereas the rela-
tive change is close to 50% form56.0. In these simulations,
we also observe a change in the nature of the transition as
m is varied. The fluctuations in bond lengths are much more
prominent for larger values ofm. We have found no evi-
dence for the existence of an intermediate state leading to
two distinct transitions.

The phase diagrams obtained from the simulations with
and without bond fluctuations are compared in Fig. 1. This

FIG. 1. Phase diagrams obtained from our computer simula-
tions, which should be compared to the phase diagram in Ref. 6 for
L50. Solid line~filled circle symbol! is obtained with strain fluc-
tuations. Dashed line~open square symbol! is obtained without
strain fluctuations. The solid and dashed lines are plotted here to
guide the eyes.

TABLE I. Theoretical predictions forTc
L compared to our simu-

lation results~with and without local bond fluctuations!. The theo-
retical results are those of Ref. 6 obtained within the magnetother-
momechanics approximation which neglects fluctuations of the
strain fields.

m5e2/E
1/Tc

~Theory!
1/Tc

L

~No fluctuations!
1/Tc

L

~With fluctuations! Size

0.18 1.5 1.5-1.52 1.56 64364
0.18 1.5 1.35 1.45 10310
3.0 0.14 0.16 0.20 22322
6.0 0.09 0.09 0.13 22322
10.0 0.08 22322
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figure demonstrates the effects of bond fluctuations on the
phase boundary. It is clear that, in accordance with our ex-
pectations, fluctuations depress the transition temperature. If
there is a change in the nature of the transition, caused by the
fluctuations, it cannot be deduced from a perusal of the phase
diagram and we have performed finite-size scaling analysis
to pursue this question.

The phase transition in this model is an example of a spin
ordering accompanied by a structural transition and, before
discussing the finite-size scaling analysis, we would like to
point out some generic features of the transition using the
results from simulations atm50.18, one of the smallest val-
ues ofm that we have studied.

The transition is characterized by the appearance of a
nonzero spin order parameter@Eqs.~15!–~17!# and strain or-
der parameters defined byea5(1/N)(m,nea(m,n). The
nonzero strain order parameters lead to a change in the bond
lengths and, Fig. 2 shows the variation of the spin order
parameters and the bond lengths as a function of tempera-
ture. This figure demonstrates that there is a single transition
at which both the Ising and Potts symmetries are broken and
the ordered state is the striped phase where the bonds be-
tween parallel spins are elongated and bonds between anti-
parallel spins are contracted.

In Fig. 3, we show averages of the various components of
the energy and compare them to the results of simulations
with no bond fluctuations. The effect of the fluctuations in
reducing the transition temperature is obvious. Deducing the
strength of a transition from plots of order parameters or
energy is often risky and we will defer that discussion to our
finite-size scaling analysis. One interesting aspect of these
results is that there is a difference in the elastic energy and
spin-lattice energy between the fluctuating and the nonfluc-
tuating case. This difference is attributed to the local bond

fluctuations and can be understood by making a simple har-
monic model for each atom fluctuating within the the circle
of radiusumax ~cf. Sec. III!.

For m50.18, the smallest value considered by us, we
found that to obtain accurate statistics in systems as large as
64364, the MC runs have to be extremely long. In the cur-
rent simulation for size 64364, which were run for approxi-
mately by 500 000 steps, the distribution does not reach a
stable double-Gaussian structure indicating that the tunneling
times, between two coexisting states, are comparable to the
total time of a run. This indicates pronounced metastability
or a strong first-order transition. By comparing to simula-
tions on much smaller systems, for example 838, we find
that the results are consistent with tunneling times scaling
exponentially with system size which is characteristic of a
first-order transition in a standard canonical simulation.13

V. CHANGES WITH CHANGING µ

The results presented in the previous section indicate that
the transition remains strongly first order, in the presence of
fluctuations, for small values ofm. Therefore, our model
does not behave like the three-state Potts model in spite of
the bond order parameters exhibiting this symmetry. An in-
teresting question to ask is whether this behavior gets modi-
fied by increased coupling to the lattice. In the rest of the
paper, we present results which show the transition becomes
weaker as the coupling to the lattice is increased.

As we increasedm, we observed higher transition tem-
peratures, lower activation barriers and shorter tunneling
times between coexisting states. For example, form larger
than 3.0, it was much easier to get the system to order into
the striped phase in a cooling run. Also, there were no no-
ticeable hysteresis effects in system sizes of the order of 22
322 if the simulations involve 10,000 to 20,000 steps. This

FIG. 2. The three spin order parameters,C@1#, C@2#, and
C@3#, plotted as a function ofTc

L/T for m53.0 for system size
22322. The circles and diamonds refer to the two nonordering
directions while squares refer to the ordering one. This plot is over-
laid with the plot of the three average bond lengths which are de-
termined by the strain order parameters,
ea5(1/N)( (m,n)ea(m,n). Filled circles and diamonds refer to the
contracted bonds, while filled squares refer to the expanded bond.
This figure clearly shows that the transition is to the striped phase
where the spin ordering is accompanied by a structural distortion.

FIG. 3. The spin-lattice (Es,l) and the pure lattice (E el) contri-
butions to the energy are shown as a function of 1/T for m50.18
and system size 64364. The energy is measured inJ0, the bare
spin-spin antiferromagnetic interaction. The open triangles and dia-
monds~connected by dashed line! refer to the nonfluctuating case,
while filled square and circles~solid line! to the fluctuating case.
The spin-lattice energy,Es,l is given by the triangles~nonfluctuat-
ing! and circles~fluctuating!, while Eel is given by the diamonds
~non-fluctuation! and squares~fluctuating!.
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is in sharp contrast to them50.18 simulations. For larger
values ofm, the transition appeared continuous in the system
sizes looked at~largest size being 26326! and we observed
large fluctuations in the energy and order parameters near
Tc
L .
The qualitative picture suggested by these observations is

that the interfacial free-energy decreases as the coupling to
the lattice is increased leading to weaker first-order transi-
tions. This is reminiscent of the changes observed in the
Potts model, and we have performed finite-size scaling
analysis in order to determine the strength of the transitions.

Finite size scaling analysis

The finite-size scaling analysis14 was restricted to fairly
small systems, sizes ranging from 838 to 26326, in the
interest of obtaining good statistics.7, 15, 16For m50.18, we
also have results from 64364.

In order to assess the strength of the first-order transitions,
we adopted the Lee-Kosterlitz approach.7, 17This approach is
based on analyzing the probability distribution of energy,
P(E), and studying the scaling behavior ofDF(L), the free-
energy barrier between coexisting states. According to their
analysis,DF(L) increasing with the system size signals a
first-order transition. A constantDF(L) is characteristic of a
critical point and a decreasing behavior indicates a disor-
dered phase. Moreover, ifDF(L)..1, then the system is in
the regime where leading order finite-size corrections are ap-
plicable, andDF(L) grows asLd21.

Our model is interesting from the point of view of first-
order phase transitions for a couple of reasons. One is that it
involves two coupled degrees of freedom, the spins and the
strain fields, and the other is that in the limit of zero coupling
the system is completely frustrated. The Lee-Kosterlitz
approach,7 described in the context of them50.18 simula-
tions, is based upon very general ideas and should be valid
for any system where there is a clearly defined interface be-
tween the two coexisting states at a first-order transition.

In Fig. 4, we compare the scaling behavior ofDF(L) for
m53.0 andm56.0. We find thatDF(L) scales asL for
m53.0 but form56.0,DF(L) increases much more slowly.
This is indicative of a weakening transition.7,17 Comparing
these plots with the results of Lee and Kosterlitz17 for
Q-state Potts model atQ58 andQ55, we see a striking
similarity between the plots form53.0 andQ58 and the
plots for m56.0 andQ55. This raises the possibility of a
crossover to a second-order transition, since in the Potts
model the transition does become second order atQ54.

Figure 5 compares the negative of the logarithm of the
probability distribution of energy,2 lnP(E) @from which
DF(L) is obtained#, for a system of size 10310 for
m53.0 and m510.0. In contrast to the distribution for
m53.0, which can be described very well by a double
Gaussian, the distribution form510.0 has a pronounced
non-Gaussian structure.DF(L), as measured by the differ-
ence between the maximum and the minima in Fig. 5, is
.5 for m53.0, whereas it is hard to define and smaller for
m510.0. The trends in the probability distributions are con-
sistent with the trends observed in the scaling ofDF(L).
When we repeated the simulations form53.0 with a system
of size 636, the double Gaussian distribution changed and
the system exhibited pseudocritical behavior. This is similar
to the observations made by Peczak and Landau in the two-
dimensional Potts model15 when the system size was compa-
rable to or less than the correlation length.

In contrast to the simulations discussed here, the global
simulations do not change their character significantly asm
varies and the nature of transition remains strongly first-

FIG. 4. Plot ofDF(L) versus 1/L for m53.0 ~filled square
symbol! and form56.0 ~filled diamond symbol!. For a first-order
transition,DF(L) should increase monotonically withL and be
proportional toL in the strong first-order regime~cf. text for dis-
cussion!. We have fitted the data form53.0 to a straight line 0.55
* L, while fitting the data form56.0 to 2.1*L0.3, which indicates a
weak first-order transition.

FIG. 5. The negative of the logarithm of the probability distri-
bution of energy,2 lnP(E) at Tc

L , for system size 10310 for
m53.0 andm510.0. The distribution form53.0 can be well de-
scribed by a double Gaussian andDF(L), the activation energy
measured by the difference between the maximum and the minima
in the figure, is seen to be much larger than 1.0. In contrast, the
distribution form510.0 has a pronounced non-Gaussian structure
andDF(L) is of the order of 1.
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order, in agreement with the exact results in this limit.6 The
change in the nature of the transition is therefore, a pure
bond fluctuations effect.

Based upon the size and scaling ofDF(L), we expect the
m50.18 andm53.0 simulations to follow the standard
finite-size scaling predictions for thermodynamic quantities.
The finite-size scaling prediction forTc

L is that its deviation
from the infinite-systemTc should scale asL2d whered is
the spatial dimension.13 Figure 6 showsTc

L as a function of
L22. For m53.0. The behavior is linear with a crossover
observed atL516. Form50.18, the finite-size scaling pre-
dictions are obeyed over the full range of system sizes from
838 to 64364.

One interesting difference between our model and the
Potts model is the existence of two coupled degrees of free-
dom, the spins and the strain fields, and the concomitant
appearance of two broken symmetries. The physics behind
the weakening transition can, therefore, be very different.
Investigation of the probability distributions of the individual
contributions to the energy can provide us with information
relevant to this point. Comparing the changes in these distri-
butions asm increases, we find that the width ofP(Etot), the
distribution of the total energy, increases and it starts to re-
semble the distribution for the lattice energy,P(Eel). The
width of P(Es,l1Es) remains narrow. We believe that as we
increasem, the contribution ofE el to Etot becomes more and
more important, causing bond fluctuations to play a much
larger role in total energy distribution, and the fluctuations in
the Potts variables leads to a weakening of the transition.
Another interesting aspect of these simulations is that al-
though the transition weakens asm is increased, the spin-

spin part of the energy shows a larger discontinuity asm is
increased. This is in contrast to pure spin model where a
weakening transition would imply a smaller latent heat
which means a smaller discontinuity in the spin energy. In
our model, the latent heat does decrease but the spin-spin
contribution to it increases.

VI. CONCLUSIONS

In this paper, we have studied a simple model of an order-
disorder transition accompanied by a displacive structural
transition. Just as the Ising model provided a framework for
studying the statistical mechanics of ordering in alloys, this,
extended Ising model, provides a general framework for de-
scribing phase transitions in alloys where the ordering is ac-
companied by a displacive structural change.

Our simulations have shown that fluctuations of the strain
field lead to changes in the nature of the phase transition as
the coupling between the strain field and the ordering~con-
centration! field is increased. The transition evolves from
being strongly first order to weakly first order. This could
lead to interesting, observable pretransitional effects in al-
loys whose real materials parameters place them in the weak
first-order regime. We have extracted the parameters relevant
to CuAu from calculations based on a microscopic
Hamiltonian18 and foundm54.0, placing CuAu close to the
strongly first-order category; consistent with experiments.1

Fluctuations in three dimensions can be qualitatively differ-
ent from two-dimensional models and this needs to be inves-
tigated further. However, since the geometric frustration in
the face-centered-cubic lattice is of the same nature as that in
the triangular lattice, we can hope to describe real alloys by
using real materials parameters in the two-dimensional
model.

One of the most fascinating aspects of alloy physics is the
nature of metastable and unstable states and the kinetics of
nucleation and growth. The study of the kinetics of our
model should lead to a better understanding of these phe-
nomena in the presence of homogeneous strain fields of the
type associated with displacive phase transitions. Martensites
undergo displacive phase transitions which do not necessar-
ily involve an configurational order-disorder transition and
there have been extensive studies of these systems.19 An in-
teresting aspect of our model is the fundamental role of the
coupling between the strain field and the ordering field: in
the absence of the coupling, there is no displacive phase
transition.
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FIG. 6. Plot of Tc
L as a function of 1/L2 for m53.0 ~filled

circles! and form50.18 ~open circles!. For m53.0, the data for
L.16 can be fitted to a straight line~dashed line in the figure! in
accordance with the predictions of finite-size scaling. For
m50.18, the data can be fit by a straight line over the complete
range of system sizes fromL58 to L564 ~solid line in the inset!.
The extrapolated values ofTc for an infinite system are 0.639 for
m50.18 and 4.24 form53.0.
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