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We have studied nonequilibrium lattice gases whose particles are driven by a field. The lattice is either a
half-occupied square lattice or else the union of two energetically uncoupled ones. Monte Carlo simulations of
the latter, which is always crossed by a dissipative particle current, show a tricritical point and a continuum of
Ising-like critical points as the field is decreased, in addition to non-Ising, anisotropic critical behavior at higher
temperatures for saturating fields. A comparison of the various phase transitions involved, and a detailed study
of scaling of correlations with system size, indicate the relevance of the anisotropic liquid-vapor interface
~rather than the driving field! for inducing non-Ising behavior in a class of systems. It is likely that some of the
properties reported here are experimentally observable.@S1063-651X~96!07506-X#

PACS number~s!: 66.10.2x, 05.70.Fh, 64.60.Cn

I. INTRODUCTION AND SOME DEFINITIONS

Stochastic lattice gases are suited to studying ordering
phenomena in open systems such as pattern formation, self-
organization, morphogenesis, etc.@1–3#. In particular, the
driven lattice gas~DLG! is believed to capture some of the
essential physics in a class of steady states with anisotropies.
The DLG is a lattice gas with nearest neighbor~NN! attrac-
tions which evolves in time by stochastic NN particle-hole
exchanges as induced by a heat bath at temperatureT. Un-
like the ordinary lattice gas, the DLG involves a driving
external field,Ex̂, which causes preferential jumping of par-
ticles along one of the principal lattice directions,x̂. Conse-
quently, the resulting steady states are characterized, for pe-
riodic boundary conditions, by a net current of particles
along x̂ for anyE.0; this corresponds to a nonequilibrium,
dissipative condition@4#.

For the sake of simplicity, we only consider below the
case in whichE is constant and the bath is implemented by
the Metropolis rule. The latter implies that the probability
per unit time for the exchange of a particle and a hole de-
pends on the corresponding energy cost.Energy is defined
for this non-Hamiltonian system as the sum of the Ising
Hamiltonian plus the work done by the field~only! for ex-
changes alongx̂. Consequently, the probability~per unit
time! for a NN jump is p5min$1,exp@2(DH1E)/kBT#%,
whereDH represents the variation of the Ising Hamiltonian
due to the exchange and one setsE50 ~which reducesp to
the familiar Metropolis rule! unless the particle-hole bond
points1 x̂ (2 x̂), in which caseE.0 (E,0). The lattice is
a rectangle ofN5Lx3Ly sites with toroidal boundary con-
ditions. Another simplifying restriction is that we only deal
here with half-occupied lattices, i.e., the particle density is
r5 1

2.
This system is hereafter denotedlE; it has been described

in more detail in Refs.@3,5#, for instance. In addition to
lE , we have studiedLE , which is the union of a pair of
copies oflE , lE

(1) , andlE
(2) , with corresponding sites,r (1)

and r (2), in the two copies connected insofar as particle
jumping is concerned, but not energetically. In other words,
a particle atr ( i ), i51,2, may jump to one of five sites, one of
which lies in the other copy. Jumping along eitherx̂ or ŷ in
LE follows the same rules as forlE , and jumping alongẑ
~i.e., to the other copy! follows the Metropolis rule, as for
ŷ jumps@3,6#. The cases oflE andLE for which the field is
saturating, which means that no particle may perform2 x̂
jumps, are denotedl` andL` , respectively.

Previous Monte Carlo~MC! studies have revealed the
main features of ordering in these models, and how they
sometimes reproduce the behavior in nature. For example,
the net particle current which occurs in the models for any
T.0 reminds one of the current of ions infast ionic conduc-
tors @7#. In the case ofl` andL` , the current exhibits a
sudden break of slope which marks a critical point located at
temperatureT` . The latter equals approximately 1.4T0 and
1.3T0 (T0 is the—equilibrium—Ising critical temperature for
dimensiond52) for l` and L` , respectively. It is very
likely that similar folds and other anomalies observed before
in the conductivity-versus-T curve of many substances have
the same origin, i.e., they mark the onset of a~nonequilibri-
um! phase transition@3#. For T,T` , the models exhibit a
liquid, particle-rich phase which coexists with its vapor. A
novel feature is that this liquid happens to be striped, and the
interface is linear parallel tox̂. It seems natural to argue that
similar anisotropic interfaces, and perhaps some of the spe-
cific properties ofLE , might be exhibited by certain mate-
rials in which the currents occur within restricted, e.g., two
or quasi-two-dimensional geometries. This endows the study
of lE andLE with some practical interest. Comparing with
each other the behavior of these systems~which was initiated
in Refs. @6,8#! is also interesting because of the extremely
slow evolution typical of most lattice gases. That is, very
slow relaxation hampers in practice the MC simulation of
lE for anyE>0 while the evolution may be accelerated in
LE where density fluctuations have an additional mode of
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relaxation, namely, jumping of particles to the other lattice
@9#.

There is also a more fundamental interest forl` and
L` . In particular, one would like to investigate the univer-
sality class for the phase transitions in these systems, and its
relationship with the universality class for the equilibrium
counterparts,l0 andL0 , i.e., the influence the underlying
anisotropy has on critical behavior. This issue has been ad-
dressed by field theory based on the proposal that a
Langevin-like equation with a drift is the continuous version
of l` @10–12#. Assuming that the field operator isrelevant,
renormalization group~RG! techniques nearT` produce a
solvable—classical—case for 2,d<5. This provides an in-
teresting description of anisotropy and critical behavior. In
particular, the existence of two independent correlation
lengths diverging with distinct exponents, e.g.,nx5

3
2 and

ny5
1
2 for d52, is predicted. It has led before to the expec-

tation that the DLG should behave isotropically if the ratio
Lx

nx /nyLy
21 is fixed. More explicitly, consider theensemble

averageof the local density@13,14#, defined as the MC sta-
tionary average~denoted̂ •••&) of

f[
1

2Lx
sinS p

Ly
DU (

x50

Lx21

(
y50

Ly21

~122sx,y!e
ik–rU, ~1!

wheres r50,1 andk5(0,2pLy
21); a specific prediction is

thatm[^f& behaves as

m5Lx
2b/nxm̃~«Lx

1/nx!, ~2!

where«[(T2T`)T`
21 .

There is a claim that these expectations are supported by
MC data@14,15#. Systematic departures from~2! have been
reported@6,16–18#, however, and data obstinately fit the be-
haviorm;«2b with b.0.3 nearT` for large enough sys-
tems. On the contrary, the field-theoretic prediction that
b5 1

2, perhaps with weak logarithmic correctionsfor the
~marginal) cased52, is not confirmed in general. Figure 1
illustrates how data depart from the prediction~2!. The ex-
istence of critical points which are characterized by an order-
parameter critical exponentb whose value is apparently be-
tween the classical (12! and equilibrium (18! values has also

been reported for a number of different but very closely re-
lated systems. For example, we are aware this has been ob-
served for a different case of lattice gas with anisotropic
dissipative flow@19#, for some modifications ofl` , which
include either anisotropic couplings@20# or else spin flips at
a smaller rate than the exchanges in order to accelerate re-
laxation @17#, for the case of a lattice gas under shear@21#,
for the lattice gas in which1 x̂ and2 x̂ jumps occur com-
pletely at random with same probability@22,23#, and for the
two-layer systemL` @6#.

Therefore some questions concerning the nature of the
underlying anisotropy and its influence on emergent proper-
ties arise. It is important to compare the just mentioned sys-
tems with each other, and to determine what are the essential
ingredients for DLG behavior~and whether they are con-
tained in the continuous model or not!. More generally, one
would like to consider the issue of universality for these
nonequilibrium systems. We have addressed such problems
by comparinglE andLE ~which has been shown to be in-
teresting even forE50 @9#! by means of MC analysis and
mean-field~and other! arguments. It has clarified the nature
of various phase transitions. In particular, we describe below
two different critical points inLE . One of them occurs for a
saturating field atT` (.T0); this is of the same~rare! class
as the one inl` . The other critical point occurs inLE ~but
not in lE) for finite E at a field-dependent temperature be-
low T0 ; this is of the Ising variety, as forl0 . The segrega-
tion in this case is such that no liquid-vapor interface exists.
Therefore, the~anisotropic! interface which develops just be-
low T` may be at the origin of the peculiar, non-Ising critical
and scaling behavior of the DLG aboveT0 . We believe that
the non-Ising critical properties of the models should be ex-
perimentally observable in nature. In order to clarify the rel-
evant role played by the interface, we have studied further
the scaling of correlations in the DLG. A question one
should try to clarify here is whether there is a single scaling
length or else two lengths associated, respectively, with each
of the two principal lattice directions. We present a simple
description of the variations of the order parameter with sys-
tem size, which just involves the existence of a unique scal-
ing length. On the other hand, assuming that two lengths are
needed to describe clusters and other inhomogeneities which

FIG. 1. MC data corresponding to the order
parameterm for different sizes, as indicated, are
compared with field-theoretic predictions, Eq.
~2!. Hereb5

1
2, nx5

3
2 and further details as sug-

gested in Ref.@14# ~from where the data for the
black dots—which correspond to different
sizes—have been taken!, and T`51.38 as ob-
tained independently from both cumulants and
specific heat. No scaling behavior is observed,
nor does the slope12 seem to be of any signifi-
cance ~cf. Ref. @6# for further evidence!. The
same occurs forT`51.418~used in Ref.@14#! as
illustrated by the inset~where decimal logarithms
are avoided! below T` . ~Temperatures are al-
ways in units of the 2D Ising critical temperature,
T0 , except for mean-field results as reported in
Figs. 4 and 5, andr5

1
2; logarithms are decimal.!
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FIG. 2. Some typical configurations obtained for the two planes ofL` by the MC method for the 232003200 lattice, a saturating field
acting horizontally, and~a! T51.5.T` , ~b! T51.1, i.e.,T`.T.T*̀ , and~c! T50.85,T*̀ . Small anisotropic clusters may be detected by
direct inspection. The phase transition which separates~a! from ~b! is continuous with peculiar critical behavior; the one which separates~b!
from ~c! is discontinuous but it becomes continuous with Ising-like critical behavior for small enough values of the field.
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are observed to occur in the systems, MC data indicate that
they are not independent of each other. None of these obser-
vations appear to be consistent with the field-theoretic as-
sumption that the field is relevant in the sense of RG theory.

II. ORDERING AND CRITICAL POINTS

For reference, Fig. 2 illustrates three types of ordered
states which occur inL` , and the two distinct~nonequilib-
rium! phase transitions that are involved. A few facts are to
be emphasized. For temperatures aboveT` ~particle density
is fixed atr5 1

2 throughout this paper!, steady states are ho-
mogeneous on a large spatial scale but show clear anisotro-
pies on smaller scales. More specifically, clusters that are
stretched out alongx̂ are often observed even by direct in-
spection, as in Fig. 2~a!. As described above,T` seems to
correspond~for the macroscopic system! to a critical point
below which the layered system segregates into coexisting
liquid and gas phases. Figure 2~b! illustrates that the two
planes ofL` exhibit the same type of order, i.e., coexisting
states, for anyT within the rageT`.T.T*̀ . Nevertheless,
such symmetry between planes breaks down belowT*̀ ,
which marks the onset of phase transitions that are first-
order-like, i.e., discontinuous for a saturating field~see be-
low, however!. Each plane is filled belowT*̀ by one of the
phases, either liquid or gas only; cf. Fig. 2~c!. The pure
phases forT,T` ~i.e., including the ones forT,T*̀ ) exhibit
well-defined anisotropies, as forT.T` . One may become
convinced of this fact by careful direct inspection of graphs
such as the ones in Fig. 2, and it has been proved numeri-
cally after studying the relevant correlation functions~cf. fig-
ure 10 of Ref.@6#!. Consistently with this, it has been argued
that one effect of the field is transforming equilibrium
(E50) liquid clusters roughly from spherical to triangular
~for appropriate values ofr andE) @24#. Summing up, two
main questions ensue from MC simulations that deserve fur-
ther study:~i! the apparent existence of two lengths, and the
influence of this fact on critical behavior, and~ii ! the relation
between the phase transitions exhibited bylE andLE . We
address the latter problem first;~i! is discussed in detail in
Sec. III.

To perform quantitative comparisons, one may monitor
order parameter andenergy, for instance. A natural way of
measuring anisotropic ordering forr5 1

2 is to compute the
average of~1!, m. The ~anisotropic! squared magnetization
@4#

M[Au~Mx
2&2^My

2&u, ~3!

where

Mx~y!
2 [

1

Lx3Ly3Lx~y!
(

y~x!51

Ly~x!21 F (
x~y!51

Lx~y!21

~122sx,y!G2, ~4!

has also been studied. BothM andm are normalized such
that they equal unity for the zero-temperature configurations.
For r5 1

2 ~the only case which is of interest here!, M and
m have been defined forLE as an average of the correspond-
ing quantity over the two planes. Furthermore, measuring the
density of each phase,rgas(T) and r l iquid(T), and the dif-
ference of density between the two planes ofLE ,

Dr5
1

2r
u^r1~T,r!&2^r2~T,r!&u, ~5!

is interesting. In the following,c stands for any of these
quantities, namely,c5 m, M , Dr, etc. In fact, even though
each of them corresponds to a different measure of correla-
tions, their stationary values should not differ from each
other sufficiently near the critical point~the region of most
interest here!, which is indeed confirmed below.

We first mention that one should expect the critical point
at T` in L` to be identical to the more familiar one inl` .
This is already suggested by the fact that there is a strong
similarity of segregated states; e.g., close direct inspection
does not reveal any systematic qualitative differences be-
tween the planes in Fig. 2~b! and corresponding configura-
tions of l` . Furthermore, both systems have been demon-
strated to have the same critical point forE50 @9#, and the
symmetries which are introduced for anyE.0 by dynamics
in LE are already present inlE . That is,lE and LE are
characterized by the same~microscopic! dynamical rule, and
it has been observed to produce the same type of~macro-
scopic! interface in both systems. Therefore, we are assum-
ing in the following thatL` andl` have the same critical
point, which seems confirmed by all the available MC data,
as discussed below.

However, some important differences betweenlE and
LE should be expected. This is illustrated by the behavior of
r l iquid(T) in Fig. 3. In addition to the fact that the liquid
density is, in general, larger in the presence of the field,
which is due to different behavior of correlations@6#, one
observes in Fig. 3 thatr l iquid(T) is definitely larger forl`

than forL` . One might argue this is simply related to the
fact that the systems are finite, andr is the same in both
cases for givenT. Nevertheless, kinetic mean-field~numeri-
cal! methods which have been developed before@5,8# dem-
onstrate a more essential difference betweenlE andLE . A
first argument is as follows. Consider, as a measure of en-
ergy, the density of particle-hole pairs,eLE

, within the dis-

ordered phase ofLE at high enough temperature. The time
variation of eLE

may be written quite generally within the

FIG. 3. The particle density of the pure phase,r l iquid(T), as
obtained forl` (d) andL` (h) using lattices of comparable size,
and the corresponding Onsager exact result~solid line!; dashed
lines are a guide to the eye.~The neighborhood of the respective
critical regions, where it becomes difficult to accurately define in
practice the phases in MC simulations, is not shown.!
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pair approximation as the sum of two terms,I 1 and I 2 ,
which describe the particle-hole exchanges within each
plane, and a third term,I 1
2 , which describes interplane
exchanges~some further details that are not needed here may
be found in Ref.@8#!. The stationary solution for one plane,
elE

, cancels out bothI 1 and I 2 for anyE>0 while it turns

out that this causesI 1
2 to vanish only forE50 because of
some field dependence within the dynamical rate. Therefore,
one has]eLE

(t)/]t50 for t→` due to cancellations be-

tween I 1 , I 2 , and I 1
2 and, as a consequence,eLE
and

elE
differ in general from each other for anyE.0, i.e., the

corresponding steady states are not identical.
Mean-field theory also indicates that the difference ofe

between thex̂ and ŷ directions is generally smaller forLE
than forlE ; this is shown in Fig. 4. That is, the existence of
the other plane causes anisotropy to decrease. It may be un-
derstood if one thinks of dynamics forlE as consisting of a
competition between the field, on the one hand, and a ther-
mal process alongŷ, on the other. Then extra thermal ran-
domness~along ẑ) adds to this forLE that ~slightly! com-
pensates the anisotropic action of the field. If this argument
is right, one should expectTE

l.TE
L , which is indeed a direct

result from mean-field computations, as illustrated by the
upper curves in Fig. 5. The same is supported by MC simu-
lations for saturating fields, which definitely indicates that
T`

l 2T`
L.0 beyond statistical errors. This is demonstrated in

Fig. 6, which describes the size and temperature dependence
of the cumulant@17#:

gL5
4

3 F12
^f4&
2^f2&2G . ~6!

~Further support follows from the behavior ofr l iquid in Fig.
3.! It also ensues from this interpretation of dynamics in
terms of a competition between two effects that, as con-
cluded above, the same critical behavior should be expected
~as forE50) for bothl` andL` ; that is, no new effects
nor symmetries are introduced by such a dynamical process
in L` as compared to the case ofl` . As a matter of fact, the
only hypothesis that seems to describe correctly thecritical

region, namely, the closest neighborhood of the critical point
that has been accessible so far by the MC method, is
c;«2b with b.0.3 for bothl` andL` ; this is demon-
strated in Fig. 7~see also Refs.@6,16#!. Figure 7 suggests that
the two systems have the same critical thermodynamic am-
plitude as well.

As a confirmation of the above, we have obtained some
evidence from a few MC short runs that thea priori inter-
plane rate influences somewhat the transition temperature of
L` . ~In fact, we have observed that currents are a fundamen-
tal ingredient in this system. We believe, in particular, that
interplane currents are responsible for the phase transition at
T*̀.0.95,T` , which is indicated in Figs. 2 and 3.! The
same picture ensues from mean-field theory, which demon-

FIG. 4. Field dependence for a typical value of the temperature
@namely,T53.2(J/kB)# of de[ex2ey , the difference between the
density of particle-hole pairs alongx̂ and that alongŷ, for systems
lE andLE as indicated. This has been obtained numerically from
the kinetic mean-field theory in Ref.@8#. ~The field is dimensionless
throughout this work; see the main text in Sec. I for details.!

FIG. 5. Field dependence of transition temperatures@in units of
(J/kB)#; the graph, which is adapted from Ref.@8#, illustrates up to
the case of a saturating field. The upper curves are forlE and
LE , as indicated; the latter corresponds to the phase transition at
TE between states such as the one in Fig. 2~a! and the one in Fig.
2~b!. The lower curve corresponds to the coagulation of the liquid
in only one of the planes ofLE , i.e., the transition atTE* between
states such as the one in Fig. 2~b! and the one in Fig. 2~c!. The
~nonequilibrium! tricritical point which characterizesLE is indi-
cated.

FIG. 6. The dependence with size and temperature of the~di-
mensionless! cumulant~6! for l` (d) andL` (h); the crossings
here locate the corresponding critical temperature@17#, as indicated.
The four different sizes presented here are 20320, 26344,
32382, and 403160, respectively, for bothl` andL` . This plot
suggestsT`

l .1.38 andT`
L.1.30 in accordance with other evi-

dence. Lines are a guide to the eye.
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strates that the transition atT*̀ not occurring inl` depends
crucially on the dynamical rule. More explicitly, it has been
reported@8# that the Metropolis rule, but not other familiar
choices, induces the existence of a nonequilibriumtricritical
point. This means that the phase transition atTE* is discon-
tinuous forE large enough~as observed in MC simulations
for saturating field!, while it becomes continuous for small
enoughE. The point separating these two types of behavior
is estimated by the mean-field approximation to be at
E5Ec53.560.1; cf. Fig. 5.

The latter result has moved us to perform a systematic
MC study ofLE for varying values ofE andT. The data
confirm the above. In particular, the existence of a critical
point ~for r5 1

2! at TE* for any E,Ec.2 has been demon-
strated. Interestingly enough, these critical points seem to be

of the Ising class. Some indication of this is given in Fig. 8,
which suggestsb5 1

8. Even more convincing is perhaps Fig.
9, which shows quite a consistency of data for energy fluc-
tuations with the specific heat function corresponding to the
Onsager solution. This simplicity of behavior atTE* for
E,Ec was a surprise to us. That is, one is dealing here with
a full nonequilibrium state in the sense~e.g.! that a~dissipa-
tive! particle current exists, as illustrated in Fig. 10, but the
behavior is much simpler than nearT` . For instance, no
such fit, which suggests that a fluctuation-dissipation relation
holds, has ever been observed so far aroundT` . Inciden-
tally, we mention that Fig. 10 suggests a change of slope
near the transition atTE* which is similar to the one often
reported for fast ionic conductors.

III. CORRELATIONS AND SCALING BEHAVIOR

We turn now to the scaling properties of correlations and,
in particular, to the intriguing question about the apparent
existence of two correlation lengths; cf. first paragraph of the

FIG. 7. Temperature dependence ofc«2b for different assump-
tions aboutb, as indicated. Data forc correspond to themagneti-
zation M for l` ~asterisks! andL` (h) ~both are extrapolations to
infinite sizeobtained from squared lattices by the method in Ref.
@16#!, and to thelocal density mfor l` (d) ~for the 403160
lattice!. The only three sets of symbols which exhibit independence
of temperaturenear «50 ~which turn out to be fitted by the solid
line corresponding toB51.24) are forb50.27, andT`

l 51.38 ~as-
terisks!, T`

L51.30 (h), andT`
l (L)51.37 (d).

FIG. 8. A plot of the difference of particle density between the
two planes ofLE , as defined in Eq.~5!, nearTE* (50.95T0) to
illustrate consistency with an order-parameter exponentb5

1
8 for

E51 ~the field is dimensionless; cf. Fig. 4!. The data were obtained
from MC simulations of the 1283128 lattice; the solid line corre-
sponds to the predicted linear behavior.

FIG. 9. A comparison of equilibrium and nonequilibrium
specific heats:the solid line is the Onsager exact result and the dots
correspond to mean squared fluctuations of theenergy e~from the
MC simulations reported in Fig. 8 forE51). The high-temperature
phase transition which occurs atTE is suggested by data for
T.TE* . The energye is defined as the probability of a particle-hole
pair in the system.

FIG. 10. Temperature dependence forE51 ~cf. Fig. 4 caption!
of the particle current, namely, stationary average of the net number
of particles crossing anyŷ section per unit time in direction1 x̂
divided byN, as obtained from the MC simulations in Fig. 8.
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preceding section. The consideration of these matters hap-
pens to clarify further the relation betweenlE , LE , l0 , and
L0 . Let us denote byl x andl y , respectively, the two lengths
which seem to be needed to characterize the anisotropies
which are exhibited by the DLG for any value ofT andE. In
fact, anisotropic clusters have explicitly been reported before
both at highT @6,8# for anyE and at lowT @24# for small
E. It is our belief thatl x and l y depend on each other. Our
argument may be made explicit for largeE at low T, for
example. Then one may interpret the lengths, respectively, as
the mean displacement alongx̂ and ŷ of a hole ~particle!
within the striped liquid~gas! during a time intervalDt. If
the two processes are independent of each other, one may
imagine that a random walk occurs along theŷ direction, i.e.,
l y
2;DDt, whereD is the diffusion coefficient. However, one
should expect longitudinally thatl x;yDt with y correspond-
ing to the~terminal! velocity due to the applied field. There-
fore, the expectation is thatl x; l y

2 . One may analyze quan-
titatively this possibility by assuming that correlations
behave, approximately, as

G~x,y!;
ax22by2

~x21y2!2
~7!

for sufficiently largedistances. On this assumption one ob-
tains thata;b§ with §'2 over the whole range of tempera-
tures investigated@16,6#, in accordance with our expectation.

This observation may be interpreted as indicating that the
shape of the~anisotropic! clusters is in practice determined
for each given value ofE, and the relation between the two
lengths is then maintained asT is varied. Therefore, the ex-
istence of a unique relevant correlation length,j, nearT` is
suggested whose relation with the other lengths may be
imagined to be roughly

j;Al xl y; l
y

§11
2 , §'2, ~8!

for example. This explains thatl x may not contribute to the
critical and scaling behavior of the DLG; onlyl y , which is
essentially mediated by the existence of the interface along
x̂, matters. A similar situation has been reported for~self-
affine! interface phenomena@25#. Self-affinity has been
shown to imply in the critical point of some growth models a
logarithmic behavior which has indeed been observed to
characterize the size fluctuations of the interface of the DLG
@26,15#.

The above suggests that anisotropic critical behavior is
not a consequence of two correlation lengths but of the prop-
erties of the interface. This fact may explain also the DLG
scaling properties which have been reported before. To see
this, let us assume~against our belief! that two relevant
lengths exist, and consider the Hamiltonian

H5E dr @~¹c!21«c21uc4#, u.0, ~9!

for instance. Following standard reasoning and notation
@27,28#, the pair correlation function is

G~x,y;«,u!5lD1hG~l11Dx,ly;«l21/n,ulu/n!. ~10!

Then usingl5«n here gives the correlation lengths as
jx;«2n(11D) andjy;«2n for «→0, and (D1h)n52b. It
ensues therefore that one should have rather generally below
T` that

c~Lx ,Ly ;«,u!5«bc~Lx
21«2n~11D!,Ly

21«2n;1,u«u!. ~11!

Let us assume also that one may write

c~Lx ,Ly ;«,u!.c~«,u!1Lx
21X~«,u!1Ly

21Y~«,u! ~12!

to first order for large enough size. One has after combining
this with ~11! that

X~«,u!5«b2n~11D!X~1,u«u!, ~13!

Y~«,u!5«b2nY~1,u«u!. ~14!

AssumingD'0, as implied by our arguments above, one
therefore has belowT` that

c~Lx ,Ly ;«,u!.B«b1«b2nFX~1,u«u!

Lx
1
Y~1,u«u!

Ly
G ,

T,T` . ~15!

The first confirmation of this kind of finite-size correction in
nonequilibrium anisotropic systems is probably in Ref.@16#.
It was remarked there that the dependence of the order pa-
rameterM on the sideL of l` conforms toM;L21 for
T,T` , andM;L2v with roughlyv'0.2 forT.T` . Con-
sequently, the proposal for squares was that

c;H L2b/n~Bkb2Bsk
b2n! for T,T`

Bs8k
2vn for T.T` ,

~16!

wherek[«L1/n. The fact that this is an excellent description
of data for bothl` andL` is illustrated in Fig. 11. Interest-
ing enough, the empirical observation in~16! for T,T` cor-
responds to~15! with

2Bs5X~1,u«u!1Y~1,u«u! ~17!

only if D is zero or sufficiently small~and Lx5Ly). One
cannot conclude so generally aboveT` because the param-
eterv in ~16! turns out to be model dependent; cf. caption
for Fig. 11.

Checking~15! for rectangles (LxÞLy) would require high
quality data for many different shapes; we only consider here
squared geometries, which is much more convenient. In any
case, squares have provided us an even more stringent test of
the validity of ~15! than the one in Fig. 11. This is illustrated
in Fig. 12, in which the finite-size corrections are isolated
from the bulk ~unlike in Fig. 11!. One obtains from the
analysis in Fig. 12 for the quantityM corresponding toL`

thatB.1.24, and thatX(1,u«u)1Y(1,u«u) is constant, im-
plying Bs.1.1, for 1,j;«2n,L; these values forB and
Bs agree well with previous estimates in Ref.@16#. Figure 12
also reveals the expected departure from scaling for theun-
physicalregionj.L. Interesting enough, the corrections in
~15! turn out to have different sign, namely,
X(1,u«u).0, Y(1,u«u),0; cf. below. The above formulas
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cannot be fitted to data if the valuesb5 1
2 and n5 3

2 that
characterize the continuous model@15# are used instead of
the values reported here.

In order to see further consequences of~11!–~14!, we
remark that it is implied forDÞ0 that

X~«,u!

Y~«,u!
5«2Dn f ~1,u«u!. ~18!

This provides an explicit method for estimating the value of
D, and one may check the field-theoretic prediction,D52 or
Dn51. We have estimatedX/Y from the behavior ofm for
the layered system. That is, several sets of data, each corre-
sponding to a different lattice size and shape, have been
combined with ~12! to obtain X/Y by the least squares
method. The main result is illustrated in Fig. 13. This, con-
firming the other evidence, may be interpreted as an indica-
tion that no singularity occurs in~18! as «→02. It rather
suggests thatD50 given that the bounduX/Yu,1 is indi-
cated, and one obtains from the physical region 1,j,L in
this figure thatX/Y'0.28«20.98 near the critical point for
the finite-size corrections.

The assumptions about the driving force, which is intro-
duced as a relevant variable, seem to be at the origin of the
failure of the presently accepted continuous version of the
DLG. The latter involves a driftJ(f)5a01a1f

21•••

which causes the nonequilibrium system to have the critical
behavior of the Gaussianf2 model ~with an indirect influ-
ence off4). One should expect under such assumption for
the drift that ^J(f)&.a(12m2) with a independent ofT
sufficiently near~but excluding! the critical point@29#. How-
ever, the latter result does not seem to be supported by the
plots in Fig. 14, where data~if the assumptions of the model
are accepted! suggest a more complex behavior ofJ(f).

IV. DISCUSSION

We have compared by MC simulations and kinetic mean-
field theory the various phase transitions which are exhibited
by the layered DLG,LE , and by the standard DLG,l` , for
half occupied lattices. The interest is in the~nonequilibrium!

FIG. 11. The~dimensionless! order parameterversus the right-
hand side of Eq.~16! for different sizes and systems, as indicated.
The values for the parameters, to which the plot turns out to be very
sensitive, have been obtained by the method in Ref.@16#. These
graphs refer tob50.27 andn50.7, and~a! T`51.38, v50.2,
B51.24,Bs50.8, andBs850.33 for the case ofl` that includes all
available data for 7,k,200 belowT` andk.7 aboveT` , and
~b! T`51.3, v50.3, B51.24,Bs51.1, andBs850.38 for the case
of L` including all data for 10,k,300 belowT` andk.3 above
T` . The data outside the indicated ranges which deviate from~16!,
as expected~see the explanation below!, are not included here.

FIG. 12. A plot of c«20.27 versus«20.7/L with T`51.3, as
suggested by Eq.~15! for Lx5Ly5L. This plot contains all the
available data for the squared layered system for different values of
L, namelyL516(s), 40(h), 70(L), and 120(3). The line best
fitting the data near the origin has slope21.1, and extrapolates to
B.1.24, in accordance with the rest of the analysis.

FIG. 13. Temperature dependence of dimensionless relation
X(«,u)/Y(«,u) @cf. Eq. ~12!# as obtained by the least squares
method from data form corresponding to different sizes~namely,
2320320, 2326344, 2332382, 23403160, 2320316,
2326326, 2330336, and 2340364). The line is the empirical
fit X/Y50.277«20.977 forj,L.
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steady state which is obtained by a dynamical rule which
reduces itself to the Metropolis algorithm forE50. LE ex-
hibits two different phase transitions~Fig. 2!. The one at
T`[TE→`.1.30 is similar~for a saturating field! to the one
at temperatureT`.1.38 in l` . That is, in addition to the
fact thatLE exhibits ~for r5 1

2! a configuration within each
plane apparently indistinguishable from the one inl` , both
systems are observed to be characterized by the same critical
indexes, e.g.,b'0.3 ~perhaps alson'0.7 with rather large
error bars!, and by the same scaling behavior over a wide
range of values forT andL. The measured dependence of
MC data on lattice shape and size is consistent with the ex-
istence of a unique correlation length which dominates at
criticality, in spite of the fact that observed anisotropy of
clusters might advise one considering two lengths in general.

The layered DLG exhibits another phase transition for any
E atTE*,TE . It has some similarities with the one inLE for
E50, i.e., the equilibrium case. In particular, the liquid
phase extends completely over one of the planes~for r5 1

2!
so that no interface occurs independently of the value ofE.
Therefore, this is an interesting situation to be investigated.
We have followed a hint from mean-field theory and found
that a tricritical point occurs forE5Ec'2 (Ec53.560.1
within the pair approximation! so that the phase transition is
continuous for anyE,Ec . The study of the critical point at
TE* indicates that it belongs to the Ising universality class for
anyE. Summing up, a clear departure ofb from the Onsager
value is observed nearT` , when the system exhibits a linear
liquid-vapor interface throughout the system along the direc-
tion of the applied field, while such departure is not observed
within a similar critical region nearTE* , E,Ec , in the ab-
sence of the interface.

Our final conclusion is twofold. On the one hand, the
present study suggests which basic ingredients are to be in-
cluded in a field-theoretic version of the DLG and related
systems, e.g., it seems that a drift which is relevant should
not be invoked. The critical behavior of the DLG appears
rather simple from the perspective of known results for other
nonequilibrium lattice systems. That is, the observations
above in the neighborhood ofT` andTE* may be interpreted
as further evidence that the Ising critical point is rather ro-
bust @30#; only the presence of a peculiar linear interface
~and not a driving field, which exists in the two situations
investigated! is strong enough to induce a measurable
anomaly nearT` . We believe this issue deserves further
study. On the other hand, it is suggested that several systems
~mentioned in Sec. I! belong to the universality class of the
DLG. Therefore, experiments that focus on the nature of the
~nonequilibrium! critical behavior of substances that could
belong to this class would be of great interest. A specific
question here is whether the observationb'0.3 is an actual
characteristic of the class or an artifact, e.g., a difficult con-
dition might give rise to aneffective exponent.~It should be
stressed that our MC analysis describes a well-defined scal-
ing region with no indication of any crossover phenomena at
all. However, variations ofb from the above quoted value
should not be ruled out if investigating even closer the criti-
cal point is finally allowed, e.g., in laboratory experiments.!
Slow power-law decay of spatial correlations, as in~7!,
which is a feature of the DLG class@6#, has been observed in
a fluid whose walls are kept at different temperature@31#.
More definite in characterizing the DLG class seems to be
the presence of a linear interface or a similar anisotropic
feature. The chances are that some low-dimensional conduc-
tors @7# and perhaps fluids under shear@32# are good ex-
amples. In relation with the latter, we mention that mean-
field critical behavior@32# has been reported in accordance
with field theory @33#. On the other hand, someanomalies
reported for ionic fluids@34# might also be analyzed from
this perspective, i.e., trying to identify there a nonequilib-
rium ~steady! condition and a linear interface.
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