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Abstract. — We present results of computer studies of the spatial correlations in two
nonequilibrium model systems. These are lattice gases on Z2 deseribed by (apparently) non-
Gibbsian probability measures which are stationary with respeet to simple, anisotropic, particle-
conserving stochastic dynamics, The translation-invariant pair correlation functions G(r) are
found to decay like a quadrupole field, i.e. for r=(z,y), G(r) ~ (ax®— by®ir*, over a range of
parameter values corresponding to «weak coupling» in the dynamics. This gives the strongest
evidence to date of the generic nature of long-range correlations in conservative anisotropic
nonequilibrium systems—in accord with some recent theoretical predictions. Some other
properties of these models are also caleulated, In particular it is found that, despite the slow
decay of the correlations, the fluctustions in particle number look Gaussian.

1. Introduction.

In equilibrium systems long-range spatial correlations usually occur only for special
values of the system parameters. For example, in the standard ferromagnetic Ising model,
long-range ecorrelations appear only at zero magnetic field and T= T. the critical
temperature, Quite generally, high-temperature phases of Gibbs measures with finite-range
interactions have exponentially decaying correlations[1]. In contrast to this there is
growing evidence that long-range spatial correlations in nonequilibrium systems are the
norm instead of the exception [2-6]. In particular, it was argued in ref. [3, 5], on the basis of
perturbation expansions and renormalized fluctuating hydrodynamics, that the density-
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density correlation in the stationaty state of systems with anisotropic conservative
dynamics should decay generically as a quadrupole field. This corresponds, in two
dimensions with proper rescaling of % and y, to

ax?— by®

G(r) —~ 7‘4 (T o 1) 3 (1)

where r=(x,%), and a and & are constants which may depend on ¢, the average particle
density, and other parameters of the system.

In this paper we study via computer simulation two simple two-dimensional lattice gas
models whose dynamics are conservative, anisotropic and refleetion invariant with respeet
to the principal axes. The density-density correlation G(r) in the translation-invariant
stationary state is defined as

G = () =, o=

2

> nr), @

where %(r) is the site occupation number, N the total number of sites and {.) means the
ensemble average with respect to the stationary measure. We find long-range spatial
correlations consistent with (1). We also examine some other properties of the models.

2. Model I: Anisotropic zero-range process.

This is a discrete-time version of the anisotropic zero-range process[7] studied by van
Beijeren[4]. Let n(r) be the occupation number of particles at site r=(, y), n{r) a non-
negative integer. The dynamics at every time step consists of two parts. First, one particle
from each occupied site r, n(r)>0, jumps to one of its four second-nearest-neighbor sites
with equal probability; then each of the remaining particles at r jumps independently to one
of its two nearest-neighbor sites in the =z directions, also with equal probability. We
expect that the nature of the correlations in this mode! is gualitatively the same as in van
_ Beijeren’s model which involves a continuous time evolution with anisotropic local density-
dependent jump rates, i.e. the rate for each particle at a site r=(x,y) with an occupation
number () jumping to (¢, + 1) is #7i(r), while the rate for jumping to (x+1,y) is one,
independent of n(r).

- To carry out the simulation, we used a lattice of size L X L with conventional periodic
boundary conditions in the +y directions. In the * & directions, we used shifted periodic
boundary conditions in which site (L-+1,%) is identified with site (1,y+1). With these
boundary conditions, the two-dimensional lattice can be treated as a one-dimensional array
in the computer simulations, so that the updating can be vectorized. In this model, particles
alternately oceupy the sites consisting of the odd and even x columns, respectively. We
eliminated this repetition by properly redefining the lattice.

Correlation function. - We performed simulations for systems of size L = 32, 64 and 128
with an average particle density per site o = 1. We also did simulations on systems of size
L =32 with p=0.25 0.5, 2, 8 and 4. All simulations started with the particles randomly
distributed. To reach the stationary state, we ran for about 10000 initial time steps. Then
we took data of n(r) after every 10 time steps to compute the correlation funetion.

Figure 1is a 3D plot of G(r) for a system of size L = 128 and p = 1. The £ x 2 region around
(0, 0) is excluded from this plot. Generating the data in this plot typically takes 30 to 60 hours
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Fig. 1. — 3D plot of G(r) for p=1 and [, = 128.

of CPU time on a Cyber 205. It is apparent that G@) follows qualitatively the quadrupole
form given in eq. (1). To obtain quantitative results, we plotted G(x, 0) and ~ G(0, %) in log-
log scale in fig. 2. The relative statistical error of the data at » can be estimated via the
formula £ rzf(L\/I\T), where N is the number of samples of the data. For » near one this gives
anerror bar < 107 and around the tails the error bars are about 1/30, 1710 and 1/2 for L = 82,
L=64 and L =128, respectively. The results agree with a 1/#2 decay over the range from
about 2 or 3 lattice spacings up to almost half of the system size, the maximum possible
distance. :

To obtain a formula of type (1) for G(r) we used a general three-parameter fit obtained by
minimizing

_ Lig awz — byz 2 .
I((I, b: C) - Eﬂ (G(r) _W) ] (8)

were the prime on the sum means that the 2 x 2 region around (0, 0) is excluded. A relative
error is defined as

Lizs

error=1Ia, b, )| ¥ GAr). 4
r=0

For , =1, where we have the most extensive data, we find e =5=0.2, and ¢=1.5. This
value of @, b and ¢ can be compared with the results derived from fluctuating hydrodynamies
by van Beijeren[4]. Following the same procedure for our dynamics, we obtain an explicit
dependence of ¢, b and ¢ on p and on p(0), the probability of a site being empty. In particular,
we have ¢ = /b, which seems to disagree with our data. However, we note that our fitting is
somewhat insensitive to the value of ¢ over a range of order one. Thus our data may still be
consistent with the formula.

Our data for other values of p gives a~ b ~¢", y==1.7 with large error bars for p much
smaller or much larger than one. To compare with van Beijeren’s formula, we need to
determine the dependence of p(0) on p. The simulation data is unfortunately not good enough
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Fig. 2. - Plot of In[G{x, ®)] vs. Inx and In [~ G0, )] vs. Iny for L = 128 (*: w-axis, A: y-axis) (80000
samples), L =64 (x: x-axis, O: y-axis) (400 000 samples), and L =382 {+: z-axis, O: y-axis) (1200000
samples). The solid lines indicate slope — 2. Data has been vertically shifted to avoid overlappings. The

error bars go from less than <10™* for » near one to ahout 1/30, 1/10 AND 1/2 around the tails for
L=32 L=64 and L =128, respectively.

Fig. 8. - Distribution of particle numbers in a 10x 10 block. The solid curve is the Gaussian
distribution with same mean and variance.

for this purpose. Using however the mean-field approximation to p(0} described below, van
Beijeren’s formula for small ¢ goes like ¢* which is consistent with our data. For large p the
simulation results apparently disagree with the formula,

We interpret the large error bars in our data for e much smaller or much larger than one
as follows: for small g, most of the sites are occupied by either one particle or no particles, for
which the x-dynamies and the y-dynamies do not differ. The stationary state is then close to
that of a system with symmetric dynamics which is just a simple product measure [7]. For
large p, the particles have a much larger probability to move in the + % direction than in the
£ y direction. The stationary state is then, in some sense, close to 2 one-dimensional system
with only @-dynamics, which again has no long-range spatial correlations. Thus, we expect
to have more difficulties seeing the long-range spatial correlations in the simulations for
small or large ¢'s.

Numbers of particles per site. — The site number distribution p(n) for various average
densities was also collected in the simulations. We compared it with the probability
distributions of site oceupation numbers obtained by assuming no correlations between the
sites as would be the case if the dynamics were isotropic. In that case it is easy to see [7] that
for rates like those used by van Beijeren in the z-direction, the site number distribution is 2
Poisson distribution, (¢*n!)exp[— ], while for the dynamics in the y-direction, it is 2
geometrical distribution, (141 + 0))(p/(1 + o))

The simulations show that p(n) for small values of % follows the corresponding Poisson
distribution closely; while for larger values of n, p{n) is between the distributions for -
dynamies and y-dynamics. As o gets small ( »=<0.5), the range of # for which p(n) follows the

Poisson distribution increases. This is consistent with the comments made earlier about the

nature of the stationary state for low and high densities.

J
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Flmtuations. — It is well known[1] that in systems with rapid decay of all correlations
the suitably normalized fluctuations in the number of particles in a region A,

1
2 [nlr) —el,
k! p‘| l red

will approach for [A[>1 a Gaussian distribution with variance |4 ]! > G(r—r"), where

Na =

rrea
|4, the numbers of sites in A, is assumed very small compared to the size of the system. We
were interested in seeing whether this will still be true for our system which has such long-
range correlations. In fact this is necessary for consistency with the derivation of (1) from
fluctuating hydrodynamies[3, 5). .

We therefore computed », for A a rectangle of size [ X I' with[=1,...,10 and ' = 1,...,10
for a system of size L = 128 and density p=1. The result for I=1"=10 is given in fig. 3
where the data is compared to the appropriate Gaussian distribution. The agreement is seen
to be very good. Similar agreement is obtained for 1+’ with 1 <<, I' < L. We note that in
fig. 3 the data has a small but systematic shift to the left of the corresponding Gaussian. This
shift is similar to the shift which occurs when a Poisson distribution with 4 large parameter
is approximated by a Gaussian distribution. We thus expect this to disappear as |— o,

3. Model II: Anisotropic two-temperature Kawasaki dynamics.

We also investigated numerically another conservative anisotropie, noneqguilibrivun, 2D
lattice gas. In this model, studied in[5], the occupation variables #(r) take on ondy the values
O or 1 (spin down or up). The configurations evolve aceording to the following stochastic
mechanism. A lattice bond is chosen at random with rate one: if the bond is along the a-axis,
an exchange of the values of the occupation variables on the adjoining sites is always
performed; if the bond is along the y-axis, the exchange is accepted according to a transition
probaility ¢ =min (1, exp[— B4H]), where 2AH is the change in

pH=—48J 3 n)nr) >0, (5

|r=rl=1

that would occur if the attempt is successful. We note that H is the energy of a
ferromagnetic Ising system with isotropic interactions. We can thus think of our system as
an Ising system which evolves according to Kawasaki[8] exchange dynamics (with
Metropolis rates[9]) having an infinite temperature along the z-axis and 7'=(kz 8)™! along
the y-axis. This model has some similarities with the driven diffusive system (DDS) studied
in recent years[2, 10-12]. The difference with DDS resides in the symmetry here between
the + x-directions. In the DDS with strong field only jumps in + x-direction are performed.

We performed a Monte Carlo study of this system for the case of a half-filled lattice,
p=1/2, of size 50 x50 with periodic boundary conditions and a range of temperatures
measured in units of Ty = 2.27J/ky. Once the stationary state had been reached, we took 200
Imeasurements in an interval of 20000 MCS.

Correlation function. - We computed the pair correlations G(x, 0) and G{(0, ) along the x
and y directions, respectively. To analyze the power law decay characteristic of this model,
we plotted in fig. 4 log G(x,0) vs. log. One can observe that at high temperature the curves
have a slope of —2, in agreement with (1). ¥For T close to 7., finite-size effects become
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Fig. 4. — Plot, of In4G(x, 0) vs. Inr. ‘The temperature are: 1.5 (0), 1.6 (+), 2.0 (x), 3.0 (), and 6.0 (+).
The solid lines have a slope ~2.

Fig. 5. — Plot of —Inm vs. ~Int, where t=1—T/T, is the reduced remperature with T.=1.33.

important, the corresponding curves do not fit to a slope — 2, though we expect [13] that the
asymptotics for an infinite system still follows (1).

Nearest-neighbor correlations. — Inf5] a high-temperature expansion of the master
equation was developed. This gives to first order in 8, for the case p= 1/2,

46, oypT =4 —20.7519,

m—

460, 1T =25=3~0.2481. ®)

e

In table I we present a comparison between these high-temperature expansion results and
the Monte Carlo simulations for serveral temperatures in the high-temperature regime. The
fact that the value for the ratio G(1, 0)/G(0, 1) for T/Ty= 6.0 compares not so well with the
asymptotic ratio is probably due to statistical error. We also show there the corregponding
values for DDS taken from [2]. For our model the values of the correlation function at high
temperatures appear to be significantly smaller than those for the DDS in both principal
directions.

TABLE L. — Monte Carlo results of the nearest-neighbor correlations and high-temperature analytical
results. In parentheses are the corresponding data for DDS taken from[2].

TiTy

ATG(L, )

ATG(0,1)

G, 0/G(0, 1)

15
1.6
2.0
3.0
6.0

0

0.822

0.776 (0.857)
0.732 (0.830}
0.733 (0.824)
0.725 (0.822)
0.752 (0.844)

0.431

0.357 (0.436)
0.302 {0.379)
0.257 {0.358)
6.199 (0.365)
0.248 (0.360)

1.907 =
2.174 (1.966)
2,422 (2.190)
2.857 (2.302)
3.639 (2.252)
3.031 (2.345)
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Phase transition and comparison with DDS. — In analogy with DDS[2], we consider the
order parameter

m=((M)r— (M})p'® )
with
11 *
2 .2 X _
My Lg%) {L x%} @n(r) 1)} ; @®)
where #,y stand for indices over the x and y directions, respectively.

The data present a linear behavior of the order parameter when fitted to m = A(T — T)?,
with T, =1.33, A =0.88 £ 0.015 and b = 0.235 £ 0.006. We show this fitting in a log-log plot
in fig. 5. '

We observe that similar to DDS[11], there is an increase in the «critical temperature»
with respect to that of equilibrinm. Our best-fitting result for the eritical temperature is
T.=1.33 which coincides with that of DDS within error bars. This is somewhat surprising
since the critical temperature is generally model dependent. The result b=0.23 is also
apparently the same as the simulation result for DDS in[11]. This suggest that the critical
behaviors of these two models may be in the same universality class. We note however that
Schmittmann and Zia (12, 14] have suggested that for DDS in d =2, b should be close to its
mean-field value, 1/2, with small, presumably logarithmic corrections. They further
suggested that our model is in the same universality class as the «random field»> DDS which

has b =0.29 in their field-theoretical calculations. More analytic and simulation works are
needed to resolve this issue.
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