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We have studied the compressible antiferromagnetic Ising Model on a triangular lattice using Monte Carlo
simulations. It is found that the coupling to the strain removes the frustration of the rigid model and the
simulations show a transition from the disordered to an ordered, striped phase at low temperatures. This
transition involves two broken symmetries: the Ising symmetry and a three-state Potts symmetry characteristic
of the triangular lattice. In the absence of bond fluctuations, this transition is always strongly first order. Using
finite-size scaling analysis, we find evidence that, in the presence of fluctuations, the transition becomes weakly
first order and possibly second order when the coupling to the lattice is increased. We discuss the relevance of
this model to certain phase transitions in alloh80163-18206)04918-1

I. INTRODUCTION The elastic antiferromagnet on a triangular lattice has re-
ceived prior attention. The model has been solved within the
Frustrated Ising antiferromagnets play an important rolenmagnetothermomechanics approximation in which fluctua-
in the study of order-disorder transitions in alloys. Manytions in the bond lengths are neglecfelh this approxima-
metallic solid solutions form a face-centered-cubic latticetion, it has been shown that the ground state is a striped
and ordering implies a preference for unlike neighbors whiclphase and there is a single, strong first-order transition from
translates into antiferromagnetic interactions in the Ising lanthe disordered phase to the striped phase for all parameter
guage. These order-disorder transitions are often accompsalues. The transition involves two broken symmetries, the
nied by adisplacivestructural transition where a homoge- Ising symmetry and a three-state Potts symmetry associated
neous strain transforms the lattice from one form to andther.with the directions of bonds on the triangular lattice. The role
It has been argued, on the basis of theoretical calculations @ff bond fluctuations in this model had not been investigated
the stability of metallic alloy$,* that an appropriate model earlier. The appearance of a three-state Potts symmetry in a
for describing a large class of these alloys is toenpress- two-dimensional system raises the question of how these
ible Ising model on a frustrated lattice with some additionalfluctuations affect the nature of the transition and the appear-
terms arising from difference in atomic size3his model ance of two broken symmetries introduces the possibility of
embodies, in its simplest form, a competition between elastitwo distinct transitions. We have addressed both these ques-
terms preferring a face-centered-cubic or a triangular latticéions by including fluctuations of the bonds through Monte
and an attractive interaction between unlike atoms whichCarlo (MC) simulations of the model.
cannot be completely satisfied on such a lattice. Moreover, it The simulations were carried out arx L triangular lat-
is the simplest model which can describe an order-disordetices with L ranging from 8 to 64. There ald=L? spin
transition accompanied by a displacive structural transition.variables and R continuous variables describing the posi-
In order to understand the basic physics embodied in thions of the atoms. This and the strong first-order transition
model, we have performed simulations on a model twofound for a large range of the parameters, dictated the choice
dimensional system which undergoes a transition from a disef small system sizes in the interest of obtaining good statis-
ordered alloy on a triangular lattice to an ordered alloy on &ics. We find that the transition is not really different from
sheared triangular lattice. This two-dimensional transitionthat observed in Ref. 6. However, the strength of the transi-
corresponds, in three dimensions, to a transformation from #on, as deduced from finite-size-scaling analysis, decreases
face-centered-cubic to a face-centered-tetragonal lattice. Favith increasing value of the coupling to the lattice. This is
the sake of simplicity, we have ignored the size-effect ternreminiscent of the behavior of the two-dimensional, three-
and are, therefore, studying a pure compressible Ising modstate Potts model, where the fluctuations make the transition
on a frustrated lattice. The physics of this model is differentsecond ordef.In the absence of any exact results in our
from the compressible ferromagnetic model since elasticitynodel, more extensive simulations are needed to make a
serves to remove the frustration in this sysfetn.is also  definitive statement about whether or not there is a critical
different from models of alloys where only size-effect termscoupling at which the transition becomes second order. The
are retained. simulations show no evidence for two distinct transitions.
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The contents of the paper are organized as follows: the Y=E(2—A)(1+A)/(2+A), (4)
Hamiltonian for the compressible triangular Ising lattice and
the ground states of this model are discussed in Sec. II; the 0=(2+5A)/3(2+A). )]

algorithm for the Monte Carlo simulation including spins

and lattice displacements is given in Sec. llI; general features The strain fielde,(m,n) are related to the displacement
of the simulations are presented in Sec. IV and the finite-siz&i(m,n) through the relation

scaling analysis performed to assess the strength of the tran-

sition is presented in Sec. V. A discussion of open problems [u(m’,n") —u(m,n)J,[ro(m’,n’) —ro(m,n)],

is presented in Sec. VI. €a(m,n)= [r%(m’,n")—r%m,n)|?
(6)
Il. THE MODEL We choose our length scale such th&t°(m’,n’)
ro(m,n)|?=1.

The compressible Ising model involves two sets of vari-—
ables, the spinss(m,n)=*=1 and the displacements
u(m,n) which define the displacement of the spin from the
original lattice site fn,n). On a triangular lattice, the posi-
tions of the spins on the undistorted lattice are defined bwhere r(m’,n") and r(m,n) are positions of nearest-
r°(m,n)=ma; +na, with a;=(1,0) and a,=(1/2,/3/2).  neighbor spins along the direction. The total Hamiltonian
The actual positions of the spins are, therefore, given byan then be written as
r(m,n)=r°m,n)+u(m,n). The interaction between the

For displacements with amplitudes much smaller than 1,

eu(m,n)=|r(m’,n")—r(mn),~1=v,(mn), (7)

spins depends on thdistance between them and, in our _ _
model as in usual compressible Ising modets Jinear de- H Z, ;1 [1=eva(mn)]O,(mn)
pendence is assumed:

J(mn;m/nr):JO(mn;mrn/) +ﬂ/2,5 mE’n Daﬁya(mun)vﬁ(man)- (8)

X{1=¢[|r(mn)—r(m’,n")[=1]}. (1) Here O, (m,n)=s(m,n)s(m’,n’) and s(m,n) and

Here e defines the strength of the coupling between the sping(m oh ) are nearest neighbor spins alongdirection. In
. ; . .~ gur simulations, we use E@8) and therefore, assume that
and the displacements and the bare spin-spin interaction

given by J°. For the nearest-neighbor antiferromagnet, wel[ﬁe strain field is e_tpproxma_ted we!l by_ EQ). .
The coarse-grained elastic Hamiltonian, expressed in Egs.

take J°=1 for nearest neighbors and zero otherwise. All . . :
. . . ) and(7), is the natural and most convenient form to use in
energies are therefore measured in units of the the nearest = -~ " ; .
investigating the effect of strain fluctuations on the phase

e i st e s msencee heracio 1S 0 e trped phas, i by Chin and Karcar
P . 9 within the mean-field approximation. In this approximation,
gets stronger as the spins get closer to each other.

Besides the spin-spin interaction, the Hamiltonian in_the spins are treated exactly but the strain fields are uniform:

volves a harmonic lattice Hamiltonian defining the deform—e“(m'n):e‘“' The coarse-grained form is valid only when
- o . . 9 the displacement fields vary slowly over the length scale of
ability of the lattice: a quadratic form in the displacements

which involves the dynamical matrfkIf the displacements the lattice and by adopting this form, we are restricting our-

. selves to this class of displacements. The alternative would
vary slowly over length scales comparable to the lattice SPa%e to allow arbitrary displacements and work with the more

ing, a coarse-grained form of this Hamiltonian, written in microscopic Hamiltonian defined in terms of the displace-

tems of the strain fields is appropridt&Ve use this coarse- ments. The two approaches are equivalent as long as long-
rained form in our model. Choosing the nearest-neighboy i . . .
girections t0 express the strain ten@go;he elastic Ham?l- wavelength fluctuations play the dominant role in the phase

tonian can then be written as transition.

Ground states of model

He= D . 2 . . )
el Z‘; gﬁ apCa( M) Eg(M,N) @ The nature of the antiferromagnetic Ising model on the

. triangular lattice is well known from the work of Wannier.
Here the strain tensor componefits,,«=1,2,3 are related  There is no long-range order because of the degeneracy of
by a linear transformation to the usual Cartesian componentg,e ground state and tHE=0 state is a critical state with
€xx, €xy, andeyy, and this transformation definds. s in - power-law correlation&? Chen and Kard&mave shown that
terms of the elastic constants: the introduction of elasticity in the magnetothermomechanics
approximation where ak,(m,n)=e,, removes the degen-
E A A eracy of the ground state, and at low temperature, the system
D=1/2* A E A . 3) or(_jers into a striped phase consisti_ng of altern_ating rows of
A A E spin up and spin down and a distorted lattice with the
(++) and (— —) bonds longer than thet{—) bonds. The
striped phases are the only ground states of the model de-
The constant& and A are related to the Young's modu- fined by Eqs(1) if one imposes the condition of slow varia-
lus Y and Poisson ratio-:® tion of displacement fields, implicit in the definition of the
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coarse-grained elastic Hamiltonian. An interesting aspect of 1 u

this model is that if no constraints are imposed, the model E%e,E)=- 373 (13)
defined by Eq.(1) has an infinite number of new ground

states whose logarithm grows with the linear dimensions offhe parameteru = €2/E appearing in this equation is the
the system and which do not have a Bravais latticeeffective coupling constant of our mofiét is seen clearly
structuret! These ground states are obtained from joiningthat the interaction with the lattice reduces the energy of the
together minimal triangles which are triangles that have twastriped phase compared to a rigid antiferromagnet and makes
short (+ —) bonds and one long¥ +) or (——) bond. The it stable under small perturbations. The stability of the
model can then still be frustrated, at least in two dimensionsstriped phase increases with increasjag In our simula-
However, the displacements required to reach these grouriibns, this is reflected in the transition temperature increasing
states vary on the same scale as the lattice spacing and thth increasing values ofc. At u=1, the distortion of the
approximations leading to the coarse-grained, strain-fieldiattice in the ground state is such that the spin-spin interac-
Hamiltonian[Eq. (8)] are not valid. To compare the energet- tion along the expanded boné,} changes sign and is fer-
ics of these states with the striped phases, one has to go barkmagnetic for larger values @f. This is an example of the

to the elastic Hamiltonian written in terms of the displace-effectiveness of the lattice distortions in removing frustra-
ment field$ By doing so, we can show that these newtion.

ground states are higher in energy than the striped phase with From an investigation of the stability of the ground state,
the cost in energy increasing as e/(E+A)]%. Therefore, it is clear that the triangular lattice collapses to a line for
we do not believe these ground states are physically realizz/E=1/3. The parameter range considered in the simula-
able. In our simulations, the constraint of slow variation istions was restricted to the region where the triangular lattice
explicitly imposed. is stable.

The striped phase can have the expanded bonds oriented Since the striped phase is threefold degenerate corre-
along one of the three nearest-neighbor directions on the trsponding to the three possible directions of spin ordering on
angular lattice. Therefore, a continuous-spin, three-statthe triangular lattice, we have to introduce three order param-
Potts variable can be associated with each of the triangles aeters to describe the ordering along each of the three direc-
the lattice with the Potts variables located at the center of théons. They are defined as follows:
triangles and the Ising variables located at the vertices. At
the transition from the disordered to the striped phase, two _ _\m
symmetries are broken: the Ising symmetry and the three- Vit % (=)7s(m.n), (12
state Potts symmetry. It is well known that in the two-
dimensional, three-state Potts model, fluctuations change the n
order of the transition from first to second. One of the inter- \P[Z]z% (=)"s(m,n), (13
esting questions that can be addressed in our simulations is, '
therefore, whether bond fluctuations convert the strongly
first-order transition to the striped phseto a second-order W[3]=2, (=)™ "s(m,n). (14
transition. mn

The lattice distortion in the ground state can be easily
calculated and is described by a homogeneous strain def
mation defined by

In addition, we need to define the strain order parameters:
Oé'C,:(l/N)Em,nea(m,n) which also acquire a nonzero value
in the striped phase. There are three components of the en-
ergy: the spin-spin energi determined by the nearest-
e(E+3A) neighbor spin-spin correlation functiofis(m,n)s(m’,n’));
efm’ ©  the spir_l—lattice (_anergyESJ, determined by the spi_n—strain
correlation functiong® ,(m,n)e,(m,n)) and the lattice en-
ergy, E¢, determined by the strain-strain correlation func-
—e(E+A) tions (e,(m,n)eg(m,n)). The distribution of these energies
e2=93=m- (10 is monitored in order to investigate the nature of the transi-
tion to the striped phase.

_The spin structure in the ground state is s_uch_ that the Il. SIMULATION METHOD
spins are aligned parallel to each other in the direction along
which the bonds are stretched and aligned antiparallel to We are interested in simulating the model defined by Eq.
each other in the other two directions. (1) which has two sets of variables, the discrete Ising spins
In this paper, we specialize to the case wh&re0. Ac-  and the continuous strain fields. We define the strain fields in
cording to Eqgs.(3) and (4), this implies that the Young's terms of the distance between two spins using By. The
modulus is identical td&E and the Poisson ratio is=1/3.  distances are changed by allowing displacemefis,n) at
This is not a special point in the parameter space of thigach site. The displacemenigm,n) as well as the spins
model and the mean-field phase diagrams of Ref. 6 demors(m,n) are subjected to periodic boundary conditions. This
strate that this point has a generic phase diagram. The corranplies that the homogeneous strain deformations have to be
sponding ground state deformations are giveneby e/E  treated separately. Therefore, besides the spin and displace-
ande,=e;= — €/E. The ground state enerdger unit bongd  ment variables, the simulations have to allow for changes in
is then the shape and the size of the simulation box.
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As discussed in Sec. Il, the displacemen{sn,n), which TABLE I. Theoretical predictions foTt compared to our simu-
define the fluctuations of the strain fields, have to be slowlyation results(with and without local bond fluctuatiopsThe theo-
varying to justify the coarse-grained Hamiltonian. One wayretical results are those of Ref. 6 obtained within the magnetother-
to impose this constraint would be to deal exclusively withmomechanics approximation which neglects fluctuations of the
long-wavelength distortions by working in Fourier space.strain fields.

We choose to work in real space and impose a constraint omn
the amplitude of the displacements to indirectly guarantee a
slow variation on the length scale of the lattice. It should be*

1T, UTL s
=€?/E (Theory (No fluctuationy (With fluctuations Size

emphasized that the amplitude of the homogeneous straifg 15 1.5-1.52 1.56 6464
fields are not restricted, only the amplitude of the fluctua) 1g 15 1.35 1.45 12910
tions are. By adopting this procedure, we study the effects of 0.14 0.16 0.20 2222
long-wavelength small{ <1) amplitude fluctuations on the ¢ 0.09 0.09 013 2222
transition to the striped phase. 0.08 2% 22

10.0
One MC step consists of two parts. The first part involves
changing the shape and volume of the box. This is done once
per MC step. This MC move is similar to the one used by

D d Landa®in thei K on the si ffect model rameters, corresponding to a homogeneous strain deforma-
unweg and Landad)n their work on the size-etiect modet, iqn ang the other including bond fluctuations according to
where the volume of the lattice was allowed to change. Th‘?he algorithm described earlier

only difference between the two algorithms is that we do not The results of Chen and Kardaare exact in the limit of

rescale the position of each individual spin after we chang%o bond fluctuations and our simulation results from finite-

th? shape and_volume of the I.a.tt|ce and, t.here_fore, our SIMj 64 systems are compared to their exact results in Table I.
lations do not involve the additional logarithmic term in the For = 0.18, two sets of results are quoted, one for a system

effective energycf. Eq. (2.14 in Diinweg and Landa? of size 10< 10 and the other for a system of sizex6@4. As

Lr:iti(r)isci:r?“trr‘l% Wrzglgn::\/; EEZOIS\;?; eacrr?:r:eegotrr?gt“;?teed _xpected, the transition temperature is reduced upon intro-
. > Prese P 9 uction of bond fluctuations. One also observes a trend of
lowed in our simulations. . . . "

increasing effects of fluctuations aF;, the transition tem-

In Monte Carlo simulation'$ involving continuous vari- ire 1 ; e as th linew is 1 4
ables, it is necessary to choose an amplitude which define%era ure for system size, as the couplingu 1S Increased.
or example, the relative change'll'tl, upon introduction of

by how much the continuous variable is changed in a Me- ) .
tropolis trial. The shape and volume of the box are change§©nd fluctuations, is only 3% fqu=0.18, whereas the rela-
by allowing changes in the lattice parameters and the angliiVe change is close to 50% far=6.0. In these simulations,
between the lattice vectors, and a,. The amplitude for W€ also_ observe a change in the nature of the transition as
each of these changes is normally a very small number, of IS yarled. The fluctuations in bond lengths are much more
the order of 0.01, and is chosen by requiring a Monte Carldrominent for larger values of. We have found no evi-
acceptance rate of 50—60%. dence_ fpr the ex_ls_tence of an intermediate state leading to
The second part of the MC involves updating the spindWo distinct transitions. _ _ _ _
and displacements at each noae, i) of the newly defined The phase diagrams obtained from the simulations with
lattice, with updatedy, anda,, and involvesN trials where and without bond fluctuations are compared in Fig. 1. This
N is the number of spins. Each trial is composed of one
attempt to flip a spin and one attempt to change the position
of the spin. To update the position of a spin, keeping in mind
the constraint of slow variations of displacements, we choose 08
a random position inside a circle of radiug,, centered on Striped phase
an updated lattice site. This sets an upper limit on the ampli-
tude of the displacements. Choosing,= ¢/E, guarantees
that the variation in displacements over one lattice constant
is at most twice the ground state distortion. It also ensures ef
that the displacements do not lead to exchanges of sites
which would certainly violate the assumption of slowly vary-
ing fields. 02|

0.6 &

IV. GENERAL RESULTS FROM THE SIMULATIONS

0.0

We have carried out Monte Carlo simulations for different Jm
values of the parameter which measures the coupling to
the lattice. The ratice/E was held constant at 0.3. This en- g1 1. phase diagrams obtained from our computer simula-
sures that the ground state distortion remains the same ggns, which should be compared to the phase diagram in Ref. 6 for
w is varied, and allows us to monitor the changes in thex =0. Solid line(filled circle symbo) is obtained with strain fluc-
transition between exactly the same two states. tuations. Dashed linédopen square symbpls obtained without
For each value ofu, two sets of simulations were per- strain fluctuations. The solid and dashed lines are plotted here to
formed, one allowing only global changes of the lattice pa-guide the eyes.
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FIG. 2. The three spin order paramete¥s|1], W[2], and FIG. 3. The spin-latticeE;) and the pure latticeH ) contri-

W[3], plotted as a function of5/T for ©=3.0 for system size butions to the energy are shown as a function of fdr . =0.18
22x22. The circles and diamonds refer to the two nonorderingand system size 6464. The energy is measured &, the bare
directions while squares refer to the ordering one. This plot is overspin-spin antiferromagnetic interaction. The open triangles and dia-
laid with the plot of the three average bond lengths which are demonds(connected by dashed lineefer to the nonfluctuating case,
termined by the strain order parameters, while filled square and circlegsolid line) to the fluctuating case.
€,=(1/N)2m ne.(m,n). Filled circles and diamonds refer to the The spin-lattice energyEs is given by the trianglegnonfluctuat-
contracted bonds, while filled squares refer to the expanded bondhg) and circles(fluctuating, while Eg is given by the diamonds
This figure clearly shows that the transition is to the striped phasénon-fluctuation and squaregfluctuating.
where the spin ordering is accompanied by a structural distortion.

fluctuations and can be understood by making a simple har-

figure demonstrates the effects of bond fluctuations on th&onic model for each atom fluctuating within the the circle
phase boundary. It is clear that, in accordance with our exOf radiusupmay (cf. Sec. Il)).
pectations, fluctuations depress the transition temperature. If For 4=0.18, the smallest value considered by us, we
there is a change in the nature of the transition, caused by tHeund that to obtain accurate statistics in systems as large as
fluctuations, it cannot be deduced from a perusal of the phagg#x< 64, the MC runs have to be extremely long. In the cur-
diagram and we have performed finite-size scaling analysigent simulation for size 6464, which were run for approxi-
to pursue this question. mately by 500 000 steps, the distribution does not reach a
The phase transition in this model is an example of a spirstable double-Gaussian structure indicating that the tunneling
ordering accompanied by a structural transition and, beforémes, between two coexisting states, are comparable to the
discussing the finite-size scaling analysis, we would like tototal time of a run. This indicates pronounced metastability
point out some generic features of the transition using th@r a strong first-order transition. By comparing to simula-
results from simulations gi=0.18, one of the smallest val- tions on much smaller systems, for example & we find
ues ofu that we have studied. that the results are consistent with tunneling times scaling
The transition is characterized by the appearance of &xponentially with system size which is characteristic of a
nonzero spin order paramef{é&gs.(15)—(17)] and strain or-  first-order transition in a standard canonical simulaffon.
der parameters defined bg,=(1/N)Z. .e,(m,n). The
nonzero strain (_)rder parameters Iea_d toa change in_ the bond V. CHANGES WITH CHANGING p
lengths and, Fig. 2 shows the variation of the spin order
parameters and the bond lengths as a function of tempera- The results presented in the previous section indicate that
ture. This figure demonstrates that there is a single transitiothe transition remains strongly first order, in the presence of
at which both the Ising and Potts symmetries are broken anfiuctuations, for small values ofi. Therefore, our model
the ordered state is the striped phase where the bonds bdees not behave like the three-state Potts model in spite of
tween parallel spins are elongated and bonds between anthe bond order parameters exhibiting this symmetry. An in-
parallel spins are contracted. teresting question to ask is whether this behavior gets modi-
In Fig. 3, we show averages of the various components ofied by increased coupling to the lattice. In the rest of the
the energy and compare them to the results of simulationpaper, we present results which show the transition becomes
with no bond fluctuations. The effect of the fluctuations inweaker as the coupling to the lattice is increased.
reducing the transition temperature is obvious. Deducing the As we increasegt, we observed higher transition tem-
strength of a transition from plots of order parameters omperatures, lower activation barriers and shorter tunneling
energy is often risky and we will defer that discussion to ourtimes between coexisting states. For example,fdarger
finite-size scaling analysis. One interesting aspect of thesthan 3.0, it was much easier to get the system to order into
results is that there is a difference in the elastic energy anthe striped phase in a cooling run. Also, there were no no-
spin-lattice energy between the fluctuating and the nonflucticeable hysteresis effects in system sizes of the order of 22
tuating case. This difference is attributed to the local bondx 22 if the simulations involve 10,000 to 20,000 steps. This
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FIG. 4. Plot of AF(L) versus 1L for u=3.0 (filled square
symbo) and for u=6.0 (filled diamond symbgl For a first-order
transition, AF(L) should increase monotonically with and be -100 w s
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proportional toL in the strong first-order regimeef. text for dis- BT
C

cussion. We have fitted the data fqe= 3.0 to a straight line 0.55
* L, while fitting the data fo=6.0 to 2.11.%3 which indicates a

weak first-order transition. ) ) e
FIG. 5. The negative of the logarithm of the probability distri-

is in sharp contrast to the=0.18 simulations. For larger bution of energy,—InP(E) at T¢, for system size 1810 for
values ofu, the transition appeared continuous in the systent*= 3.0 andx=10.0. The distribution fo.=3.0 can be well de-
sizes looked aflargest size being 2626) and we observed scribed by a double Gaussian andr(L), the activation energy

large fluctuations in the energy and order parameters neérlueasured by the difference between the maximum and the minima
Tt in the figure, is seen to be much larger than 1.0. In contrast, the

¢ o . . distribution f =10.0h d -G i
The qualitative picture suggested by these observations gfd”A,l:J('E)n isO:)’;L the ordera zfalpronounce non-Gaussian structure

that the interfacial free-energy decreases as the coupling to
t_he Iattice is_ incregs_ed leading to weaker first-order t_ransi- In Fig. 4, we compare the scaling behavior# (L) for
tions. This is reminiscent of the changes_ c_)bse_rved in jch =3.0 andu=6.0. We find thatAF(L) scales ad. for
Potts quel, and we ha\_/e performed finite-size S(.:"?‘I'n =3.0 but foru=6.0, AF(L) increases much more slowly.
analysis in order to determine the strength of the transitionsy.q is indicative of a weakening transitién’ Comparing
o _ _ these plots with the results of Lee and Kostetlitfor
Finite size scaling analysis Q-state Potts model @)=8 andQ=5, we see a striking

The finite-size scaling analysfswas restricted to fairly similarity between the plots for.=3.0 andQ=8 and the
small systems, sizes ranging fronx8 to 26x 26, in the plots for u=6.0 andQ=5. This raises the possibility of a
interest of obtaining good statistiés'> ®For 4 =0.18, we crossover to a second-order transition, since in the Potts
also have results from 6464. model the transition does become second ord€p-ay.

In order to assess the strength of the first-order transitions, Figure 5 compares the negative of the logarithm of the
we adopted the Lee-Kosterlitz approdch’ This approach is  probability distribution of energy,—InP(E) [from which
based on analyzing the probability distribution of energy,AF(L) is obtained, for a system of size 1010 for
P(E), and studying the scaling behavior&F (L), the free- u«=3.0 and ©=10.0. In contrast to the distribution for
energy barrier between coexisting states. According to theirr=3.0, which can be described very well by a double
analysis,AF(L) increasing with the system size signals aGaussian, the distribution forr=10.0 has a pronounced
first-order transition. A constadtF (L) is characteristic of a non-Gaussian structurdF (L), as measured by the differ-
critical point and a decreasing behavior indicates a disorence between the maximum and the minima in Fig. 5, is
dered phase. Moreover, AF(L)>>1, then the systemisin =5 for u=3.0, whereas it is hard to define and smaller for
the regime where leading order finite-size corrections are ap+=10.0. The trends in the probability distributions are con-
plicable, andAF (L) grows asL971. sistent with the trends observed in the scalingAd#(L).

Our model is interesting from the point of view of first- When we repeated the simulations for 3.0 with a system
order phase transitions for a couple of reasons. One is that @f size 6x6, the double Gaussian distribution changed and
involves two coupled degrees of freedom, the spins and ththe system exhibited pseudocritical behavior. This is similar
strain fields, and the other is that in the limit of zero couplingto the observations made by Peczak and Landau in the two-
the system is completely frustrated. The Lee-Kosterlitzdimensional Potts mod€lwhen the system size was compa-
approacH, described in the context of the=0.18 simula- rable to or less than the correlation length.
tions, is based upon very general ideas and should be valid In contrast to the simulations discussed here, the global
for any system where there is a clearly defined interface besimulations do not change their character significantly.as
tween the two coexisting states at a first-order transition. varies and the nature of transition remains strongly first-
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70 ‘ ‘ : spin part of the energy shows a larger discontinuityuais
increased. This is in contrast to pure spin model where a
weakening transition would imply a smaller latent heat
° which means a smaller discontinuity in the spin energy. In
/ our model, the latent heat does decrease but the spin-spin

6o contribution to it increases.

VI. CONCLUSIONS

In this paper, we have studied a simple model of an order-

|/

J disorder transition accompanied by a displacive structural

/ transition. Just as the Ising model provided a framework for

/ 060 ‘ ‘ studying the statistical mechanics of ordering in alloys, this,

0 M 000 o0 extended Ising model, provides a general framework for de-

0.000 0005 n? 0015 0020 scribing phase transitions in alloys where the ordering is ac-
companied by a displacive structural change.

FIG. 6. Plot of T, as a function of 1?2 for x=3.0 (filled Our simulations have shown that fluctuations of the strain

circles and for ©=0.18 (open circles For u=3.0, the data for field lead to changes in the nature of the phase transition as
L>16 can be fitted to a straight linglashed line in the figuyen the coupling between the strain field and the ordefiraon-
accordance with the predictions of finite-size scaling. Forcentration field is increased. The transition evolves from
#=0.18, the data can be fit by a straight line over the completebeing strongly first order to weakly first order. This could
range of system sizes fron=8 to L =64 (solid line in the insét  lead to interesting, observable pretransitional effects in al-
The extrapolated values df; for an infinite system are 0.639 for |oys whose real materials parameters place them in the weak
©=0.18 and 4.24 fou=3.0. first-order regime. We have extracted the parameters relevant
to CuAu from calculations based on a microscopic
Hamiltoniart® and foundw = 4.0, placing CuAu close to the
order, in agreement with the exact results in this lifviithe  strongly first-order category; consistent with experiménts.
change in the nature of the transition is therefore, a puré:|UCtuati0nS in three dimensions can be qualitatively differ-
bond fluctuations effect. ent from two-dimensional models and this needs to be inves-

Based upon the size and scalingAdf (L), we expect the tigated further. However, since the geometric frustration in
©=0.18 and ©=3.0 simulations to follow the standard the face-centered-cubic lattice is of the same nature as that in
finite-size scaling predictions for thermodynamic quantitiesthe triangular lattice, we can hope to describe real alloys by
The finite-size scaling prediction faF- is that its deviation UuSing real materials parameters in the two-dimensional
from the infinite-systenT, should scale ak ¢ whered is ~ model.

the spatial dimensiof? Figure 6 showsT: as a function of One of the most fascinating aspects of alloy physics is the
L=2. For x=3.0. The behavior is linear with a crossover nature of metastable and unstable states and the kinetics of

observed at = 16. For x=0.18, the finite-size scaling pre- nucleation and growth. The study of the kinetics of our

dictions are obeyed over the full range of system sizes frorﬁnOdel should lead to a better understanding .Of f[hese phe-
8% 8 t0 64X 64, nomena in the presence of homogeneous strain fields of the

One interesting difference between our model and thdyPe associated with displacive phase transitions. Martensites

Potts model is the existence of two coupled degrees of freégn(jergo displacive_ phas_e transitions .WhiCh do hot necessar-
dom, the spins and the strain fields, and the concomitarly involve an conflgura'_uonal or_der-d|sorder transmo_n and
appearance of two broken symmetries. The physics behin ere _have been extensive stu@es of these systeAus.in-

the weakening transition can, therefore, be very different'eresting aspect of our mo_del_|s the fundamentgl rolg Of_ the
Investigation of the probability distributions of the individual coupling between the stra!n field anq the orderlng field: in
contributions to the energy can provide us with informationthe ?b.sence of the coupling, there is no displacive phase
relevant to this point. Comparing the changes in these distriransition.
butions asu increases, we find that the width B{ E,y), the
distribution of the total energy, increases and it starts to re-
semble the distribution for the lattice enerdy(E.). The
width of P(Eg + E;) remains narrow. We believe that as we  We would like to acknowledge useful discussions with A.
increaseu, the contribution o  to E,,; becomes more and Mazel, W. Klein, Duane Johnson, N. Gross, and H. Gould.
more important, causing bond fluctuations to play a muchrhe work of L.G. and B.C. was supported in part by DE-
larger role in total energy distribution, and the fluctuations inFG02-ER45495. The work of P.L.G., M.P., and J.L.L. was
the Potts variables leads to a weakening of the transitiorsupported by NSF through DMR. The work of P.L.G. was
Another interesting aspect of these simulations is that alalso supported by DGICYTPB91-0709 and Junta de An-

though the transition weakens asis increased, the spin- dalucia(PAl) of Spain.
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