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ABSTRACT

We present here both a Monte Carlo (MC) simulation and a Fokker-Pianck equaticn
(FPE) approach to the kinetic Ising model with two competing temperatures!. The
MC simulation of this non-equilibriurn model shows that its macroscopic stationary
properties are very sensitive to the analytical form of the microscopic dynamical
mechanism. Taking into account the MC results we derive different FPE by using
standard techniques. The deficiences of esach of these FPE are discussed and one
of them is found to be the most suitable in order to treat the model in a field
theoretical context.

1. Introduction

Field theoretical methods have proved very useful in the study of equilibrium
phase transitions; in particular, they have allowed to clarify the concepts of scaling
and universality, and to obtain the values of critical exponents both in static and
dynamical problems. An extension of these ideas to deal with nonequilibrium prob-
lems is presently of great interest. The model that we study here is the kinetic Ising
model with two temperatures . It simulates the presence of two thermal baths
acting on a magnetic system. This model is a non-equilibrium one because of the
presence of dynamical frustration, 1. e., due to the competition between different
dynamical mechanisms {each one characterized by a different temperature) the de-
tailed balance condition does not hold and it does not seem possible to express the
stationary solution as a Gibbs distribution. Since no exact method is available to
solve this model a computer simulation has been carried out.

The simulation shows that contrarily to what happens in equilibrium prob-
lems, in this model there is a dependence of the macroscopic stationary properties
on the analytical form of the microscopic dynamical mechanism (i.e. on the con-
crete realization of the master equation that defines the model)?. Therefore, any
description of this model should take into account this dependence. In particular,
the starting point for a field theoretical approach to a kinetic model is the so-called
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Fokker-Planck Equation (FPE). Then, the latter equation has to contain sufficient
microscopic kinetic information to properly describe the macroscopic behavior of
the systern.

The paper is divided in two parts. In the first one the model is defined and
the MC simulation is described. In the second one we introduce different FPE which
have been derived by using standard techniques. We discuss their shortcomings and
select the most suitable to achieve our goals.

2. The Model and the MC simulation

Let us consider a dynamical Ising model in two dimensions with a total of »
spin variables s, = 1,z € A and A being a square lattice. The evolution of the system
is governed by a markovian master equation in which only spin flip processes are
considered:

OuP(s,t) = Y (w(s*, ) P(s*, 1) — w(s,z)P(s,1)) (1)
where s is a spin configuration, P(s,t) is the probability of finding the system in s
at a given time t, s* is the configuration obtained by flipping the spin at x in s, and
w(s, z) is the probability per unit time for the transition from the configuration s to
s*.

For systems whose stationary state is an equilibrium one defined by a Hamil-
tonian H(s), the rates, w(s,z), that fulfil the detailed balance condition:

w(s, z) exp(—BH(s)) = w(s*,z) exp(- BH(s*)) , (2)

guarantee that the system will evolve from almost all initial conditions to its final
equilibrium state. Besides, it is usual to consider w(s,z) depending only upon the
variation of H(s) in the transition. The rates verifying the latter two conditions can
be written as: w(s,z) = p(86H(s)), where 6H = H(s*) — H(s) and p(z) = e"*p{—z). For
example, two usual choices are: (i} o(z) = ezp(~2/2) and (ii) @(z) = 1 — tanh(z/2). For
a fixed Hamiltonian, the stationary properties of these models does not depend on
the concrete form of ¢(z),

The kinetic Ising model with two competing temperatures consists on having
a rate which is the superposition of two different mechanisms: w(s,z) = (s, z) 4
(1 - pJue(s,z). Each w;,j = 1,2, when acting apart, drives the system to a different
equilibrium distribution, P, ;(s) = ezp(—8; H1sing(s))/Z where 8, is the inverse of the
jth temperature, Hjpun, = —J Lix-yj=15xs5y and 0 < p < 1. In dimension greater
than one, the competition between both mechanisms prevents the system to fulfil a
detailed balance condition with respect to any hamiltonian, As a consecuence, the
stationary solution of the master equation will be a non equilibrium one.

In order to gain insight about the behavior of this system we have performed
a MC simulation. We have taken a 96%96 lattice and considered two kinds of
transition rates commonly used in the literature, namely, the ones given by (i) and
(ii) above. The values of p and Ty are maintained fixed in each simulation and T,
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is varied. We will not present here a detailed analysis of the simulations. but only
expose the main qualitative results:

1- The curves of the net magnetization m versus 7, have different shapes for
different rates. In particular m{Ty = 0) = +1 and |m{T: = 0)| < 1 for the defined above
rates (i) and (ii) respectively. Different behaviors are also found for the energies,
specific heats, susceptibilities, and other magnitudes when the transition rates are
modified. The differences are, as in the net magnetization case, both quantitative
and qualitative.

2- When Ty is close to the Onsager temperature, Tp, the system can be
described quite well like an equilibrium one, with an effective temperature.

3- Although our results in this respect are not conclusive, it seems that the
slopes of the magnetization curves at the critical point differ from the equilibrium
one, and they also depend on the parameters as p or T3. Thus, critical exponents
may change. Futher simulations are required in order to better elucidate this point.

The main conclusion is that the analytical form of the transition rates influ-
ences dramatically the macroscopic behavior of the system.

3. Fokker Planck Equations (FPE)

As we have pointed out before, a field theoretical approach for this model,
requires a FPE describing 1t as reliably as possible. There are different ways to
approximate a given master equation by a FPE; none of them is rigorous, but it
is possible to irmpose several conditions to the FPE that can make it much more
reliable.

A usual way to get a FPE in equilibrium dynamical problems consists of
replacing the original microcopic dynamical model by a continuous simpler one in
such a way that the global properties of the stationary state, i.e. symmetries, phase
transitions and criticallity.., are maintained. This is the case of the model A used
to study dynamical properties of the non-conservative Ising model 3. The success
of this substitution in the study of equilibrium critical phenomena is guaranteed
because of universality. In our nonequilibrium problem we can define a FPE in
a similar way: the simplest one we can construct consists of the superposition of
two models A, each of them with a different temperature. In this same level of
aproximation we can also consider some approaches for driven diffusive systems?,
that are also non-equilibrium problems, but where the system is approximated
by a modified model B®. This is in principle an oversimplification because the
dependence on the microscopic dynamics is played down. Universality in non-
equilibrium critical phenomena has not been proved in general. So, the construction
of a FPE in the way described above is at least dangerous. We cannot guarantee
that the critical behavior of our original model is the same that the one generated in
this approximation. In fact, as it can be easily shown, this way to proceed reduces
the problem to an effective equilibrium one, that is, the system behaves as if it
were at equilibrium with an effective temperature defined by T.;; = g1 + (1 — p)Th,
and any other nonequilibrium effect, such as the dependence on the dynamics, is
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eliminated. This is in disagreement with what we observe in the MC simulation.
Therefore the conclusion is that, as this kind of simplifications is not safe enough, in
order to represent the system we need a more elaborated FPE that should describe
the original model as closely as possible.

A second way to derive a continuous FPE is provided by truncating a
Kramers Moyal expansion of the original master equation ®*. This standard approach
respects a dependence on the microscopic dynamics, but it presents iraportant defi-
ciences. In particular, a disadvantage of this approach is that the detalled balance
condition does not hold even in the equilibriumm case, and so this form to do the
continuum limit does not maintain the property that the stationary solution is an
equilibrium one. This is a very dissapointing fact because even in the simplest case
of systems at equilibrium spurious phenomena may appear. So we consider that
this approach is not good enough for our purposes.

In order to overcome these drawbacks, we have derived a new FPE following
the scheme introduced by Hanggi et al ® which guarantees that, in the continuum
limit, the stationary solutions for systems with equilibrium states is preserved. The
FPE derived is: ‘

0 - - [ ax | sgelotal + £ gt =] P60 ®)

where ¢(x) is the continuous magnetization at point x. The coefficients a,(¢,x) and
L{¢,x), whose definition will be given elsewhere 7, depend on the concrete form
of the transition rates. This FPE reproduces in the equilibrium limit the exact
stationary solution and depends on the microscopic dynamics in nonequilibrium
cases. Therefore it constitutes a convenient starting point to apply field theoretical
techniques ® to our model. In particular, starting from this FPE it is possible to
derive the solution in a path integral form with an asociated lagrangean density
which depends on the dynamics. This is the basis to renormalize the theory, to
consider renormalization group techniques and to study, for example, the critical
exponents of the system.

In conclusion, we have pointed out that the role of microscopic dynamics is
essential in a non-equilibrium system and we have derived a suitable FPE to include
properly this fact in a field theoretical treatment.
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