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Abstract. We assume that a system at a mesoscopic scale is described by a field
φ(x, t) that evolves by a Langevin equation with a white noise whose intensity is
controlled by a parameter 1/

√
Ω. The system stationary state distribution in the

small noise limit (Ω→∞) is of the form P st[φ] � exp(−ΩV 0[φ]), where V 0[φ]
is called the quasipotential . V 0 is the unknown of a Hamilton–Jacobi equation.
Therefore, V 0 can be written as an action computed along a path that is the
solution from Hamilton’s equation that typically cannot be solved explicitly. This
paper presents a theoretical scheme that builds a suitable canonical transforma-
tion that permits us to do such integration by deforming the original path into
a straight line and including some weights along with it. We get the functional
form of such weights through conditions on the existence and structure of the
canonical transformation. We apply the scheme to get the quasipotential alge-
braically for several one-dimensional nonequilibrium models as the diffusive and
reaction–diffusion systems.
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1. Introduction

Thermodynamics show that many macroscopic properties of systems at equilibrium
states are related to each other through a thermodynamic potential. Once we know,
for instance, the entropy for a one-component system as a function of energy and mass
density, we can deduce many other observables: specific heat, compressibility, pressure,
or temperature. However, thermodynamics do not give us the explicit form of a system’s
thermodynamic potential. The equilibrium statistical mechanics solve this problem by
introducing the Gibbs invariant measure for the microscopic degrees of freedom. In
our opinion, the elegant part of this connection between the microscopic and macro-
scopic descriptions is that the Gibbs measure depends on the object that defines the full
microscopic system dynamics: the Hamiltonian. Therefore, all of the system’s dynami-
cal microscopic details are summed up and contained in the thermodynamic potentials.
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We see that systems at equilibrium have a complete set of theories that allow us to
address much interesting macroscopic behavior, for instance, phase transitions.

However, systems at equilibrium are not the most common states in nature. Typi-
cally, the systems at stationary states contain currents of any type, energy, mass, etc,
that appear due to unbalanced boundary conditions and/or the effect of external agents
that induce some driving. From the microscopic point of view, few things, but very rele-
vant ones, have changed compared with the equilibrium case: we typically have a system
of interacting particles whose dynamics are still Hamiltonian except that we now include
on it the dynamical effects from the boundaries and/or the external agents. These appar-
ently small changes break down the theories that apply to systems at equilibrium. First,
we do not know how to build a complete macroscopic theory similar to thermodynamics.
Nevertheless, there have been many efforts to justify the existence of some intermediate
or mesoscopic descriptions as the Boltzmann equation or macroscopic ones, such as the
Navier–Stokes equations for fluids [1]. Second, the natural invariant measure defined
on the phase space is of no practical use. For instance, we can use the SRB measure
at the non-equilibrium attractor when the system is ‘very’ chaotic [2]. It is expected
that the volume of the nonequilibrium attractor is zero due to dissipation. Still, it could
be assumed to be dense in phase space when the degrees of freedom tend to infinity.
However, the attractor’s topological structure typically depends strongly on the overall
system dynamic trajectories, and therefore it is unknown [3]. We should compare this
complex structure with, for example, the microcanonical measure at equilibrium where
it is constant on the ‘a priori ’ well-known attractor that is the equal energy manifold
H(x, p) = E.

Some of these problems may be circumvented by studying systems with Markovian
dynamics. The attractors are compact sets that depend on the physical constraints of
the variables. Therefore, many of the complexities associated with the attractor topology
go away compared with nonequilibrium particle systems. There have been many efforts
to elucidate general properties of such non-equilibrium systems on lattice models: voter
model, contact process, exclusion process, etc [4]. For many years the stationary mea-
sure typically could only be obtained a in few simple cases, such as the zero-dimensional
stochastic models, systems with local detailed balance condition [5] or in the thermody-
namic limit of the KMP model for heat conduction [6]. A breakthrough took place by
the rigorous derivation of the stationary probability for the one-dimensional boundary
driven symmetric simple exclusion model (SSE) by Derrida et al [7]. In SSE, each site
can be empty or with one particle. The dynamics are very simple: a randomly chosen
particle may hop to an empty neighbor’s site with some given probability. However, at
the two boundaries, there are exit and incoming probability rates that may be different.
Therefore, it may create a net current of particles through the system. When the number
of lattice sites, N , tend to infinity and the density at the boundaries is fixed and given
by φ(0) = φ0 and φ(1) = φ1, φ0 > φ1, Derrida et al deduced that the probability to find
a density profile η = {η(x), ∀ x ∈ [0, 1]}, where x ∈ [0, 1] and η(x) ∈ [0, 1], is given by a
large deviation functional:

P [η] � exp [−N(V0[η])] (N →∞), (1)
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where V 0[η] is called quasipotential and it is given by:

V0[η] = V0[φ
∗] +G[η, η̃] (2)

with

G[η, η̃] =

∫ 1

0

dx

[
η(x) log

[
η(x)

η̃(x)

]
+ (1− η(x)) log

[
1− η(x)

1− η̃(x)

]
+ log

[
η̃′(x)

φ1 − φ0

]]
,

(3)

where η̃(x) is an auxiliary function that is the solution of the second order differential
equation

η(x) = η̃(x) + η̃(x)(1− η̃(x))
η̃′′(x)

η̃′(x)2
(4)

with boundary conditions: η̃(0, 1) = φ0,1 and the stationary profile is given by
φ∗(x) = φ0 + x(φ1 − φ0). They also mention that all of the η̃(x) functions such that

δG[η, η̃]

δη̃(x)
= 0 (5)

are the ones that solve the differential equation (4), which is a bit intriguing. The reader
can find at [7] many interesting properties and insights of this explicit quasipotential
as, for instance, the existence, uniqueness, and monotonicity of the solutions η̃(x) from
the differential equation (4).

Let us remind that the quasipotential for systems at equilibrium is directly related
to the free energy functional that is a thermodynamic potential . That makes V 0 a fas-
cinating object to analyze when looking for a non-equilibrium thermodynamic theory
(if possible). For instance, let us focus just on the mathematical structure of Derrida’s
result. Please observe that the quasipotential seems to be a local functional as it hap-
pens at equilibrium. However, the auxiliary field that is the solution of the second-order
differential equation depends on the given η(x) in a non-local way and on the bound-
ary conditions. In our opinion, the elegant and inspiring part of this solution is how
the non-local behavior that is typical in many non-equilibrium stationary states is
mathematically codified.

Later, using similar techniques, Enaud and Derrida [8] obtained the quasipotential for
the boundary-driven asymmetric simple exclusion process (ASEP) for the driving field
aligned with the density gradient. They obtained a quasipotential’s mathematical form
similar to the SSEP case showed above: a local functional depending on an auxiliary field
and a second-order differential equation for it. The strategy of studying lattice models
with Markovian dynamics was successful, and it gave us an important reference on the
structure of the quasipotentials. However, up to our knowledge, these results based on
Derrida’s matrix technique for one-dimensional models with exclusion process are the
unique ones where the quasipotentials have been exactly derived.

A simplified formal path towards the quasipotential study was already on the stake
by using Fokker–Planck descriptions of non-equilibrium situations [5]. In the context
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of non-equilibrium many-body systems, it is assumed that there are a set of macro-
scopic fields that evolve following known deterministic dynamics and a weak stochastic
term (typically white noise) reminiscence of the microscopic fluctuations. Let us men-
tion the pioneering work of Graham and Tél [9], where the general properties of the
quasipotential for systems with finite degrees of freedom were studied. For instance,
they introduced the possibility of a Lagrangian transition that would imply the non-
differentiability of the quasipotential in some regions of configurational space. In fact,
this property seems to be natural for many systems at non-equilibrium stationary states.
Let us also point out that they also developed a gradient expansion of the quasipotential
for the supercritical complex Ginzburg–Landau equation [10]. These works have been
applied with great success in several models and fields. Let us remark here just its use
in the study of biological systems where the quasipotentials give a complete description
of, for instance, the most probable path that a complex network of chemical reactions
follows to go from a local minimum to another one [11, 12]. Let us finally mention the
seminal works from Donsker and Varadhan [13] that developed the mathematical theory
of large deviations (TLD) for Markov processes. TLD gives mathematical support on the
existence and properties of the rate function that, in our context, is the quasipotential
(see the interesting review by Touchette about TDL in statistical mechanics [14]).

Bertini and co-workers introduced further improvement by formulating the macro-
scopic fluctuation theory (MFT) [15]. MFT was formulated based on many previous
rigorous results connecting microscopic stochastic lattice models with their correspond-
ing macroscopic dynamical equations. Large deviation formulas were also obtained, and
thus, the mesoscopic description of such systems. They compiled all of this information
to define a theory that is a generalization of the already known fluctuating hydrody-
namics [16]. That is, systems described by hydrodynamic continuum fields that evolve
following a Langevin-like equation. First, they computed the quasipotential for the
zero-range model, and they found that it is local. Moreover, they applied MFT to
the continuum mesoscopic version of the SSE model. They found that the quasipo-
tential obtained by Derrida et al (equations (2) and (3)) was also the solution of
the Hamilton–Jacobi equation that defined the quasipotential in MFT. Bertini et al
[17] obtained the quasipotential for the mesoscopic version of the Kipnis, Marchioro,
Presutti model for heat conduction (KMP) [6]. In fact, they proposed a functional
G[η, η̃] inspired by equation (3), and they showed that it was the solution of the corre-
sponding Hamilton–Jacobi equation from MFT. They also found that the quasipotential
for the boundary driven ASEP from Enaud and Derrida [8] was also the solution for the
MFT [18] and expanded such a result when the drift due to the external field is strong
enough, and it points against that due to the density gradient [19]. They explicitly
found a Lagrangian transition, that is, the quasipotential has non-differential behav-
ior in this case. All of these results showed that MFT had solid theoretical grounds
to describe non-equilibrium systems at the mesoscopic level correctly. Let us mention
that the quasipotentials study is just a part of the set of properties of non-equilibrium
systems that MFT describes self-consistently. A fascinating review of many aspects that
MFT sheds some light on can be found in [20].

We have seen that the exact results from Derrida et al using their matrix method and
the inspired works from Bertini et al by defining MFT have opened the way for a deep
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understanding of the quasipotential’s mathematical structure. However, to go beyond
this point, new insights that permit us to study more systematically other systems
or/and dimensions are needed. This paper focuses on looking for a general algebraic
method to obtain the quasipotential from MFT.

As we will see, in the MFT context, the quasipotential is the solution of a
Hamilton–Jacobi equation of the form:

H

[
η,

δV0[η]

δη

]
≡

∫
Λ

dx h̄

[
η(x),

δV0[η]

δη(x)

]
= 0, (6)

where h̄ is a local functional on the arguments. Formally, this equation is solved by using
the method of characteristics [21]. That is, H[η, π] is assumed to be a Hamiltonian that
defines a dynamical system, where π(x) is the conjugate field to φ(x). The quasipotential
V 0[η] is then given by:

V0[η] = V0[φ
∗] +

∫ 0

−∞
dt

∫
Λ

dx π(x, t)∂tφ(x, t), (7)

where the fields (φ(x, t), π(x, t)) are the solution of the Hamilton’s equations asso-
ciated to the Hamiltonian H[φ, π], where (φ(x,−∞), π(x,−∞)) = (φ∗(x), 0) and
(φ(x, 0), π(x, 0)) = (η(x), π(x)).

Except for trivial cases, it is unknown how to solve the Hamilton equations to get the
trajectory (φ(t), π(t)). Therefore, we are unable to compute the time integral to get V 0.
At this point, the need to solve the Hamilton equations induced us to ask the following
question: is it possible to define a canonical transformation (φ, π)→ (φ̃, π̃) such that, in
the new variables, we can make the time-integral get V 0?

In this paper, we explore this idea by using a type 1 canonical transformation defined
by the generator of the transformation L[φ, φ̃]. It is impossible to write down an L gener-
ator such that in the new variables, we could do the time integrals explicitly. Therefore,
we first assume the existence of a map φ(x) = φ[φ̃;x] between the Hamiltonian paths
at each t. We show that under this assumption, the quasipotential can be obtained by
a parametric integral that connects, by a straight line, the stationary state φ∗ with η.
However, the integral is now weighted by two unknown functionals. We assume explicit
analytical forms for the unknown functionals. We determine them from a set of com-
patibility conditions to fulfill to be part of a well-defined canonical transformation. As
we will see, the interesting part of this method is that we do not need to solve any dif-
ferential equation. This scheme is imperfect because we should also restrict the original
dynamical model to some concrete forms for each trial functionals form. Moreover, the
pair, model, and elected functionals do not always have a solution, and therefore this is
a digging-like method to find some gold nuggets. Nevertheless, we reproduce all of the
known quasipotentials with this method, and we discover some new ones.

We present all of these results in the following manner. In section 2, we define the
Langevin dynamics of the system and fast review how to get the quasipotential and
some concepts that we will use. Moreover, we define the one-dimensional models that
we study explicitly in the paper. In section 3, we do the canonical transformation and
see how the quasipotential’s formal solution is affected. We introduce the necessity for
the map between φ and φ̃. We derive the quasipotential that appears to depend on two
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unknown functionals. We find the conditions they should follow to be part of a well-
defined canonical transformation. Finally, as an example, we get the quasipotential for
the zero-range model by using our method. Section 4 generalizes the method by defining
some general functional forms for the unknown functionals and expressing their compat-
ibility conditions on operational form. Section 5 is devoted to obtaining quasipotentials
using our method for the one-dimensional diffusive system. In section 6, we derive some
quasipotentials for one-dimensional reaction–diffusion models.

2. The quasipotential for a Langevin description of mesoscopic systems and
models studied

We assume that our systems at a mesoscopic level of description are characterized by a
unique scalar field φ(x, t) ∈ IR, where x ∈ Λ ⊂ IRd, d is the spatial dimension and t is
the time. We have initially restricted ourselves to this case in this paper for the sake of
simplicity. Still, one can straightforwardly generalize all of the results below to systems
described by vector fields. The system dynamics is given by a mesoscopic Langevin
equation with a white noise. For instance, in the case of reaction dynamics (RD) it is:

∂tφ(x, t) = F [φ(t) ;x] + h[φ(t) ;x]ξ(x, t), (8)

where we use in this paper the notation W [φ,ψ, . . . ;x] to indicate a local functional
that may depend on the fields: φ(x), ψ(x), their first derivatives with respect to the
argumens x: ∇xφ(x), ∇xψ(x), higher derivatives and even they may have more complex
structures as local integrals of the fields over domains around x. Moreover, a parametric
dependence on the fields, for instance the time t, is written as W [φ(t) ;x] meaning that
W is a local functional that depend on φ(x, t), their derivatives on x or any other
x-functional dependence. Finally, ξ(x, t) is an uncorrelated Gaussian random field:

〈ξ(x, t)〉 = 0

〈ξ(x, t)ξ(x′, t′)〉 = 1

Ω
δ(x− x′)δ(t− t′)

(9)

and we follow Ito’s scheme. The dynamics become deterministic when Ω→∞:

∂tφD(x, t) = F [φD(t) ;x]. (10)

We assume along this paper that the deterministic dynamics have a unique stationary
state and that it is locally stable:

F [φ∗ ;x] = 0, φ∗(x) = lim
t→∞

φD(x, t) (11)

for almost any initial state φD(x, 0) = φ0(x) ∈ Λ. Our system may have periodic bound-
ary conditions (φ(x+ L) = φ(x) with L being the vector defining the basic cell), fixed
boundary conditions (φ(x, t) = f0(x), ∀x ∈ ∂Λ) or a mixture of both.
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When the noise intensity is very small, the stationary probability distribution is of
the form:

Pst[η] � exp [−ΩV0[η]] (Ω→∞), (12)

where V 0[η] is the so-called quasipotential . It is well known [9, 22] that V 0 is the solution
of the Hamilton–Jacobi equation:

H

[
φ,

δV0[φ]

δφ

]
≡

∫
Λ

dx
δV0[φ]

δφ(x)

[
F [φ; x] +

1

2

δV0[φ]

δφ(x)
h[φ; x]2

]
= 0 (13)

with boundary conditions:

δV0[φ]

δφ(x)

∣∣∣∣
x∈∂Λ

= 0. (14)

The formal solution can be obtained from the expression:

V0[η] = V0[φ
∗] +

∫ 0

−∞
dt

∫
Λ

dx π(x, t)∂tφ(x, t), (15)

where the fields (π(x, t),φ(x, t)) are the solution of the Hamilton’s equations:

∂tφ(x, t) =
δH[φ(t), π(t)]

δπ(x, t)

∂tπ(x, t) = −δH[φ(t), π(t)]

δφ(x, t)
,

(16)

where the Hamiltonian H is defined by equation (13). Hamilton’s equations should be
solved with the system’s spatial boundary conditions and with the time boundaries:
(φ(x,−∞), π(x,−)) = (φ∗(x), 0) and (φ(x, 0), π(x, 0)) = (η(x), π(x))∀x ∈ Λ.

Let us point out some properties that we will use below:

• φ∗(x) is the absolute minimum of the quasi potential:

δV0[φ]

δφ(x)

∣∣∣∣
φ(x)=φ∗(x)

= 0 ∀x ∈ Λ. (17)

That is so because in the strict limit Ω→∞ we should get the stationary
deterministic solution (11). In other words:

Pst[η] =
∏
x∈Λ

δ(η(x)− φ∗(x)). (18)

• H[φ∗, 0] = 0 by construction and therefore, H[φ(t), π(t)] = 0.

• π(x, t) = δV 0[η]/δη(x)|η=φ(t) from equation (15).

• Notice that for fixed boundary conditions: (φ(x, t), π(x, t)) = (φ(x), 0)∀x ∈ ∂Λ, t,
where we have included π(x, t)|x∈∂Λ = 0. This condition reflects that the
boundary is thought of as an equilibrium thermal bath having the property
∂V B(φ)/∂φ(x) = 0, with V B an equilibrium potential. That is, πB(x)|x∈∂Λ = 0 and,
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by continuity πB(x) = π(x)∀x ∈ ∂Λ. This choice, of course, affects the nature of the
fluctuations about the system’s stationary state, but it has the advantage that it
permits us to have systems at equilibrium. Then, just by changing the boundaries,
we can create nonequilibrium stationary states.

• There can be more than one path solution of Hamilton’s equations that go from
(φ∗, 0) up to (η, πn), where n could change for each of the paths. Then it is implicitly
understood that one should take in equation (15) the path that minimizes the value
of V 0.

• For diffusive dynamics (DD) everything is equal except for the Hamiltonian (13)
that in this case is:

H[φ, π] =

∫
Λ

dx∇π(x) ·
[
G[φ;x] +

1

2
χ[φ; x]∇π(x)

]
, (19)

where G is the determinist part of the current and χ is related with the noise
intensity.

The above definitions and properties are well known in the literature, and that is
why we pass through them fast. We refer the readers to [22] for the details about how
the above expressions are derived for systems with RD and DD and several comments
about the properties of the stationary state.

That is, the problem of finding V 0 is formally solved. However, it is almost impos-
sible at the practical level to obtain the solutions from Hamilton’s equations (16). This
paper is devoted to building a strategy to be able to explicitly make the time-integral in
equation (15). From now on, we are going to restrict ourselves to one-dimensional sys-
tems. The application of these ideas to larger dimensions is left for future works. Below,
we explicitly apply the method to get V 0 to the following one dimensional systems:

• Diffusive model:
This one dimensional model is defined by a field φ(x, t) with x ∈ [0, 1] that evolves

by the Langevin equation:

∂tφ(x, t) +
dj[φ(t) ;x]

dx
, j[φ(t) ;x] = G[φ(t) ;x] +

√
χ(φ(x, t))ψ(x, t),

(20)

where ψ is an uncorrelated white noise and

G[φ; x] = −D(φ(x))
dφ

dx
+ χ(φ(x))E (21)

D(λ) and χ(λ) are the diffusion and mobility functions respectively and E is a con-
stant driving field. The Hamiltonian that defines the paths to build the quasipotential
is given by equation (19) (see [22] and references therein):

H[φ, π] =

∫
Λ

dx
dπ(x)

dx

[
−D(φ(x))

dφ(x)

dx
+ χ(φ(x))

(
E +

1

2

dπ(x)

dx

)]
(22)
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D and χ are designed in such a way that the system stationary state could be an
equilibrium state with respect the potential:

Veq[φ] = Veq[φ
∗] +

∫ 1

0

dx [veq[φ;x]− veq[φ
∗;x]] , (23)

where

veq[φ; x] = v(φ(x))− 2Exφ(x). (24)

We can think of E as being a kind of gravitational force acting over a mass field
φ(x). We can see that V eq[φ] is the solution of the Hamilton–Jacobi equation

H

[
φ,

δVeq[φ]

δφ

]
= 0 (25)

when

D(λ) =
1

2
v′′(λ)χ(λ) (26)

that it is called the Einstein relation. The equilibrium state is achieved when applying
the appropriate boundary conditions:

δVeq[φ]

δφ(x)

∣∣∣∣
x=0,1

= 0 ⇒ v′(φ0) = 0, v′(φ1) = 2E, (27)

where φ(i) = φii = 0, 1.
Finally, the equilibrium configuration is obtained from the deterministic part of

the Langevin equation by asking that the current G equals to zero:

−D(φ∗(x))
dφ∗(x)

dx
+ χ(φ∗(x))E = 0. (28)

The solution of this equation is

∫ φ∗(x)

φ(0)

dφ
D(φ)

χ(φ)
= Ex (29)

and assuming that the Einstein relation holds, it can be written

v′(φ∗(x)) = 2Ex, (30)

where φ∗(i) = φii = 0, 1. Observe that the boundary conditions should be φ0,1 (for
a given E ) to be at an equilibrium state. When we choose any other different set
of boundary conditions, the system develops a non-zero current, and the system
is in a non-equilibrium stationary state with a quasipotential V 0[φ] �= V eq[φ]. The
stationary state is then solution of
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−D(φ∗(x))
dφ∗(x)

dx
+ χ(φ∗(x))E = J , (31)

where J is the current that it is determined by the boundary conditions. We can
also get non-equilibrium stationary states with periodic boundary conditions and a
non-zero driving field E. In this case φ∗(x) = φ∗ and J = χ(φ∗)E.

• Reaction–diffusive models:
We study the one-dimensional reaction–diffusion model whose Langevin equation

is given by (8) with

F [φ; x] = g(φ)φ′′(x) + w(φ(x)) (32)

with the Hamiltonian given by equation (13).
Another interesting model we have studied is the Poissonian reaction–diffusion

dynamics. This mesoscopic model is deduced from a stochastic Markovian lattice
model in which there is a competition between conservative exchange dynamics and
a spin-flip one (see [24]). In the fast rate limit for the exchange dynamics and after
some time and space rescaling, one obtains the deterministic equation:

∂φD(x, t)

∂t
=

∂2φD(x, t)

∂x2
+ b(φD(x, t))− d(φD(x, t)), (33)

where φD(x) represents a normalized density: 0 � φD(x) � 1 and b and d functions
are directly related with the microscopic spin-flip dynamics. Moreover, the structure
of the mesoscopic noise is represented by the Hamiltonian:

H[φ, π] =

∫
Λ

dx [π(x)φ′′(x) + π′(x)φ(x)(1− φ(x))

− b(φ(x))(1− eπ(x))− d(φ(x))(1− e−π(x))
]
. (34)

Observe that this Hamiltonian is not quadratic in π as it was in equation (13).
That is related to the Poissonian structure of the underlying noise. We will assume
periodic boundary conditions. In this case, the stationary state is a constant solution
of b(φ∗) = d(φ∗) that it is assumed to be unique.

3. A method to solve Hamilton–Jacobi equations

We want to get explicit solutions for the Hamilton–Jacobi equation (13) by using the
formal solution (15) as a starting point. The main idea of our method is to find a canon-
ical transformation under which we can explicitly do a time integral in (15). We will see
that we can deform the integrating path to be, effectively, a straight line. We can do that
under some (assumed mild) assumptions, such as the existence of a one-to-one transform
between the original path and the new one coming from the canonical transformation.
However, the transformed action integral (15) is weighted by two functionals. One is
the canonical transformation’s functional derivative, and the other depends on the one-
to-one transform. The key point of the method is to get both unknown functionals.
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We show that those functionals can be algebraically obtained by using the conditions
about the existence of the canonical transformation and the use of the Hamiltonian
equation of motion for the original and canonical transformed systems. Once we get
such weights, we can straightforwardly compute the quasipotential. Let us develop the
full strategy step by step.

3.1. The canonical transformation

Let us build a general type 1 canonical transformation on a generic field Hamiltonian
H(φ, π) through the generator L[φ, φ̃]:

(φ, π)→ (φ̃, π̃) :π(x) =
δL[φ, φ̃]

δφ(x)
≡ A[φ, φ̃; x], π̃(x) = −δL[φ, φ̃]

δφ̃(x)
≡ B[φ, φ̃;x].

(35)

These equations define a one-to-one relationship between the two sets of variables during
the system’s evolution under the Hamiltonian H. The quasipotential (15) is written in
the new variables:

V0[η] = V0[φ
∗] +

∫ 0

−∞
dτ

∫
Λ

dx
δL[φ, φ̃]

δφ(x)

∣∣∣∣∣φ=φ(τ )

φ̃=φ̃(τ )

∂τφ(x, τ). (36)

L does not depend on t explicitly, and therefore we can use the relation:

∂tL[φ(t), φ̃(t)] =

∫
Λ

dx

⎡
⎢⎣δL[φ, φ̃]

δφ(x)

∣∣∣∣∣φ=φ(t)

φ̃=φ̃(t)

∂tφ(x, t) +
δL[φ, φ̃]

δφ̃(x)

∣∣∣∣∣φ=φ(t)

φ̃=φ̃(t)

∂tφ̃(x, t)

⎤
⎥⎦
(37)

to get

V0[η] = V0[φ
∗] + L[η, η̃]− L[φ∗, φ̃∗] +

∫ 0

−∞
dτ

∫
Λ

dx π̃(x, τ)∂τφ̃(x, τ), (38)

where the fields η̃ and φ̃∗ are the canonical transformed η and φ∗, respectively.
At this point, it could look like that we have not gained too much because we still

have to do time integral to get the quasipotential. However, we have the possibility to
design a convenient form for (φ̃, π̃) so that the integral in equation (15) can be done.
Therefore, our next step is to look for the necessary assumptions to find such optimal
transformation.
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3.2. V0’s convenient form

In the transformed variables (φ̃, π̃), we can define its quasipotential by equation (15),

Ṽ 0[φ̃]. Therefore,

π̃(x)|T̃ =
δṼ 0[φ̃]

δφ̃(x)

∣∣∣∣∣
T̃

, (39)

where T̃ represents any pair (φ̃(x, t), π̃(x, t)) that are the solution of Hamilton’s

equations (16) with the canonical transformed Hamiltonian: H̃(φ̃, π̃) = H(φ, π) and the
corresponding boundary conditions. This implies two relevant properties:

• There exists a functional relation between the paths φ(t) and φ̃(t) solutions of the
respective Hamilton’s equation of motion:

φ(x, t) = φ[φ̃(t);x]. (40)

This can be seen by restricting the canonical transformation (35) to the trajectories
and using equation (39):

δṼ 0[φ̃]

δφ̃(x)

∣∣∣∣∣
T̃

= − δL[φ, φ̃]

δφ̃(x)

∣∣∣∣∣
T ,T̃

. (41)

Therefore, from this implicit equation we assume that equation (40) exists at each t
from the original and transformed Hamiltonian trajectories.

• V 0 in equation (15) can be written:

V0[η] = V0[φ
∗] + L[η, η̃]− L[φ∗, φ̃∗] + Ṽ 0[η̃]− Ṽ 0[φ̃

∗]. (42)

Observe from equation (42) that the quasipotential is linearly related to the genera-
tor of the canonical transformation. This relation permits us to explain the existence
of the extremal property (5) observed by Derrida et al in [7] (let us mention that a
similar property was observed by Bertini and co-workers when studying the quasipo-
tential associated with a model of heat flow [17]): from equation (42), we define

G[φ, φ̃] = V0[φ
∗] + L[φ, φ̃] + Ṽ 0[φ̃]− Ṽ 0[φ̃]. Then, the condition δG[φ, φ̃]/δφ̃(x) = 0

on T , T̃ , is just equation (41) that relates the variables φ with the transformed ones

φ̃ and therefore φ(x) = φ[φ̃;x] is the extremal solution of (5). This result implies
that the auxillary field defined in Derrida et al ’s paper [7] is just the canonical
transformed φ-field.

These two properties allow us to get a more convenient form to compute the quasipo-
tential algebraically. Let us define the restricted transformation L̃ by substituting φ by
its relation with φ̃ along T in (40):

L̃[φ̃] = L[φ[φ̃], φ̃] (43)
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then

δL̃[φ̃]

δφ̃(x)
= −δṼ 0[φ̃]

δφ̃(x)
+

∫
Λ

dy A[φ[φ̃], φ̃; y]K[φ̃; y, x], (44)

where

K[φ̃; x, y] =
δφ[φ̃;x]

δφ̃(y)
, A[φ, φ̃;x] =

δL[φ, φ̃]

δφ(x)
. (45)

Assuming that L̃[φ̃] exists (we will address this issue below), we know that (see
appendix A):

L̃[η̃] = L̃[φ̃∗]− Ṽ 0[η̃] + Ṽ 0[φ̃
∗] +

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ̃∗(x))

+

∫
Λ

dy A[φ[φ̃(λ)], φ̃(λ); y]K[φ̃(λ), y, x], (46)

where

φ̃(x,λ) = φ̃∗(x) + λ(η̃(x)− φ̃∗(x)) (47)

and the quasipotential (42) can be written on its convenient form:

V0[η] = V0[φ
∗] +

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ̃∗(x))

∫
Λ

dy A[φ[φ̃(λ)], φ̃(λ); y]K[φ̃(λ); y, x]. (48)

We see that the time integral in (15) has been ‘deformed’ by a straight path connecting

the stationary state (φ̃∗, 0) and the target state (η̃, π̃). Moreover, to get V 0, we do not
need to know the full canonical transformation but the functionals A and K defined in
equation (45). In expression (48) is hidden a practical problem: for a given canonical
transformation L, we easily get the functional A (it is just a functional derivative of L),

but we cannot obtain the functional relation between φ and φ̃ (equation (40)) because
we should solve the Hamilton equations explicitly and get the paths to build the map. In
conclusion, it seems that we are stuck with the same problem that we initially had. We
cannot follow the natural but somehow impossible scheme of deriving the full canonical
transformation and afterward get the functionals A and φ[φ̃;x].

However, the relation (48) can be useful if we change our point of view. Let us

assume that the functionals A and φ[φ̃;x] are given: what are their conditions to guar-
antee that they come from a well-defined canonical transformation? That would happen
whenever (1) A fulfills the conditions for the existence of L and therefore for L̃, and

(2) φ(x, t) = φ[φ̃(t);x] is compatible with Hamilton’s equations of motion for φ and

φ̃. Therefore, our starting point will initially assume a particular family of functional
forms for A and φ[φ̃;x]. Then, we will apply those minimal conditions to determine their
detailed functional structure and select the form of the functionals defining the Langevin
equation. We will show that this strategy completely determines the functional A and
φ[φ̃;x]. Moreover, we also can do all of those steps in a systematic algebraic manner.
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3.3. Minimal conditions on A and φ[φ̃; x] functionals

We know that giving the two functionals A[φ, φ̃;x] and B[φ, φ̃; x] in equation (35), they

may be considered as the first derivatives of L[φ, φ̃] if and only if their doubled crossed
derivatives are independent on the applied order. That is:

(C1):
δA[φ, φ̃;x]

δφ(y)
=

δA[φ, φ̃; y]

δφ(x)

(C2):
δA[φ, φ̃;x]

δφ̃(y)
=

δB[φ, φ̃; y]

δφ(x)

(C3):
δB[φ, φ̃;x]

δφ̃(y)
=

δB[φ, φ̃; y]

δφ̃(x)
.

(49)

On the other hand, equation (41) implies that B[φ, φ̃;x] should be at least of the form:

B[φ, φ̃;x] =
δṼ 0[φ̃]

δφ̃(x)
+

∫
Λ

dy (φ(y)− φ[φ̃; y])B⊥[φ, φ̃;x, y]. (50)

Using this expression for B we can write the conditions (C2) and (C3) in the following
form:

(C2′) :
δA[φ, φ̃;x]

δφ̃(y)
= B⊥[φ, φ̃; y, x] +

∫
Λ

dz(φ(z) − φ[φ̃; z])
δB⊥[φ, φ̃; y, z]

δφ(x)
(51)

(C3′) :

∫
Λ

dz
[
K[φ̃; z, y]B⊥[φ, φ̃;x, z]−K[φ̃; z, x]B⊥[φ, φ̃; y, z]

]

=

∫
Λ

dz (φ(z) − φ[φ̃; z])

[
δB⊥[φ, φ̃;x, z]

δφ̃(y)
− δB⊥[φ, φ̃; y, z]

δφ̃(x)

]
. (52)

We can get a set of necessary conditions for the existence of L if we restrict them to
the trajectory T where φ(x) = φ[φ̃;x]:

(C1T):
δA[φ, φ̃;x]

δφ(y)

∣∣∣∣∣
φ=φ[φ̃]

=
δA[φ, φ̃; y]

δφ(x)

∣∣∣∣∣
φ=φ[φ̃]

(53)

(C2T):
δA[φ, φ̃;x]

δφ̃(y)

∣∣∣∣∣
φ=φ[φ̃]

= B⊥[φ[φ̃], φ̃; y, x] (54)
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(C3T):

∫
Λ

dz

⎡
⎣K[φ̃; z, y]

δA[φ, φ̃; z]

δφ̃(x)

∣∣∣∣∣
φ=φ[φ̃]

−K[φ̃; z, x]
δA[φ, φ̃; z]

δφ̃(y)

∣∣∣∣∣
φ=φ[φ̃]

⎤
⎦ = 0.

(55)

Please observe that conditions (C1T) and (C3T) only depend on the functionals A
and K, the same ones that we need to get V 0 in equation (48). We are interested in
obtaining V 0 and, therefore, we will use only (C1T) and (C3T). (C2T) becomes just a
property that is of no use for our practical purposes. It is out of the scope of this work
to attempt to rigorously prove the sufficient conditions (C1), (C2), and (C3) assuming
(C1T), (C2T), and (C3T).

The condition on the φ[φ̃;x] functional is obtained by using the Hamilton’s equations
of motion. We know that φ follow a path that is the solution of Hamilton’s equations (16).
Let us rewrite such equations using the canonical transformation (35) and substituting

φ(x) by φ[φ̃; x] and π(x) by A[φ, φ̃;x]:

∂tφ[φ̃(t) ;x] = R̃1[φ̃(t) ;x], ∂tA[φ[φ̃(t)], φ̃(t) ;x] = R̃2[φ̃(t) ;x], (56)

where

R1[φ, φ̃;x] =
δH[φ, π]

δπ(x)

∣∣∣∣
π=A[φ,φ̃;x]

R2[φ, φ̃;x] = − δH[φ, π]

δφ(x)

∣∣∣∣
π=A[φ,φ̃; x]

(57)

and R̃1,2[φ̃;x] = R1,2[φ[φ̃], φ̃; x]. We can now expand the time derivatives and we get:

∫
Λ

dy
δφ[φ̃; x]

δφ̃(y)

∣∣∣∣∣
φ̃(t)

∂tφ̃(y, t) = R̃1[φ̃(t) ;x]

∫
Λ

dy

⎡
⎢⎣δA[φ, φ̃; x]

δφ(y)

∣∣∣∣∣φ=φ[φ̃(t)]

φ̃=φ̃(t)

R̃1[φ̃(t) ; y] +
δA[φ, φ̃;x]

δφ̃(y)

∣∣∣∣∣φ=φ[φ̃(t)]

φ̃=φ̃(t)

∂tφ̃(y, t)

⎤
⎥⎦= R̃2[φ̃(t) ;x].

(58)

These equations are combined to disregard their dependence on ∂tφ̃:

∫
Λ

dy

∫
Λ

dz
δA[φ, φ̃; x]

δφ̃(y)

∣∣∣∣∣
φ=φ[φ̃]

R̃1[φ̃; z]K
−1[φ̃; y, z]

= R̃2[φ̃;x]−
∫
Λ

dy
δA[φ, φ̃;x]

δφ(y)

∣∣∣∣∣
φ=φ[φ̃]

R̃1[φ̃; y], (59)
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where ∫
Λ

dy K[φ̃;x, y]K−1[φ̃; y, z] = δ(x− z). (60)

Observe that we have dropped out the time dependence, considering that this relation
for the functional φ[φ̃] holds along each point in the path. We can get a more convenient

expression where K−1 disappears by integrating both sides by
∫
Λ
dxK[φ̃;x, z] and using

the (C3T) property above:

(EM) :

∫
Λ

dx

⎡
⎣K[φ̃;x, y]R̃2[φ̃; x]

− R̃1[φ̃; x]

⎛
⎝δA[φ, φ̃;x]

δφ̃(y)

∣∣∣∣∣
φ=φ[φ̃]

+

∫
Λ

dz K[φ̃; z, y]
δA[φ, φ̃; z]

δφ(x)

∣∣∣∣∣
φ=φ[φ̃]

⎞
⎠
⎤
⎦ = 0.

(61)

(EM) is the minimal condition on the functionals A and φ[φ̃;x] to make them compatible
with the Hamilton’s equations of motion.

Therefore, the set of necessary conditions over the A and φ[φ̃] functionals that
we are to consider here are (C1T) (equation (53)), (C2T) (equation (54)) and (EM)
(equation (61)). As we already said, to go further, we will propose some functional
forms for both functionals. Let us do a particular example to illustrate how these condi-
tions are enough to define the functionals A and φ[φ̃] and how we get the corresponding
quasipotential.

3.4. The full method at work: an example

Let us choose as an example the one-dimensional diffusive model defined in section 2 by
the Langevin equation (20) with the determinist part given by (21). Observe that the
functions D(φ) and χ(φ) are unspecified. The initial step for this method is to choose a

concrete family of functionals for A and φ[φ̃;x]. In this example, we elect the simplest
functional forms:

A[φ, φ̃;x] = a(φ(x), φ̃(x),φ∗(x))

φ(x) = f(φ̃(x),φ∗(x))
, (62)

where a and f are functions to be determined and φ∗(x) is the deterministic stationary
state. We have included an explicit dependence on the stationary state because we know
that π∗(x) = A[φ∗, φ̃∗ ;x] = 0 and such a degree of freedom is necessary. We also should

take into account that, at the fixed boundaries (if any), π(x) = A[φ, φ̃; x] = 0 ∀x ∈ ∂Λ.
Let us remark that equation (62) is an arbitrary choice. We could have included any

derivative of φ(x) or φ̃(x) on the arguments of both functions and/or any other more
complex functional non-local structure. We will comment below about the choices that
we are able to handle. Let us stress that a priori , there is no guarantee that a given
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family of functionals is going to be compatible with the set of conditions (C1T), (C3T),
and (EM) above. Election (62) implies:

δA[φ, φ̃;x]

δφ(y)
= a(1,0,0)(u0, v0, u

∗
0)δ(x− y)

δA[φ, φ̃;x]

δφ̃(y)
= a(0,1,0)(u0, v0, u

∗
0)δ(x− y)

K[φ̃;x, y] =
δφ[φ̃;x]

δφ̃(y)
= f(1,0)(v0, u

∗
0)δ(x− y),

(63)

where a(n,m,l)(u0, v0, u
∗
0) ≡ ∂n+m+la(n,m, l))/∂un

0∂v
m
0 ∂u

∗l
0 . In order to simplify notation,

we use the convention that uk ↔ φ(k)(x) = dkφ(x)/dxk, vk ↔ φ̃(k)(x) and u∗
k ↔ φ∗(k)(x).

The minimal conditions to have well-defined canonical transformations are, in this case,
given by:

• (C1T): δA[φ, φ̃; x]/δφ(y) is symmetric under the x, y exchange. Therefore, this
condition is always fulfilled for this choice.

• (C3T): δA[φ, φ̃; x]/δφ̃(y) is also symmetric under the x, y exchange. Therefore, this
condition is always fulfilled for this choice.

• (EM): after we substitute equation (63) into the condition (61) we get:

f(1,0)(v0, u
∗
0)R̃2[φ̃;x] =

[
a(0,1,0)(u0, v0, u

∗
0) + a(1,0,0)(u0, v0, u

∗
0)f

(1,0)(v0, u
∗
0)
]
R̃1[φ̃;x],

(64)

where u0 = f(v0, u
∗
0). Let us remind that R̃1,2[φ̃;x] = R1,2[φ[φ̃], φ̃; x] and R1,2[φ, φ̃;x]

are defined by equation (57) with the Hamiltonian (22). They have the form:

R1[φ, φ̃; x] = − d

dx

[
−D(φ(x))φ′(x) +

(
E +

da(x)

dx

)
χ(φ(x))

]

R2[φ, φ̃; x] = −χ′(φ(x))
da(x)

dx

(
E +

1

2

da(x)

dx

)
−D(φ(x))

d2a(x)

dx2
,

(65)

where a(x) ≡ a(φ(x), φ̃(x);φ∗(x)).

After doing all of the functional substitutions and spatial derivatives, the unique
non-trivial condition (EM) is a differential equation of the form:

c3(v0, u
∗
0)v2 + c2(v0, u

∗
0, u

∗
1)v

2
1 + c1(v0, u

∗
0, u

∗
1)v1 + c0(v0, u

∗
0, u

∗
1) = 0, (66)

where we are using our simplified notation vk ↔ φ̃(k)(x) = dkφ̃(x)/dxk. For instance,

c3(v0, u
∗
0) =

(
f(1,0)(v0, u

∗
0)a

(1,0,0)(u0, v0, u
∗
0) + a(0,1,0)(u0, v0, u

∗
0)
)

×
(
χ(u0)

(
f(1,0)(v0, u

∗
0)a

(1,0,0)(u0, v0, u
∗
0) + a(0,1,0)(u0, v0, u

∗
0)
)

− 2D(u0)f
(1,0)(v0, u

∗
0)
)
, (67)
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where we remind that u0 = f(v0, u
∗
0). c0, c1 and c2 have large similar expressions that we

do not show for simplicity. We know that we are assuming that the canonical transfor-
mation relates φ(x) and φ̃(x) through our choice φ(x) = f(φ̃(x),φ∗(x)) for any φ(x)
(compatible with the boundary conditions). However, the differential equation (66)
is in itself an apparent contradiction because its existence would imply that we can
canonically transform only its finite number of solutions. This is not the proper inter-
pretation. Equation (66) is not a differential equation because it should be correct for

any φ(x) (φ̃(x)) function. In fact, for any given and arbitrary point x ∈ Λ, the field φ̃(x)
and its derivatives at such a point, v0, v1, . . . vk, have arbitrary values by varying φ(x).
Therefore, we have to consider equation (66) as a polynomial formed by independent
variables v0, v1, . . . The polynomial can only be zero for any of vk-values when each
coefficient c0, c1, . . . is identically equal to zero. This gives us a set of conditions that
fix the functional forms for f(v0, u

∗
0) and a(u0, v0, u

∗
0). We see that the complexity of

the coefficients decreases with the derivative order. Therefore, it is convenient to first
extract the information from c3(v0, u

∗
0) = 0, substitute any condition obtained into the

polynomial expression (66) and afterward we study c2(v0, u
∗
0, u

∗
1) = 0, and so on.

The condition c3(v0, u
∗
0) = 0 have two factors that should be studied separately:

• (1) f(1,0)(v0, u
∗
0)a

(1,0,0)(u0, v0, u
∗
0) + a(0,1,0)(u0, v0, u

∗
0) = 0.

This condition implies the functional relation:

f(1,0)(v0, u
∗
0) = −a(0,1,0)(f(v0, u

∗
0), v0, u

∗
0)

a(1,0,0)(f(v0, u∗
0), v0, u

∗
0)
. (68)

When we use this relation back into equation (66), we get

f(0,1)(v0, u
∗
0) = −a(0,0,1)(f(v0, u

∗
0), v0, u

∗
0)

a(1,0,0)(f(v0, u∗
0), v0, u

∗
0)
. (69)

Both relations imply that:

da(φ(x), φ̃(x),φ∗(x))

dx
= 0 ⇒ π(x) = 0 ∀x ∈ Λ. (70)

That is a particular trivial solution of our conditions corresponding to being at the
stationary state.

• (2) χ(u0)
(
f(1,0)(v0, u

∗
0)a

(1,0,0)(u0, v0, u
∗
0) + a(0,1,0)(u0, v0, u

∗
0)
)
− 2D(u0)f

(1,0)(v0, u
∗
0) = 0.

This relation can be written as:

∂

∂v0

[
a(f(v0, u

∗
0), v0, u

∗
0)−

∫ f(v0,u
∗
0)

du
2D(u)

χ(u)

]
= 0 (71)

that implies

a(f(v0, u
∗
0), v0, u

∗
0) =

∫ f(v0,u
∗
0)

du
2D(u)

χ(u)
+ h(u∗

0), (72)

where h(u) is a function to be determined. Observe that a(u0, v0, u
∗
0) depends explic-

itly on v0 just through u0 = f(v0, u
∗
0). We use the fact that a(u∗

0, u
∗
0) = 0 to determine
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h(u∗
0). The final expression is then

a(u0, u
∗
0) =

∫ u0

u∗0

du
2D(u)

χ(u)
. (73)

This expression for a reduces the polynomial (66) to:

2u∗
1f

(1,0)(v0, u
∗
0)(u

∗
1D(u∗

0)−Eχ(u∗
0)) (D(u∗

0)χ
′(u0)−D(u0)χ

′(u∗
0))

χ(u∗
0)

2
= 0.

(74)

We see that the unique non-trivial condition (the one that gives us a quasipotential
different from the equilibrium one) is obtained when

D(u∗
0)χ

′(u0) = D(u0)χ
′(u∗

0) ⇒ D(u) = cχ′(u). (75)

The diffusive model having this relation between the diffusion and the mobility is
called a zero-range model.

Let us remark that from conditions (C1T), (C3T) and (EM), we have determined
completely a(u0, v0, u

∗
0) and a restricted family of diffusive systems (the zero-range

model) compatible with the initial assumptions on the functionals A and φ[φ̃;x]. How-
ever, it seems that we do not know the precise form of f(v0, u

∗
0). We will see that, in this

case, the quasipotential can be computed for any well-defined f.
Once we know the form of a and the models that can be described by this functional

forms, we compute the quasipotential by using equation (48) that in this case can be
written:

V0[η] = V0[φ
∗] +

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ∗(x))

∫
Λ

dy a(φ[φ̃(λ) ; y])
δφ[φ̃(λ) ; y]

δφ̃(x,λ)
,

(76)

where φ[φ̃;x] = f(φ̃(x) ;φ∗(x)) and φ̃(x ;λ) = φ∗(x) + λ(η̃(x)− φ∗(x)). We easily have

the functional derivative: δφ[φ̃(λ) ; y]/δφ̃(x,λ) = ∂f(v0 ;φ
∗(x))/∂v0|v0=φ̃(x ;λ)δ(x− y).

Then

V0[η] = V0[φ
∗] + 2c

∫
Λ

dx

∫ 1

0

dλ (η̃(x)− φ∗(x))
∂f(v0 ;φ

∗(x))

∂v0

∣∣∣∣
v0=φ̃(x ;λ)

× log
χ(f(φ̃(x ;λ) ;φ∗(x)))

χ(φ∗(x))
, (77)

where we have used equation (48) and D(u) = cχ′(u). We make the change of variables

λ→ f(φ̃(x ;λ) ;φ∗(x)) at each x-value and we get:
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V0[η] = V0[φ
∗] + 2c

∫
Λ

dx

∫ η(x)

φ∗(x)
dw log

χ(w)

χ(φ∗(x))
, (78)

where φ∗(x) is the stationary state that in this case is solution of

c
d2

dx2
χ(φ∗(x)) = E

d

dx
χ(φ∗(x)). (79)

For periodic boundary conditions, the solution is a constant: φ∗(x) = φ∗ fixed by the
initial condition:

1

|Λ|

∫
Λ

dxφ(x, 0) = φ∗ (80)

and the current is J = −Eχ(φ∗). For fixed boundary conditions at x = 0 and x = 1,
φ(0, t) = φ0 and φ(1, t) = φ1 respectively, then

χ(φ∗(x)) =
χ1

(
eĒx − 1

)
+ χ0

(
eĒ − eĒx

)
eĒ − 1

, (81)

where Ē = E/c and χ0,1 = χ(φ0,1). The current is given by

J = E
χ1 − χ0 e

Ē

eĒ − 1
. (82)

Observe that equilibrium is obtained when J = 0, that is, when χ1 = χ0 e
Ē and the

equilibrium stationary profile is given by χ(φ∗
eq) = χ0 e

Ēx. The quasipotential becomes, in
this case, the equilibrium potential that we could have derived directly from the Einstein
relation (26) together with D(φ) = cχ′(φ). We see that there is no difference between
equilibrium and non-equilibrium in the mathematical structure of the quasipotential.
This happens uniquely for this particular model (see [20]).

In [15], Bertini et al obtained the quasipotential for c = 1. We recover their expres-
sion by assuming: χ(u) = S(u), D(u) = cS ′(u) and making the change of variables in
equation (78): w = sZ ′(s)/Z(s), where Z(s) is such that S(w) = s:

V0[η] = V0[φ
∗] + 2c

∫
Λ

dx

[
η(x) log

S(η(x))

S(φ∗(x))
− log

Z(S(η(x)))

Z(S(φ∗(x)))

]
. (83)

In this explicit example, we have shown how our method works. First, we gave a
Langevin equation. Second, we defined a particular family of functionals for A[φ, φ̃;x]

and φ[φ̃; x]. Third, we used the conditions (C1T), (C3T), and (EM) to fix the detailed
structure of the unknown functionals. We were forced during that derivation to introduce
some conditions on the Langevin equation: D(φ) = cχ′(φ). Finally, we computed the
quasipotential. We will see that this scheme applies to all examples we have worked
out in the paper. Let us mention that there is no a priori guarantee that the scheme
should always give a solution. Sometimes, we have found that some conditions are never
fulfilled for a Langevin equation and a given family of functionals A and φ[φ̃;x].
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4. Generic functional form for A and φ[φ̃] in 1D systems

In this section, we restrict ourselves to one-dimensional models and we generalize the
choice of the A and φ[φ̃] functionals we have used in the example above. We study the
mathematical form of the conditions (C1T), (C3T) and (EM) for such generalization.
We will see that we can algebraically handle only a subfamily of such a general choice.
Finally, we will discuss some properties of such subfamilies.

4.1. A family of functional forms

Let us assume that the local functional A[φ̃; x] is of the form:

A[φ, φ̃;x] = a(φ(x),φ′(x), . . . ,φ(n)(x), φ̃(x), φ̃′(x), . . . , φ̃(m)(x),φ∗(x)) (84)

for given arbitrary integer values of m,n � 0, where, as we already saw in section 3.4,
we have included an explicit dependence on the stationary state because we know that
π∗(x) = A[φ∗, φ̃∗ ; x] = 0 and such degree of freedom maybe necessary in some cases.

Similarly, at the fix boundaries (if any) π(x) = A[φ, φ̃;x] = 0 ∀x ∈ ∂Λ. Both properties
should be taken into account when defining the a function.

Our second choice is to take a generic form for the functional φ[φ̃]. We consider that
there exists an implicit relation of the form:

φ(l)(x) = f(φ(x),φ′(x), . . . ,φ(l−1)(x), φ̃(x), φ̃′(x), . . . , φ̃(s)(x),φ∗(x)) (85)

for given arbitrary values of l > 0 and s � 0. We also study the case

φ(x) = f(φ̃(x), φ̃′(x), . . . , φ̃(s)(x),φ∗(x)). (86)

We choose this form for the functional relation between φ and φ̃ because it is
‘algebraically simple’ and it may capture the complexity of a non-equilibrium system, as
was shown by the work of Derrida et al [7] that we briefly explained in the introduction.
Nevertheless, one may attempt some other more complex possibilities, but, as we will
see, with our election, we are already at the edge of today’s mathematics that permits us
to get explicit solutions to our problem. Observe that in equation (85) we are looking for
a non-linear differential equation of order s whose solution gives us the relation between
φ̃ and φ. Such differential equations have typically s arbitrary constants. Some of them
can be fixed by the boundary conditions. If there are constants still free after applying
the boundary conditions, they should be fixed by looking at the ones that minimize the
quasipotential.

4.2. Re-writing the conditions (C1T), (C3T) and (EM)

The elected local functionals (84) and (85) permit us to rewrite with the conditions
(CT1), (CT3) and (EM) in a more compact form. Let us define the differential operators:
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Pn(x) =

n∑
k=0

∂a

∂uk

∣∣∣∣∣u=φ
v=φ̃

dk

dxk
(87)

Qm(x) =
m∑
k=0

∂a

∂vk

∣∣∣∣∣u=φ
v=φ̃

dk

dxk
(88)

Ll(x) =

l−1∑
k=0

∂f

∂uk

∣∣∣∣∣u=φ
v=φ̃

dk

dxk
− dl

dxl
l > 0 (89)

Ss(x) =
s∑

k=0

∂f

∂vk

∣∣∣∣u=φ
v=φ̃

dk

dxk
. (90)

L0 = −1, where a = a(u0, u1, . . . , un, v0, v1, . . . , v, u
∗
0) and similarly f, where the con-

vention is that after any derivative of their arguments we should do the substitution
uk → φ(k)(x) and vk → φ̃(k)(x).

Moreover, we can do a functional derivative with respect to φ̃(y) in both sides of

equation (85) or (86) to obtain an equation for the functional K[φ̃;x, y] = δφ[φ̃;x]/δφ̃(y):

Ll(x)K[φ̃;x, y] + Ss(x)δ(x− y) = 0. (91)

Let us rewrite the conditions by using these differential operators:

• (C1T): equation (53) can we written in this case as Pn(x)δ(x− y) = Pn(y)δ(x− y).
This happens if and only if the operator Pn(x) is self-adjoint, P †

n(x) = Pn(x) (see
appendix B for a brief reminder about properties and definitions of self-adjoint linear
differential operators). We can prove this by observing that by definition and for any
w integrable test function∫

dxw(x)Pn(x)δ(x− y) =

∫
dx(P †

n(x)w(x))δ(x− y) = P †
n(y)w(y)

=

∫
dxw(x)P †

n(y)δ(x− y) ⇒ Pn(x)δ(x− y) = P †
n(y)δ(x− y). (92)

That is,

(C1T ) :Pn(x) = P †
n(x). (93)

• (C3T): equation (55) becomes:

Q†
m(x)K[φ̃;x, y] = Q†

m(y)K[φ̃; y, x] (94)

and after using equation (91) we find:

(C3T) :Q†
m(x)(Ll(x))

−1Ss(x) = S†
s(x)(L

†
l (x))

−1Qm(x) (95)

that is Q†
m(x)(Ll(x))

−1Ss(x) should be self-adjoint.
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• (EM): after some trivial algebra, we find that (61) can be written:

Q†
m(x)R̃1[φ̃;x] = S†

s(x)(L
†
l (x))

−1
(
Pn(x)R̃1[φ̃;x]− R̃2[φ̃;x]

)
(96)

or, similarly

Ll(x)R̃1[φ̃; x] = Ss(x)(Qm(x))
−1

(
Pn(x)R̃1[φ̃; x]− R̃2[φ̃;x]

)
. (97)

Note that we define the inverse of any differential operator T (x) through its
associated Green function:

T (x)f(x) = g(x) ⇒ f(x) =

∫
Λ

dy G(x, y)g(y) ≡ (T (x))−1g(x), (98)

where G(x, y) is the solution of

T (x)G(x, y) = δ(x, y). (99)

At this point, let us repeat our goal: we want to find the functions a and f (given n,
m, l and s) such that they fulfill the conditions (C1T), (C3T) and (EM). The presence
of inverse differential operators makes it almost impossible to find a systematic alge-
braic way to get the unknown functions. For instance, we should first find the Green
function associated with such a still unknown operator. We know that it can be done
systematically for regular boundary value problems (self-adjoint differential operators)
once we know the eigenfunctions and eigenvalues of the operator (see, for instance, [23]).
However, those depend again on the explicit form of the operator. Therefore, from our
present knowledge on these issues, it is almost impossible to get algebraically a set of
eigenfunctions of our operators L, or Q that are unknown functionals of φ̃ and its local
derivatives. Consequently, we are going to consider in this paper only situations where
there are not inverse operators in (C3T) and (EM). There are two possibilities that are
compatible with such practical limitations:

• (a) l = 0: L0(x) = −1. In this case the operator L is just a constant and the conditions
are:

(C1T):Pn(x) = P †
n(x)

(C3T):Q†
m(x)Ss(x) = S†

s(x)Qm(x)

(EM):Q†
m(x)R̃1[φ̃;x] = −S†

s(x)
(
Pn(x)R̃1[φ̃;x]− R̃2[φ̃; x]

)
.

(100)

• (b) m = 0: Q0(x) = ∂a/∂u0|u=φ,v=φ̃ �= 0. In this case the operator Q is just a function
and the conditions are written:

(C1T):Pn(x) = P †
n(x)

(C3T):Ss(x)Q0(x)
−1L†

l (x) = Ll(x)Q0(x)
−1S†

s(x)

(EM):Ll(x)R̃1[φ̃;x] = Ss(x)Q0(x)
−1

(
Pn(x)R̃1[φ̃;x]− R̃2[φ̃;x]

)
,

(101)

where we have used equation (97).
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In section 5, we will systematically consider different scenarios (a) and (b) by
applying them to some typical models as the DD and the reaction–diffusion dynamics.

4.3. Allowed operators and computation strategy

We saw that in cases (a) and (b) (equations (100) and (101), respectively) we should
choose a set of values (n,m, l, s) that define the form of operators P , Q,L and S, respec-
tively. From condition (C1T), we know that n should be even to fulfill the condition
that P is self-adjoint. Similarly, (C3T) in case (a) implies m+ s should be even, and in
case (b), s+ l should also be even. We can do a little better by keeping a trace of the

larger derivative of φ̃(x) for each condition. In this case, we should explicitly define the
dynamics. We have done such computation for l = 0 (case (a)) and the diffusive and
the reaction–diffusion dynamics defined in section 2. We found that for such models the
operators should follow the consistency relations:

n = 0 ⇒ m � s, n > 0 ⇒ m = s+ n. (102)

(n, m, l , s)

Case (a) (l = 0) Case (b) (m = 0)

(0, 0, 0, 0) (0, 0, 1, 1)
(0, 1, 0, 1) (0, 0, 2, 2)
(0, 0, 0, 2) (0, 0, 1, 3)
(0, 0, 0, 4) (0, 0, 3, 1)
(0, 1, 0, 3) . . .
(0, 2, 0, 2) (2, 0, 1, 1)

. . . (2, 0, 2, 0)
(2, 2, 0, 0) . . .

. . .

That is, we can attempt the following cases: where at each column we fix n = 0
and then n = 2 and so on. We have excluded the coincident values between case
(a) and case (b). Once we choose one of these permitted values (n,m, l, s), the
method is intended to fix the mathematical form of the functions a (84) and f
(85). The main idea is that once we assume the form of a and f, the condi-
tions (C1T), (C3T), and (EM) should become identities. In general, these condi-
tions are differential equations. For instance, let us assume that f is of the form:
φ(x) = f(φ̃(x), φ̃′(x), φ̃′′(x)). Let us assume that we can isolate the highest derivative

φ̃′′(x) = F2(φ(x), φ̃(x), φ̃
′(x)). Then φ̃(3)(x) = F3(φ(x),φ

′(x), φ̃(x), φ̃′(x)), and in general,

φ̃(k)(x) = Fk(φ(x),φ
′(x), . . . ,φ(k−2)(x), φ̃(x), φ̃′(x)). On the other hand, φ(x) is assumed

to be an analytic function. Therefore, for any given point in the domain, x̄ ∈ Λ,
we can reconstruct φ(x) just by giving all their derivatives at such point. However,
φ(x) is arbitrary, and we are free to choose all of the derivatives of φ(x) at x̄.
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Therefore, we may reasonably assume that φ̃(k)(x̄) for k � 2 may get arbitrary and
independent values because of their dependence on the derivatives of φ(x̄). Having this
in mind, we see that the conditions (C1T), (C3T), and (EM) are just polynomials where

there are derivatives of φ and φ̃ of a different order. They should be correct for any φ-
field and therefore, for any value of the derivatives of φ̃(x) of a degree greater or equal

to two. Therefore, once we substitute φ by f(φ̃, φ̃′(x), φ̃′′(x)) in any of the conditions,

we get a polynomial expression in the derivatives φ̃(n) with n � 2 whose coefficients are
functions with φ̃(x), φ̃′(x) and φ̃′′(x) (in this example). Each of these high order deriva-
tives may have arbitrary values and each of their coefficients should be identically equal
to zero. The coefficients that we equal to zero contains, typically derivatives of f and
a, and they also contain functions that depend on the dynamics. Therefore, f and a
may depend on the dynamics, and, sometimes, only particular dynamics can make zero
a coefficient.

This scheme is done orderly from higher to small order in the polynomial of the
derivatives of φ̃ for each condition. Once we determine some properties of the unknown
functions, we include them in the conditions, and we redo the computations to get the
remaining high-order derivatives’ next coefficient. This method has been applied success-
fully using algebraic programs like Mathematica. It permits us to do long computations
without errors. That is very important because we are dealing with identities, and any
small mistake during the algebraic trivial but lengthy evaluation implies that conditions
(C1T), (C3T), and (EM) are never fulfilled.

We should also take into account that π(x) = a(x). Therefore, it is mandatory that:

a(φ∗(x), (φ∗)′(x), . . . , (φ∗)(n)(x), (φ̃)∗(x), (φ̃∗)′(x), . . . , (φ̃∗)(m)(x) ;φ∗(x)) = 0

a(φ(x),φ′(x), . . . ,φ(n)(x), φ̃(x), φ̃′(x), . . . , φ̃(m)(x) ;φ∗(x)) = 0 ∀x ∈ ∂Λ,

(103)

where φ̃∗(x) is the stationary state in the new variables that is related with the original
stationary state φ∗(x) through equation (85):

(φ∗)(l)(x) = f(φ∗(x), (φ∗)′(x), . . . , (φ∗)(l−1)(x), φ̃∗(x), (φ̃∗)′(x), . . . , (φ̃∗)(s)(x) ;φ∗(x)).

(104)

Observe that the second condition in equation (103) only applies when the field’s
values are fixed at the system’s boundaries. These conditions help us to determine a
and f functions.

About the stationary state there are two possibilities: (i) φ̃∗(x) = φ∗(x) or (ii)

φ̃∗(x) �= φ∗(x) and this affects the boundary conditions for the φ̃(x) fields that are nec-
essary to solve the differential equation (85). The (i) case is the most convenient (but
more restrictive) because it implies that both fields have the same boundary conditions

φ̃(x) = φ(x) ∀x ∈ ∂Λ. Case (ii) needs equation (104) to be solved explicitly and then fix
some of the s constants given by the boundary values for φ(x) and the conditions that

φ̃(x) do not evolve at the boundaries: R̃1,2[φ̃;x] = 0 ∀x ∈ ∂Λ (see equation (56) and the
definitions below it).
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5. Quasipotentials for one dimensional diffusive models

We show in this section the quasipotentials obtained by electing some concrete values
(n,m, l, s) that define the differential operators on the conditions (C1T), (C3T) and
(EM) in equations (100) and (101). We have kept some fine details on their derivations
and we refer to the explicit example on section 3.4 to fill the gaps.

(i) (n,m, l, s) = (0, 0, 0, 0).
This case corresponds to the explicit example we studied in section 3.4 (zero-range

model: D(φ) = cχ′(φ)) where we got its quasipotential. Observe that the corresponding
operators (equations (87)–(90)) have the form:

P0(x) = a(1,0,0)(u0, v0, u
∗
0)

Q0(x) = a(0,1,0)(u0, v0, u
∗
0)

L0(x) = −1

S0(x) = f(1,0)(v0, u
∗
0)

(105)

and one can check that the general conditions (100) are reduced to the ones obtained
in section 3.4.

(ii) (n,m, l, s) = (0, 0, 0, 2).

In this case, we choose a = a(φ(x), φ̃(x)) and φ(x) = f(φ̃(x), φ̃′(x), φ̃′′(x)). The
operators (equations (87)–(90)) have the form:

P0(x) = a(1,0)(u0, v0)

Q0(x) = a(0,1)(u0, v0)

L0(x) = −1

S2(x) = f(1,0,0)(v) + f(0,1,0)(v)
d

dx
+ f(0,0,1)(v)

d2

dx2
,

(106)

where v = (v0, v1, v2), uk ≡ φ(k)(x), vk ≡ φ̃(k)(x). The sufficient conditions given by the
cases (a) and (b) (100), (101) are equivalent in this case. They are:

• (C1T): P 0(x) is self-adjoint by construction, therefore this condition is fulfilled.

• (C3T): Q†
0(x)S2(x) should be self-adjoint. This condition shows that applying the

relations for self-adjointness (see appendix B) to such a second order differential
operator implies:

a(0,1)(u0, v0)f
(0,1,0)(v) =

d

dx

[
a(0,1)(u0, v0)f

(0,0,1)(v)
]
. (107)

• (EM): this condition is written from equation (100) using the expressions for R1 and
R2 given by equation (65). It is a long expression that we do not write explicitly but
it is of the form of a polynomial in v6, v5, v4, v3:

c0(u0, v)v6 + c1(u0, v)v5 + c2(u0, v)v4 + c3(u0, v)v
2
3 + · · · = 0, (108)
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where u0 = f(v). Both conditions are assumed to be identities that (as we explained
above) are fulfilled for any value of vn for n � 2. Therefore, the polynomial structure on
high derivatives imply that their coefficients should be zero. That gives us conditions
on the functional forms of our unknowns: a and f. It is convenient to be solving such
conditions in an optimal way. We followed this line of reasoning:

• (1) Coefficient of v6 from (EM) equal to zero:

a(1,0)(u0, v0)f
(0,0,1)(v)2

(
2D(u0)− χ(u0)a

(1,0)(u0, v0)
)
= 0. (109)

We know that a(1,0)(u0, v0) �= 0 because the contrary would imply that a only
depends on v0 that is against our initial assumption on a. Similarly, f(0,0,1)(v) �= 0 by
construction. Therefore, from the last factor we find that

a(u0, v0) =

∫
du0

2D(u0)

χ(u0)
+ ã(v0). (110)

We include this relation into conditions (CT3) and (EM) and we go to the next
higher non-zero order.

• (2) Coefficient of v3 from (C3T) equal to zero:

ã(1)(v0)f
(0,0,2)(v) = 0 (111)

ã(1)(v0)f
(0,0,2) by construction and therefore f should be a linear function of v2:

f(v) = f0(v0, v1) + v2f1(v0, v1). (112)

By using this relation, we rewrite the full (C3T) condition as:

v1
∂

∂v0
(ã′(v0)f1(v0, v1)) = ã′(v0)

∂f0(v0, v1)

∂v1
. (113)

We use these relations into the condition (EM) and move on to the next non-zero
order.

• (3) Coefficient of v4 from (EM) equal to zero:

−4D(u0)− 2u0D
′(u0)− g0(v0, v1)D

′(u0) + g1(v0, v1)χ
′′(v0) = 0, (114)

where

g0(v0, v1) = 2ã′(v0)
−1

(
v21 ã

′′(v0)f1(v0, v1)− f0(v0, v1)ã
′(v0)

)
(115)

g1(v0, v1) = v1f1(v0, v1) (2E + v1ã
′(v0)) (116)

u0 is arbitrary and independent on v0 and v1, therefore equation (114) has three
possible scenarios:

Case (a)D(u0) = D0, g1(v0, v1) = Λ1 = cte

Case (b)χ′′(u0) = 0, g0(v0, v1) = Λ0 = cte

Case (c) g0(v0, v1) = Λ0 = cte, g1(v0, v1) = Λ1 = cte.

(117)
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Observe that we have not considered the possibility that D′(u0) = c0χ
′′(u0),

because it is studied in the (n,m, l, s) = (0, 0, 0, 0) case. At this point, we should
study each case, separately:

∗ Case (a): D(u0) = D0, g1(v0, v1) = Λ1 = cte
Equation (114) implies:

χ′′(u0) =
4D0

Λ1
(118)

and therefore this case applies only when D(u0) = D0, χ(u0) = k0 + k1u0 + k2u
2
0

with Λ1 = 2D0/k2. Equation (116) implies:

f1(v0, v1) =
2D0

k2v1

1

2E + v1ã′(v0)
. (119)

We use the remainder of condition (CT3), equation (113), to get the form of
f0(v0, v1):

f0(v0, v1) = f00(v0)−
4D0Eã′′(v0)

k2ã′(v0)2
1

2E + v1ã′(v0)
, (120)

where f00(v0) is an arbitrary function to be determined.

∗ Case (b): χ′′(u0) = 0, g0(v0, v1) = Λ0 = cte
In this case, χ(u0) = k0 + k1u0 and equation (114) implies:

D′(u0)

D(u0)
=

−4

Λ0 + 2u0
⇒ D(u0) =

D0

(Λ0 + 2u0)2
(121)

and

g0(v0, v1) = Λ0 ⇒ f0(v0, v1) = −Λ0

2
+ ã′(v0)

−1v21ã
′′(v0)f1(v0, v1). (122)

We again use the remaining of the condition (C3T), equation (113), to find
f1(v0, v1):

f1(v0, v1) = ã′(v0)f11(v1ã
′(v0)), (123)

where f11(β) is an arbitrary function to be determined.

∗ Case (c): g0(v0, v1) = Λ0 = cte, g1(v0, v1) = Λ1 = cte
From the definitions of g0 and g1 in equations (115) and (116) respectively,

we get the conditions:

g0(v0, v1) = Λ0 ⇒ f0(v0, v1) = −Λ0

2
+ ã′(v0)

−1v21ã
′′(v0)f1(v0, v1)

g1(v0, v1) = Λ1 ⇒ f1(v0, v1) =
Λ1

v1

1

2E + v1ã′(v0)
− 4D(u0)− 2u0D

′(u0)

− Λ0D
′(u0) + Λ1χ

′′(u0) = 0.
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One can easily check that the condition (113) is fulfilled by these f0(v0, v1) and
f1(v0, v1) functions.

• We now assume that φ∗(x) = φ̃∗(x). This choice is convenient because implies that

the boundary conditions for the transformed field φ̃(x) are the same as the ones for
φ(x) and therefore the second property in (103) is immediately fulfilled. Then:

a(φ∗(x),φ∗(x)) = 0 ⇒ ã(φ∗(x)) = ā(φ∗(x)), −
∫ w

dv
2D(v)

χ(v)
, (124)

where we have used (110). There are two possibilities: (a) ã(v0) = ā(φ∗(x)) ∀v0 or (b)
ã(v0) = ā(v0) ∀v0. The first case contradicts our a’s initial choice where we assumed
that there were not any explicit x -dependence on it. Therefore,

a(u0, v0) = 2

∫ u0

v0

du
D(u)

χ(u)
. (125)

• Another piece of information is obtained from the differential equation that defines
the stationary state, that for this diffusive system is given by:

d

dx

[
−D(φ∗(x))

dφ∗(x)

dx
+Eχ(φ∗(x))

]
= 0 (126)

with the corresponding boundary conditions. We also know from equation (112) that:

φ∗(x) = f0(φ
∗(x),φ∗′(x)) + φ∗′′(x)f1(φ

∗(x),φ∗′(x)). (127)

Obviously both differential equations should have the same solutions given the
boundary conditions. Just by eliminating φ∗′′(x ) from both equations we get a rela-
tion between f0 and f1 at the stationary state that helps us to determine the missing
parts of f in all three cases:

∗ Case (a): f00(v0) = v0 and therefore:

f(v0, v1, v2) = v0 −
χ(v0)

k2v1

Eχ′(v0)v1 −D0v2
Eχ(v0)−D0v1

. (128)

∗ Case (b): in this case χ(v0) = k0 + k1v0 that makes that the stationary state
have the nice property that D(φ∗(x))φ∗′(x) = Ek1φ

∗(x) + Ek0 − J , where J is
the stationary current. Therefore, the unknown function f11(β) is given by:

f11(β) =
2D̄0

β(2J − (β + 2E)(k0 − k1Λ̄0))
, (129)

where D̄0 = D0/4 and Λ̄0 = Λ0/2 so D(u) = D̄0/(Λ̄0 − u)2. Finally, we get:

f(v0, v1, v2) = −Λ̄0 + D̄0
(D(v0)χ

′(v0)−D′(v0)χ(v0))v
2
1 −D(v0)χ(v0)v2

v1D(v0)((k0E − J − k1EΛ̄0)χ(v0)− (k0 − k1Λ̄0)D(v0)v1)
.

(130)
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∗ Case (c): this order only is accomplished for situations already studied in (a) or
(b).

• The remaining condition (EM) is fulfilled once we use the full expressions for a and
f for each nontrivial case.

We see that in this case we have determined the precise form of a and f functions
such that conditions (C1T), (C3T) and (EM) are fulfilled for some concrete forms of
D(u) and χ(u). We can now to compute the quasipotential for each case.

(a) D(u) = D0, χ(u) = k0+ k1u + k2u
2.

We have found:

A [φ, φ̃;x) = 2D0

∫ φ(x)

φ̃(x)

du

χ(u)
≡ a(φ(x), φ̃(x))

φ[φ̃;x] = φ̃(x)− χ(φ̃(x))

k2φ̃′(x)

Eχ′(φ̃(x))φ̃′(x)−D0φ̃
′′(x)

Eχ(φ̃(x))−D0φ̃′(x)
.

(131)

We use equation (48) to compute the quasipotential that it can be written as:

V0[η] = V0[φ
∗] + I1 − I2

I1 =

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ∗(x))
δ

δφ̃(x ;λ)

⎡
⎣∫

Λ

dy

∫
du0 a(u0, v0)

∣∣∣∣u0=φ[φ̃(λ) ; y]

v0=φ̃(y ;λ)

⎤
⎦

I2 =

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ∗(x))

∫
du0

∂a(u0, v0)

∂v0

∣∣∣∣u0=φ[φ̃(λ) ;x]

v0=φ̃(x ;λ)

,

(132)

where φ̃(x ;λ) = φ∗(x) + λ(η̃(x)− φ∗(x)), and from equation (131) η̃(x) is the solution
of the differential equation:

η(x) = η̃(x)− χ(η̃(x))

k2η̃′(x)

Eχ′(η̃(x))η̃′(x)−D0η̃
′′(x)

Eχ(η̃(x))−D0η̃′(x)
(133)

for a given η(x) field with given boundary conditions φ̃(x) = φ(x) ∀x ∈ ∂Λ.
We have used the relation:

∫
Λ

dy a(φ[φ̃; y], φ̃(y))
δφ[φ̃; y]

δφ̃(x)
=

δ

δφ̃(x)

∫
Λ

dy

∫
du0 a(u0, v0)

∣∣∣∣u0=φ[φ̃; y]

v0=φ̃(y)

−
∫

du0
∂a(u0, v0)

∂v0

∣∣∣∣u0=φ[φ̃; y]

v0=φ̃(y)

. (134)
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The first integral in (132) is just:

I1 =

∫ 1

0

dλ
d

dλ

[∫
Λ

dy

∫
du0 a(u0, v0)

]
u0=φ[φ̃(λ) ; y]

v0=φ̃(y ;λ)

=

∫
Λ

dy [v(η(y))− η(y)v′(η(y))− v(φ∗(y)) + φ∗(y)v′(φ∗(y))] , (135)

where v(u0) = 2D0

∫
du0

∫
du0/χ(u0).

The second integral needs a little more work. First, it can be written:

I2 = −2D0

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ∗(x))
φ[φ̃(λ) ;x]

χ(φ̃(x ;λ))
. (136)

This integral can be separated into two pieces: one without derivatives of φ̃(x ;λ) and
the other with its derivatives:

I2 = I21 + I22

I21 =

∫ 1

0

dλ

∫
Λ

dx
η̃(x)− φ∗(x)

χ(φ̃(x ;λ))

[
φ̃(x ;λ)− 1

k2
χ′(φ̃(x ;λ))

]

I22 =
D0

k2

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ∗(x))
1

u(x ;λ)χ(φ̃(x ;λ))

u′(x ;λ)

E −D0u(x ;λ)
,

(137)

where u(x ;λ) = φ̃′(x ;λ)/χ(φ̃(x ;λ)). I21 can be evaluated by making the change of

variables λ→ φ̃(x ;λ) at each x and we get:

I21 =
1

2D0

∫
Λ

dx

[
η̃(x)v′(η̃(x))− v(η̃(x))− 2D0

k2
log χ(η̃(x))

−φ∗(x)v′(φ∗(x)) +
2D0

k2
log χ(φ∗(x))

]
. (138)

Integral I22 can be written as:

I22 =
D0

k2E

∫ 1

0

dλ

∫
Λ

dx
η̃(x)− φ∗(x)

χ(φ̃(x ;λ))

d

dx
log

[
|D0u(x ;λ)|

|E −D0u(x ;λ)|

]
(139)

and after integrating by parts on x:

I22 = − D0

k2E

∫ 1

0

dλ

∫
Λ

dx
d

dx

η̃(x)− φ∗(x)

χ(φ̃(x ;λ))
log

[
|D0u(x ;λ)|

|E −D0u(x ;λ)|

]
(140)

we now use the relation:
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du(x ;λ)

dλ
=

d

dx

η̃(x)− φ∗(x)

χ(φ̃(x ;λ))
(141)

to get

I22 = − D0

k2E

∫
Λ

dx

∫ 1

0

dλ
du(x ;λ)

dλ
log

[
|D0u(x ;λ)|

|E −D0u(x ;λ)|

]

= − D0

k2E

∫
Λ

dx

∫ u(x ; 1)

u(x ; 0)

du log

[
|D0u|

|E −D0u|

]
, (142)

where u(x, 0) = φ∗′(x)/χ(φ∗(x)) and u(x, 1) = η′(x)/χ(η(x)). After doing the integral
of the logarithm and putting together all the pieces I1, I21 and I22, we get the final
expression for V 0:

V0[η] = V0[φ
∗] +

∫
Λ

dx [v(η(x))− v(η̃(x))

− (η(x)− η̃(x))v′(η̃(x))− 2D0

k2
log

χ(η̃(x))

χ(φ∗(x))

+
2D0

k2E

((
D0η̃

′(x)

χ(η̃(x))
−E

)
log

∣∣∣∣D0η̃
′(x)

χ(η̃(x))
−E

∣∣∣∣− D0η̃
′(x)

χ(η̃(x))
log

∣∣∣∣D0η̃
′(x)

χ(η̃(x))

∣∣∣∣
−

(
D0φ

∗′(x)

χ(φ∗(x))
−E

)
log

∣∣∣∣D0φ
∗′(x)

χ(φ∗(x))
−E

∣∣∣∣
[
+

D0φ
∗′(x)

χ(φ∗(x))
log

∣∣∣∣D0φ
∗′(x)

χ(φ∗(x))

∣∣∣∣
)]

(143)

with η̃(x) solution of the differential equation (133) with boundary conditions η̃(x) =
η(x) ∀x ∈ ∂Λ.

We observe that the case k2 → 0 seems to be singular; however, it is not. In order to
do the limit let us think that k2 is a perturbative parameter and then we assume that a
well-defined expansion exists: η̃(x) = η̃0(x) + k2η̃1(x) + · · · . We apply this expansion to
equation (133), and it appears the order k−1

2 . Its coefficient should be zero and therefore:

−D0η̃
′′
0(x) + Ek1η̃

′
0(x) = 0 ⇒ η̃0(x) = φ∗(x), (144)

where φ∗(x) is now the stationary state when k2 = 0. For instance, φ∗(x) for the fixed
boundary condition case (φ∗(0) = φ0 and φ∗(1) = φ1) is

φ∗(x) =
J

k1E
+

φ1 − φ0

eẼ − 1
eẼx, J = Ek1

φ0 e
Ẽ − φ1

eẼ − 1
, (145)

where Ẽ = Ek1/D0 and J is the current. The order k0
2 has the form:

η(x) = −φ∗(x)

(
1 +

2D0φ
∗′(x)

k0E + J

)

− χ0(φ
∗(x))

(k0E + J)φ∗′(x)
(k1Eη̃1

′(x)−D0η̃1
′′(x)) (146)
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and χ0(u) = k0 + k1u. This differential equation for η̃1(x) should be solved with bound-
ary conditions η̃1(x) = 0 ∀x ∈ ∂Λ because in the expansion η̃0 carries the original bound-
ary conditions. Finally, with all of this information we can expand the quasipotential
around k2 = 0 and we get for D(u) = D0 and χ(u) = k0 + k1u:

V0[η] = V0[φ
∗] +

∫
Λ

dx [v(η(x))− v(φ∗(x))− (η(x)− φ∗(x))v′(φ∗(x))

+
2D2

0E

χ0(φ∗(x))2
(
χ0(φ

∗(x))η̃1
′(x)− k1φ

∗′(x)η̃1(x)
)

× log

[∣∣∣∣1− Eχ0(φ
∗(x))

D0φ∗′(x)

∣∣∣∣
]
− 2D0k1η̃1(x)

χ0(φ∗(x))

]
(147)

with the η̃1(x) solution of equation (146). Observe that φ̃∗
1(x) �= φ∗(x). We can compute

φ̃∗
1(x) from equation (146) for the fixed boundary condition case:

φ̃∗
1(x) =

φ1 − φ0

k1

1

(eẼ − 1)2

[
(φ1 − φ0)

(
eẼx − 1

)(
eẼ − eẼx

)

+ 2Ẽ(φ0 e
Ẽ − φ1)

[
eẼx(1− x) +

eẼx − eẼ

eẼ − 1

]]
(148)

that in the limit Ẽ → 0 is reduced to

φ̃∗
1(x) =

2

k1
(φ1 − φ0)

2x(1− x). (149)

(b) D(u) = D̄0/(Λ̄0 + u)2, χ(u) = k0+ k1u .
We found in this case:

A [φ, φ̃;x) = 2

∫ φ(x)

φ̃(x)

duD(u)

χ(u)
≡ a(φ(x), φ̃(x))

φ[φ̃;x] = −Λ̄0 +
D̄0

[
(k1D(φ̃(x))−D′(φ̃(x))χ(φ̃(x)))φ̃′(x)2 −D(φ̃(x))χ(φ̃(x))φ̃′′(x)

]
φ̃′(x)D(φ̃(x))

[
a0χ(φ̃(x))− a1D(φ̃(x))φ̃′(x)

]
(150)

where a0 = k0E − J − k1EΛ̄0 and a1 = k0 − k1Λ̄0. We use these expressions in
equation (48), and initially, we follow similar steps as in the above case to get:

V0[η] = V0[φ
∗] +

∫
Λ

dx [v(η(x))− v(φ∗)− η(x)v′(η̃(x)) + φ∗(x)v′(φ∗(x))]

+

∫ 1

0

dλ

∫
Λ

dx(η̃(x)− φ∗(x))v′′(φ̃(x ;λ))φ[φ̃; x], (151)
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where we remind that v(u) = 2
∫
du

∫
duD(u)/χ(u). After substituting φ[φ̃; y] from its

expression we can decompose the last integral into two pieces:∫ 1

0

dλ

∫
Λ

dx(η̃(x)− φ∗(x))v′′(φ̃(x ;λ))φ[φ̃;x] = −Λ̄0I11 − D̄0I12, (152)

where

I11 =

∫ 1

0

dλ

∫
Λ

dx(η̃(x)− φ∗(x))v′′(φ̃(x ;λ))

I12 =

∫ 1

0

dλ

∫
Λ

dx(η̃(x)− φ∗(x))v′′(φ̃(x ;λ))
u′(x ;λ)

u(x ;λ)(a0 + a1u(x ;λ))
,

(153)

where u(x,λ) = v′′(φ̃(x ;λ))φ̃′(x ;λ)/2. The integral I11 is straightforwardly evaluated

using the change of variables λ→ φ̃(x ;λ) at each x. Then:

I11 =

∫
Λ

dx [v′(η̃(x))− v′(φ∗(x))] . (154)

The integral I12 is done by first rewriting u′/(u(a0 + a1u)) = (log|u/(a0 + a1u)|)′/a0.
Second, we integrate by parts where the surface term is zero due to the boundary
conditions and third, we use the relation:

du(x ;λ)

dλ
=

1

2

d

dx

[
v′′ (φ̃(x ;λ)(η̃(x)− φ∗(x))

]
. (155)

Finally, we put all of the terms together and we find:

V0[η] = V0[φ
∗] +

∫
λ

dx
[
v(η(x))− v(φ∗)− (η(x) + Λ̄0)v

′(η̃(x)) + (φ∗(x)

+ Λ̄0

)
v′(φ∗(x)) +

D̄0

a0
v′′(φ∗(x))φ∗′(x) log

[∣∣∣∣a1 + 2a0
v′′(φ∗(x))φ∗′(x)

∣∣∣∣
]

− D̄0

a0
v′′(η̃(x))η̃′(x) log

[∣∣∣∣a1 + 2a0
v′′(η̃(x))η̃′(x)

∣∣∣∣
]

− 2D̄0

a1
log

[∣∣∣∣ 2a0 + a1v
′′(η̃(x))η̃′(x)

2a0 + a1v′′(φ∗(x))φ∗′(x)

∣∣∣∣
]]

, (156)

where η̃(x) is the solution of the differential equation:

η(x) = −Λ̄0

+
D̄0 [(k1D(η̃(x))−D′(η̃(x))χ(η̃(x)))η̃′(x)2 −D(η̃(x))χ(η̃(x))η̃′′(x)]

η̃′(x)D(η̃(x)) [a0χ(η̃(x))− a1D(η̃(x))η̃′(x)]

(157)

for any given η(x) field.
(iii) (n,m, l, s) = (0, 0, 1, 1).
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In this case, we choose a = a(φ(x), φ̃(x)) and φ(1)(x) = f(φ(x), φ̃(x), φ̃′(x)). The
corresponding operators (equations (87)–(90)) have the form:

P0(x) = a(1,0)(u0, v0)

Q0(x) = a(0,1)(u0, v0)

L1(x) = f(1,0,0)(u0, v0, v1)−
d

dx

S1(x) = f(0,1,0)(u0, v0, v1) + f(0,0,1)(u0, v0, v1)
d

dx
.

(158)

The conditions for the existence of V 0 are given by equation (101):

• (C1T): this condition is fulfilled because P 0(x) is self-adjoint by construction.

• (C3T) and (EM): they are polynomials on vk.

The strategy we have followed to unveil the form of the functions a and f is:

• (1) Coefficient of v2 from (C3T) equal to zero:

f(0,0,2)(u0, v0, v1) = 0 ⇒ f(u0, v0, v1) = f0(u0, v0) + v1f1(u0, v0). (159)

• (2) Rest of (C3T) after substituting equation (159):

f0(u0, v0)f
(1,0)
1 (u0, v0) = f

(0,1)
0 (u0, v0) + f1(u0, v0)f

(1,0)
0 (u0, v0). (160)

• (3) Coefficient v3 from (EM):
There are two possibilities,

f1(u0, v0) = −a(0,1)(u0, v0)

a(1,0)(u0, v0)

f1(u0, v0) =
χ(u0)a

(0,1)(u0, v0)

2D(u0)− χ(u0)a(1,0)(u0, v0)
.

One can show that the first case implies the case (n,m, l, s) = (0, 0, 0, 0).

• (4) Coefficient v2 from (EM):
We get a partial differential equation on f0(u0, v0) that, together with

equation (160), implies:

a(u0, v0) = ã(u0)− ã(v0)

f0(u0, v0) = c0
χ(u0)

2D(u0)− χ(u0)ã′(u0)

f1(u0, v0) = − ã′(v0)χ(u0)

2D(u0)− χ(u0)ã′(u0)
.

(161)

These relations imply that (C3T) is fulfilled.
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• (5) Rest of condition (EM):

c0(c0 − 2E)χ(u0)
2(c0 − v1ã′(v0))χ

′′(u0) = 0. (162)

There are three possibilities: c0 = 0, c0 = 2E or χ′′(u0) = 0. In order to elucidate
which one of these is the correct, we apply our equation to the stationary state.
First we know that φ∗(x) = φ̃∗(x) because a(φ∗(x), φ̃∗(x)) = 0. Then, we apply this
to our equation u1 = f(u0, v0, v1) and we find that c0 = 2φ∗′(x)D(φ∗(x))/χ(φ∗(x)).
On the other hand, we know that the stationary state is the solution of
φ∗′(x)D(φ∗(x))/χ(φ∗(x)) = E − J/χ(φ∗(x)) that implies χ(u0) = χ0. This is coher-
ent with one of the conditions in equation (162) and (EM) is fulfilled. Finally, we
can write equation (159) as:

φ′(x)[2D(φ(x))− χ0ã
′(φ(x))] = 2(Eχ0 − J)− χ0φ̃

′(x)ã′(φ̃(x)) (163)

that it can be integrated:

ã(φ(x))− ã(φ̃(x)) =
2

χ0

∫ φ(x)

φ∗(x)

duD(u). (164)

The quasipotential can be calculated following similar steps as in the above cases.
We know that V 0 can be written as:

V0[η] = V0[φ
∗] + I1 − I2, (165)

where

I1 =

∫
Λ

dx

[∫ η(x)

φ∗(x)
du ã(u)− η(x)ã(η̃(x)) + φ∗(x)ã(φ∗(x))

]

I2 =

∫ 1

0

dλ

∫
Λ

dx (η(x)− φ∗(x))φ(x ;λ)ã′(φ̃(x ;λ))

(166)

I2 can be simplified by using equation (164) with φ̃(x ;λ) and φ(x ;λ) and after doing
a λ derivative in it we get the relation:

ã′(φ̃(x ;λ)) (η(x)− φ∗(x)) =
dφ(x ;λ)

dλ

(
ã′(φ(x ;λ))− 2

χ0

D(φ(x ;λ))

)
.

(167)

Finally, we do the change of variables λ→ φ(x ;λ) at each x and we find:

I2 =

∫
Λ

dx

∫ η(x)

φ∗(x)
duu

[
ã′(u)− 2

χ0
D(u)

]
. (168)

Putting together I1 and I2 we get:
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V0[η] = V0[η
∗] +

2

χ0

∫
Λ

dx

∫ η(x)

φ∗(x)
du

∫ u

φ∗(x)
dvD(v) (169)

for any D(u) and χ(u) = χ0. φ
∗(x) is solution of

D(φ∗(x))φ∗′(x) = χ0E − J. (170)

Let us finish this section by commenting that we also attempted other values
for (n,m, l, s). For instance, (0, 1, 0, 1) reduces to the case (0, 0, 1, 1) we have stud-
ied explicitly. However, we could not find anything for cases (0, 0, 2, 2), (0, 0, 0, 4), and
(0, 2, 0, 2).

6. Quasipotentials for some one-dimensional reaction–diffusion models

We first study the reaction–diffusion model whose Langevin equation is given by (8)
with

F [φ;x] = g(φ)φ′′(x) + w(φ(x)). (171)

We choose (n,m, l, s) = (0, 0, 0, 0). As happened in the similar case of diffusion dynamics,
conditions (C1T) and (C3T) are fulfilled by construction. The condition (EM) is built
by using the functionals:

R1[φ, φ̃; x] = g(φ)φ′′(x) + w(φ(x)) + a(x)h2(φ(x))

R2[φ, φ̃; x] = −a(x) [g′(φ(x))φ′′(x) + w′(φ(x)) + a(x)h(φ(x))h′(φ(x))]

− (a(x)g(φ(x)))′′, (172)

where a(x) = a(φ(x), φ̃(x)). After substitutions and some trivial algebra, the condition
(EM) becomes a polynomial on vk where their coefficients are equal to zero:

• Coefficient of v2 from (EM) equal to zero:

a(u0, v0 ;us) =
C

g(u0)
. (173)

This is a singular case because at the stationary state a = 0 and therefore g(us)
−1 = 0.

Let us assume that

g(u) = ḡ(u)(u− us)
−α α > 0. (174)

This is coherent whenever the stationary state is a constant: φ∗(x) = φ∗ (because we
are not considering in this paper local functions of g, w or h). Observe that with
this election the deterministic evolution equation is:

φ̇D(x, t) = ḡ(φD(x, t))(φD(x, t)− φ∗)−αφ′′
D(x, t) + w(φD(x, t)). (175)
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Near the equilibrium, φ(x, t) = φ∗ + ε(x, t) the dominant terms of this equation for
very small values of ε can be written:

∂tε(x, t) = w′(φ∗)ε(x, t) + ε−αε(x, t)−αḡ(φ∗)∂2
xxε(x, t), (176)

where φ∗ is a solution of w(φ∗) = 0. The diffusion term is singular but it goes very
fast to zero because it behaves as if the system had almost an infinite diffusivity and,
therefore, it homogenizes any initial profile very quickly in such a way that the spatial
second derivative becomes zero. The reaction term makes ε evolve exponentially
quickly towards zero whenever w′(φ∗) < 0. Therefore, this singular system is well
behaved near the stationary solution.

• The rest of the (EM) condition is fulfilled when:

h2(u) = −2g(u)w(u). (177)

One can check that with the form of a and h, the Hamiltonian H[φ, π] = 0 along the
trajectory.

The quasipotential can be written as

V0[η] = V0[φ
∗] + C

∫ 1

0

dλ

∫
Λ

dx
(η̃(x)− φ∗(x))

g(f(φ̃(x ;λ)))

∂f(v ;φ∗)

∂v

∣∣∣∣
v=φ̃(x ;λ)

, (178)

where φ[φ̃;x] = f(φ̃(x) ;φ∗(x)) and φ̃(x ;λ) = φ∗(x) + λ(η̃(x)− φ∗(x)). We do the change

of variable λ→ φ̃(x ;λ) at each x point and we get

V0[η] = V0[φ
∗] +

∫
Λ

dx

∫ η(x)

φ∗

du

g(u)
, (179)

where g(φ) = ḡ(φ)(φ− φ∗)−α, α > 0.
The other interesting reaction–diffusion model we have studied is the Poissonian

reaction–diffusion dynamics. We already defined this model in section 2. We choose
(n,m, l, s) = (0, 0, 0, 0). Again, conditions (CT1) and (CT3) are fulfilled by construction,
and the (EM) condition is built with

R1[φ, φ̃;x] = φ′′(x)− 2(a′(x)φ(x)(1− φ(x)))′ + b(φ(x))ea(x) − d(φ(x))e−a(x)

R2[φ, φ̃;x] = −a′′(x)− a′(x)2(1− 2φ(x)) + b′(φ(x))(1− ea(x))

+ d′(φ(x))(1− e−a(x)).

(180)

The coefficient for v2 equaled to zero gives us the first condition:

f′(v0)− f(v0)(1− f(v0))
da(f(v0), v0)

dv0
= 0 ⇒ a(u0, v0) = log

u0

1− u0
+ C,

(181)
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where C is a constant that is fixed by the condition: a(φ∗,φ∗) = 0: C = log[(1− φ∗)/φ∗].
Let us repeat that we are using periodic boundary conditions and that the stationary
state is homogeneous: φ∗(x) = φ∗, where φ∗ is the solution of b(φ∗) = d(φ∗).

We use the result on a to get the rest of the (EM) condition:

u2
0(1− φ∗)2b(u0)− φ∗2(1− u0)

2d(u0)

= u0(1− u0)(u0 − φ∗) [φ∗(1− u0)d
′(u0)− u0(1− φ∗)b′(u0)] . (182)

The solution of this equation is:

b(u) = φ∗(1− u)h(u), d(u) = (1− φ∗)uh(u), (183)

where h(u) is a positive function.
Once we know a(u0, v0) and the functions b(u) and d(u) that fulfills the conditions

we can compute the quasipotential. We almost follow the same steps as we did for the
diffusion case for (n,m, l, s) = (0, 0, 0, 0) and we get

V0[η] = V0[φ
∗] +

∫
Λ

dx

[
η(x) log

[
η(x)

φ∗

]
+ (1− η(x)) log

[
1− η(x)

1− φ∗

]]
. (184)

This case was already studied by Gabrielli et al [20, 25].
We also studied the case (n,m, l, s) = (0, 0, 0, 2), but no situation fulfilled the

conditions.

7. Summary of results and conclusions

The mesoscopic description of non-equilibrium systems given by the MFT [20] is a solid
background to study their generic properties. Even though MFT is mathematically
simpler than its microscopic original description, it is still difficult to extract precise
information from our actual analytical tools. This paper intends to build a method to
get the stationary measure represented by the quasipotential at the small noise limit.
Formally, the quasipotential is obtained by a time integral of some variables along a
path defined by a Hamiltonian that depends on the studied system, (φ(t), π(t)):

V0[η] ∼
∫ 0

−∞
dt

∫
x∈Λ

π(x, t)∂tφ(x, t). (185)

After a canonical transformation of type 1 with generator L[φ, φ̃], the situation does not
change too much, and the quasipotential still is mainly a time integral like equation (185)

along a path defined by the same Hamiltonian expressed in the new variables (φ̃(t), π̃(t)).
However, we can effectively deform this last path into a straight line by using the
properties of the canonical transformation and assuming that there exists a map between
the paths followed by the original fields and the transformed ones:

Main assumption :φ(x, t) = φ[φ̃(t) ;x] ∀t ∈ [−∞, 0]. (186)
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Therefore, the quasipotential can be expressed in the convenient form, equation (48):

V0[η] = V0[φ
∗] +

∫ 1

0

dλ

∫
Λ

dx (η̃(x)− φ̃∗(x))

∫
Λ

dy A[φ[φ̃(λ)], φ̃(λ) ; y]K[φ̃(λ) ; y, x],

(187)

where φ̃(x,λ) = φ̃∗(x) + λ(η̃(x)− φ̃∗(x)). In this way, we manage to get rid of highly non-
trivial path integration. However, we pay the price of introducing two local functionals:
A[φ; φ̃;x] = δL[φ, φ̃]/δφ(x) and K[φ̃;x, y] = δφ[φ̃;x]/δφ̃(y). At this point, our method’s

goal is to design a way to directly determine both functionals: A[φ ; x] and K[φ̃;x, y]. We
know that they depend on the canonical transformation and on Hamilton’s equations
that define the paths. Therefore, they cannot take any functional form. In fact, we show
that they should fulfill three compatibility conditions (C1T), (C3T), and (EM) given by
equations (53), (55) and (61), respectively. These conditions are the core of our method:

we initially give functional forms for A and φ[φ̃], using the compatibility conditions to
determine their fine structure.

In this paper (section 4), we only use the family of functionals given by equations (84)
and (85):

A[φ, φ̃;x] = a(φ(x),φ′(x), . . . ,φ(n)(x), φ̃(x), φ̃′(x), . . . , φ̃(m)(x),φ∗(x)) (188)

φ(l)(x) = f(φ(x),φ′(x), . . . ,φ(l−1)(x), φ̃(x), φ̃′(x), . . . , φ̃(s)(x),φ∗(x)). (189)

Observe that K-functional can be derived from equation (189) just by a functional
derivative on both sides (see main text). This family permits to write the compatibility
conditions compactly by using differential operators (see equations (93), (95) and (96))
where some inverse operators appear. This fact makes their algebraic use very difficult,
if not impossible. To go forward, we restrict ourselves to cases where such inverse dif-
ferential operators are just functions. Then the compatibility conditions simplify and
become equations (100) or (101), and they are algebraically manageable.

We show in the paper (sections 3.4, 5 and 6) how to algebraically deal with such
conditions once we fix a particular set of (n,m, l, s) values for the functions a and f
(equations (188) and (189), respectively). We observe that the compatibility conditions
can determine the form of the functions a and f . At the same time, they select a subfam-
ily of Langevin equations (for instance, the functional form for the diffusion or the mobil-
ity for diffusive systems). We explicitly apply this method to already well-known cases,
discovering new solutions that may be of general interest. In particular, for one dimen-
sional diffusive systems that are characterized by the functions D(φ) and χ(φ) (see main
text) we get the explicit quasipotential for the cases: (i) D(u) = cχ′(u) in equation (78),
(ii) D(u) = D0, χ(u) = k0 + k1u+ k2u

2 in equation (143), (iii) D(u) = D0/(Λ0 + u)2,
χ(u) = k0 + k1u in equation (156) and (iv) D(u), χ(u) = χ0 in equation (169).

We observe sets of values (n,m, l, s) that do not fulfill the compatibility conditions.
In general, this method does not guarantee a priori that any given functional structure
for a and f should be associated with a well-defined canonical transformation. Therefore,
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this is a kind of trial-and-error method at this moment. It would be relevant in the future
to have an a priori deeper knowledge about compatible functional forms for A and φ[φ̃].

We think that this method may be developed and improved further in several ways.
For instance, applying it to higher dimensional systems, at least initially, for simple
cases as the zero-range model or even the SSE could be interesting. On the other hand,
in the paper, we focused on transformations whose compatibility conditions do not
contain generic differential operators inverse. For these cases, we handle the structure
of the compatibility conditions easily. We think that there is vast work to be done
dealing with the more generic cases where such inverse operators appear. Probably they
carry stronger non-local properties necessary to describe the behavior of more complex
situations. It could also be interesting to define some other functional structures for A
and φ[φ̃;x] as integrals of functions over local domains or similar.

In this paper, we only dealt with canonical transformations of type I, and the study
of other types may imply new quasipotential structures. Finally, it could be interesting
to set up a systematic perturbation theory similar to Bouchet et al [26] but associated
with the canonical transformation we have presented.
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Appendix A

Let R[φ ; x] be a given local functional on φ. We know that

δB[φ]

δφ(x)
= R[φ;x] (190)

and let us assume that B[φ] exists, that is

δR[φ;x]

δφ(y)
=

δR[φ; y]

δφ(x)
. (191)

Then we can show that

B[φ] = B[φ∗] +

∫ 1

0

dλ

∫
Λ

dx (φ(x)− φ∗(x))R[φ(λ) ;x], (192)

where

φ(x ;λ) = φ∗(x) + λ(φ(x)− φ∗(x)). (193)
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Demonstration: let us show that the derivative of (192) is (190).

δB[φ]

δφ(y)
=

∫ 1

0

dλ

∫
Λ

dx

[
R[φ(λ) ;x]δ(x− y) + (φ(x)− φ∗(x))

δR[φ(λ) ;x]

δφ(y)

]
.

(194)

We can use the relations:

δR[φ(λ) ;x]

δφ(y)
= λ

δR[φ;x]

δφ(y)

∣∣∣∣
φ=φ(λ)

dR[φ(λ) ;x]

dλ
=

∫
Λ

dy
δR[φ; y]

δφ(x)

∣∣∣∣
φ=φ(λ)

(φ(y)− φ∗(y))

, (195)

where we have made use of (191). Then we get

δB[φ]

δφ(y)
=

∫ 1

0

dλ

[
R[φ(λ) ;y] + λ

dR[φ(λ) ; y]

dλ

]
= R[φ(λ) ; y] c.q.d. (196)

Appendix B. Self adjoint conditions for an n-differential operator in one
dimension

Let us L be a linear differential operator of nth order:

L =
n∑

k=0

ak(x)
dk

dxk
, (197)

where ak(x) ∈ R ∀x ∈ Λ ⊂ R. We define the inner product for two real analytic functions
u(x), v(x):

〈u, v〉 =
∫
Λ

dx u(x)v(x). (198)

The adjoint of L, L†, is then defined by

〈L†u, v〉 = 〈u,Lv〉. (199)

Therefore

L† =

n∑
k=0

(−1)k
dk

dxk
ak(x), (200)

where it is assumed that the set of real functions v(x), u(x), where L and L† respectively
apply, has boundary conditions such that
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n∑
k=1

k−1∑
l=0

(−1)l
dl

dxl
(ak(x)u(x))

dk−1−l

dxk−1−l
v(x)

∣∣∣∣∣
∂Λ

= 0. (201)

L is called self-adjoint if L = L† and the set of boundary conditions for the v(x) and
u(x) functions coincide and fulfills equation (201). Therefore, the coefficients of L such
that L = L† should be related by

ak(x) =
n∑

l=k

(−1)l
(
l

k

)
dl−k

dxl−k
al(x) k = 1, . . . ,n. (202)

Observe that only the operators L with n even can be self-adjoint. That can be shown
by applying relation (202) to the case k = n.

One realizes that not all of the n-relations defined by (202) are independent. In fact,
we can show that the independent set of relations that define a self-adjoint operator is
given by:

a2l+1(x) =
1

(2l + 1)!

m−l−1∑
s=0

(2(s+ l + 1))! cs
d2s+1

dx2s+1
a2l+2s+2(x), (203)

where l = 0, . . . ,m− 1 and n = 2m. The c’s are a set of numbers generated by the
recurrence:

cl =
1

2(2l + 1)!
− 1

2

l−1∑
k=0

ck
(2l − 2k)!

, l > 0, c0 = 1/2. (204)

For instance: c1 = −1/24, c2 = 1/240, c3 = −17/40 320, c4 = 31/725 760, . . . Curiously
enough, we find that c’s follow another relation:

1

(2l + 2)!
=

l∑
k=0

ck
(2l − 2k + 1)!

. (205)

We have computed the first 100 values of c’s and found that they alternate signs and
their modulus decreases exponentially quickly: |cl| � 1.82 exp[−2.29l].

As an example, for n = 2 the condition for self-adjointness is:

a1(x) =
da2(x)

dx
(206)

and for n = 4 we have two conditions:

a1(x) =
da2(x)

dx
− d3a4(x)

dx3
, a3(x) = 2

da4(x)

dx
. (207)

Let us define the Green functions G and G† solutions of the equations:

LG(x, x0) = δ(x− x0), L†G†(x, x0) = δ(x− x0). (208)

Proposition: L is self-adjoint if and only if G(x1, x2) = G(x2, x1).
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To prove the proposition, let us choose u(x) = G†(x, x2) and v(x) = G(x, x1) for the
inner product in equation (198). Then we get:

G†(x1, x2) = G(x2, x1). (209)

If L is self-adjoint then G†(x1, x2) = G(x1, x2) and using equation (209) we prove the
right implication. If we assume G(x1, x2) = G(x2, x1) we see from (209) that G†(x1, x2) =
G(x1, x2). Assuming that there is a unique solution for each operator, we get L† = L.
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