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The steady-state configurational distribution of an Ising-type family of competing dynamics lattice
models is explicitly found for any dimension. These models are characterized by a spin-flip dynamics
which is a linear superposition of transition rates. Each individual rate attempts to drive the system
asymptotically to a different equilibrium state. In general, the stationary distribution of this kind of
model is not known for dimensions higher than 1. However, for a particular type of rate, we show that
the stationary state is a Gibbsian one with an effective Hamiltonian whose coupling constants depend on
the details of the dynamics. As an application, some related magnetic impure models are studied.

PACS number(s): 05.50.+ g, 05.70.Ln, 02.50.—r, 05.70.Fh

Lattice models are a natural way for understanding
complex real systems. They are intended to simulate the
behavior of many systems in physics, biology, chemistry,
sociology, etc. [1]. Usually lattice models are defined fol-
lowing two different strategies: (a) by giving an explicit
form of the interaction Hamiltonian, and (b) by giving a
set of local dynamic rules. In the first case, the
stationary-state distribution is known to be a
Gibbsian one, and it can be analyzed in the context of the
equilibrium statistical mechanics. The second case is
more general in the sense that the stationary distribution,
if it exists, is not known a priori and does not have to be a
Gibbsian one. Commonly, real systems are in non-
equilibrium states, that is, some external agent prevents
them from reaching an equilibrium distribution. There-
fore we are confined to the second strategy if we want to
study this kind of complex situation. In this paper we
show that for a particular case of an Ising-like family of
nonequilibrium lattice models we are able to find analyti-
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cally its stationary distribution which is characterized by
an effective Hamiltonian for any dimension.

The lattice model is defined as follows. In each node of
a d-dimensional lattice, x EZ?, there exists a spin variable
that may get two values, s{x)=x=1. It is assumed that
the time evolution of spin variables has a Markovian sto-
chastic nature. Therefore, the probability of finding the
system at a spin configuration, s= {s(x)leZd }, at time
t, say p,(s), is the solution of the master equation

9,1, (s)=[c(s%x)u,(s¥)—c(s;x)u,(s)], (1

x

where c(s;x) is the transition probability per unit time
that the spin at site x flips from s(x) to —s{(x) and s*
denotes the spin configuration s after this flip.

The model is fully defined by giving the rate ¢ (s;x). In
particular, if we want to guarantee that the system sta-
tionary state, the solution of Eq. (1), is an equilibrium
one, characterized by the interaction Hamiltonian
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H(s;D=— 3 J454, s4=T1[5sx > (2)

Acz? x€E4
it is sufficient to consider the rate
c(s;x)=¢(BAH(s;])), 3)

where AH(s;J)=H(s%J)—H(s;Y), I={J ,| 4 CZ%, ¢ is
any positive function with the detailed balance property
#(A)=exp(—A)p(—A), and B~! is the temperature. In
this context, a nonequilibrium system is easily built if we
superpose several of these “equilibrium” rates, each of
them characterized by a different J parameter set of
values, i.e.,

c(s;x)=f

Il 47 4P ,(J,) |6(BAH(s;T))
Aczd

={(BAH(3;7)))) , @)

where P 4(J 4) is the probability distribution for the J
coupling constant and is given by the model definition.
The competition between the different dynamics makes
that a kind of “dynamical frustration” appears and the
stationary state is expected to be, a priori, a nonequilibri-
um one. However, in recent years some studies in these
systems have revealed that for some particular one-
dimensional cases it is possible to find analytically the
stationary-state distribution, which is then described by
an effective Ising-like Hamiltonian [2]. That is, these par-
ticular cases behave as systems at equilibrium with
effective parameters, but let us remark that this is not the
rule but the exception. In the attempt to get some analyt-
ic description of the-system behavior at dimensions
higher than 1, we have found that also for the particular
function, ¢(A)=exp(—A/2), the stationary distribution is
a Gibbsian one for any dimension and distribution of J’s.
It is easy to demonstrate the latter assertion by realizing
that the transition rate defined in Eq. (4) can be written as

cls;x)=| I N, |expl—BAH(s;3)/2], )
Alxe 4
with
,  «sinh(BJ )N «cosh(BT)»
4 s1nh(BJ:4 )cosh(BJ") e

BI,
J,_Lln[«e » | -

S T

The transition rate given by Eq. (5) verifies the
detailed balance condition as the equilibrium rate in
Eq. (3). Therefore the stationary distribution is
Ug(s) <exp[ —BH(s;J')]. Let us'mention that not only is
the stationary state characterized as an effective equilibri-
um one but also any of its dynamic properties: relaxation
towards the stationary state, decay of metastable states,
etc. Finally, we would like to emphasize that this is a
peculiarity of the function ¢ we have considered. For
any other election we have been unable to map the sys-
tem into an equilibrium one.

As a particular application of the latter result we
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choose the d-dimensional Ising Hamiltonian as the one in
Eq. (2),

H(s;)=— "3 Jops(x)s(y) , (8)
lx—yl=1

where now the set 4 in Eq. (4) denotes all possible
different pairs of nearest-neighbor sites in the lattice. In
this case the system behaves as an [sing model with a
coupling constant which depends on the temperature and
on the bond distribution P,,(J,,). Several interesting
cases appearing in the literature can easily be worked out
explicitly:

(i) Nonequilibrium impure Ising model: P, (J)
=pd(J —J3)+(1—p)8(J), 0=p <1. This model, intro-
duced in Ref. [3], simulates the presence of nonmagnetic
impurities which distribution changes with time. In this
case the effective coupling constant given by Eq. (7) is

pexp(BJy)+1—p
pexp(—BJy)+1—p |~

In particular, J'(B)=J,/2 when p=1. We see that
J'(B)—Jy/2 and pJ, when B~!—0 and oo, respectively.
Therefore, for d =1 there is no phase transition, the criti-
cal point is at zero temperature, and all the thermal criti-
cal exponents are divided by 2 with respect to the equilib-
rium Ising ones. For d =2 there is a phase transition for
any p with Ising-type critical exponents, and the system
magnetization saturates to 1 or —1 at zero temperature
for any value of p >0. In particular, when p =2 the criti-
cal temperatures are 3,J,=0.5918... and 0.2960...
for d =2 and 3, respectively.

(i) Nonequilibrium spin glass Ising model: P, (J)
=pd(J —Jo)+H{1—p)8(J +J;y), 0<p<1. This model
was studied in Ref. [4] in order to analyze the effect of the
antiferromagnetic bond diffusion in a spin-glass Ising
model. The effective coupling constant is now

pexp(2BJ,)+1—p
(1—p)exp(2BJy)+p |~

J'(B)=(28)"'In

J'(B)=(2B8)""In
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FIG. 1. Magnetization vs temperature for the two-
dimensional nonequilibrium impure (solid line) and spin-glass
models (dashed lines) for different p values.



In contrast to case (i), for d =1 and 0<p <1 there
is no critical point at zero temperature. For d g 2
there is an Ising-type critical point whenever p >

=[14+exp(—28%7,)]7! or p <1—p.(d) where (B(dﬁ
is the critical temperature for the Ising model at dimen-
sion d; in particular, p.(2)=2712=0.7071... and
P.(3)=0.6090. .. . In this case the magnetlzatlon does
not saturate at zero temperature. When 1—p.(d)
<p <p.(d) there is no phase transition. In Fig. 1 the
magnetization behavior is shown for several p values and
dimension 2.

(111) Temperature depending bond  distribution:

oy (J)= =Nexp[—alJ — —B/2a)*], a=a(B). As in the an-
nealed models, it can be assumed that the bonds interact
with the thermal bath and therefore the bond distribution
may depend on the temperature. As an example, we have
considered the above-mentioned temperature- dependent
Gaussian distribution with a=(289)" 18X 1+c¢|g™!
—1|7), ¢ and y being positive constants. In particular, if
1 <y <2, the distribution average value and standard de-
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viation go to infinity (zero) for B—0 (). That is, the
characteristic bond strength and the fluctuations around
it grow with the temperature. For this choice the critical
temperature is 1 and the thermal critical exponents are
the Ising ones multiplied by ¥ in all dimensions.

In conclusion, contrarily to what happens in almost all
Ising models with competing dynamics, we have found a
particular case in which the stationary distribution can
be expressed as a Gibbsian one with an effective Hamil-
tonian. Its coupling constants depend on the original pa-
rameters of the model. Because of this dependence, the
macroscopic behavior of this model is highly nontrivial,
as we have pointed out, for some interesting impure mag-
netic systems.
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