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Infinite family of universal profiles for heat current statistics in Fourier’s law
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Using tools from large deviation theory, we study fluctuations of the heat current in a model of d-dimensional
incompressible fluid driven out of equilibrium by a temperature gradient. We find that the most probable
temperature fields sustaining atypical values of the global current can be naturally classified in an infinite
set of curves, allowing us to exhaustively analyze their topological properties and to define universal profiles
onto which all optimal fields collapse. We also compute the statistics of empirical heat current, where we
find remarkable logarithmic tails for large current fluctuations orthogonal to the thermal gradient. Finally, we
determine explicitly a number of cumulants of the current distribution, finding interesting relations between
them.
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I. INTRODUCTION

The development of a theory of fluctuations in fluids has
been a central object of study in statistical physics [1,2]. A
general framework to characterize fluctuations in thermody-
namic equilibrium states was provided by Landau and Lifshitz
[3,4], and this program has been generalized with success to
study small fluctuations for fluids in nonequilibrium steady
states [5]. Nevertheless, understanding arbitrary fluctuations
in fluids far from equilibrium still remains an open problem,
and this is the focus of the present work. An interesting
situation to analyze in this context is the problem of heat
transport in a fluid subject to a thermal gradient, possibly one
of the simplest and most studied cases of a nonequilibrium
steady state [6]. Heat transport in this setting is governed by
Fourier’s law, which establishes the proportionality between
the heat current and the local temperature gradient. The
proportionality constant defines the heat conductivity κ , an
intrinsic property of the fluid which could depend on the
local temperature and density. Interestingly, while it is widely
believed that Fourier’s law is just a linear approximation to a
more complex transport law, recent works have shown that,
at least for some fluid models, this law holds locally far from
equilibrium [7] and well beyond the linear transport regime.
Numerous experimental works have studied the statistics
of fluctuations of heat flux and temperature in this setting
for a wide variety of systems, measuring the corresponding
probability distributions [8–10], some low- and high-order
cumulants [9–19], and the associated temperature profiles
[11,12,14,16,19,20]. Nevertheless, developing a general theo-
retical scheme to understand both typical and rare heat current
fluctuations in this setting remains challenging, even for the
simplest model fluids.
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In recent years a series of works have analyzed current
fluctuations in a broad family of stochastic models of transport
[21–37], offering a deeper comprehension of nonequilibrium
fluctuating behavior. A key tool in these developments has
been the Macroscopic Fluctuation Theory (MFT) of Bertini
and coworkers [22–28,38,39], which describes dynamical
fluctuations in diffusive equilibrium and nonequilibrium me-
dia starting from their fluctuating hydrodynamic description
in terms of two transport coefficients, the diffusivity and the
mobility. In particular, MFT offers (1) explicit variational
formulas for the large deviation functions (LDFs) that con-
trol the statistics of fluctuations [38–41], and (2) differential
equations for the optimal trajectory (or sequence of configu-
rations) adopted by the system to sustain a given fluctuation.
Understanding the properties of these LDFs and the optimal
trajectories is a task of crucial relevance since they contain
information on interesting new physics, such as the emergence
of order at the fluctuating level via dynamical phase transi-
tions [39,42–57], or the appearance of new symmetries and
fluctuation theorems out of equilibrium [44,58–68]. The MFT
equations for current statistics lead to a complex variational
problem in general, so most studies to date have focused
on oversimplified one-dimensional (1D) models, where cal-
culations are somewhat simpler. It has been only in recent
years that the MFT problem for d > 1 diffusive systems
has been tackled [35,36,39,44,46,65,68–72], and these works
have shown that lifting the dimensionality constraint leads to
a rich phenomenology not present in one dimension.

With these ideas in mind, the aim of this work is to charac-
terize within the MFT framework the statistics of fluctuations
of the empirical heat current in an incompressible quiescent
d-dimensional model fluid subject to a boundary temperature
gradient [3,5]. In particular our goal consists in describing the
optimal temperature field sustaining a given heat flux fluctu-
ation in the long-time limit, as well as determining some cu-
mulants of the current distribution and its tail behavior. With
this purpose, we solve the MFT problem for a model fluid
characterized by a constant thermal diffusivity D(T ) = 1/2
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and a quadratic mobility σ (T ) = T 2, a model that captures
the heat transport properties of a large family of quiescent
incompressible fluids under moderate temperature gradients
[3–5]. In particular, we use the Weak Additivity Principle
[35,36] as a tool to obtain both the heat flux LDF and the op-
timal temperature field associated to each current fluctuation.
We find that these optimal temperature fields can be gathered
into families characterized by the same functional form (in
terms of inverse Jacobi elliptic functions). This observation
allows us to classify all optimal trajectories in an infinite
set of universal functions, providing a deeper understanding
of their properties and structure. Moreover, we obtain the
analytical form of the current LDF and analyze its behavior
in limiting cases, both near the steady state and in the far
tails of the distribution. The latter case exhibits an interesting
logarithmic dependence which confirms the complex analytic
behavior of the heat current LDF. We further determine the
cumulant generating function of the current distribution, from
which analytical expressions for its cumulants follow, as well
as relations between them which open the door to further
experimental research on this problem.

II. MODEL, FLUCTUATING HYDRODYNAMICS,
AND PATH INTEGRAL REPRESENTATION

We consider a d-dimensional fluid subject to a boundary
temperature gradient in one direction, say, x ∈ [0, L] with
L the system linear size. The fluid is fully described at
any instant of time by the mass density ρ(r, t ), temperature
T (r, t ), pressure p(r, t ), and local center-of-mass velocity
v(r, t ) fields, with r ∈ � ≡ [0, L]d and t > 0 the spatial and
temporal coordinates, respectively. The fluid’s evolution at
the macroscale is completely characterized by a set of d + 2
partial differential equations, called balance equations, which
are derived from the local conservation laws together with the
usual constitutive relations between the thermodynamic forces
and the fluxes [2]. In particular, conservation of mass leads to
the continuity equation

∂tρ + ∇ · (ρv) = 0, (1)

while momentum conservation yields the Navier-Stokes equa-
tions

ρ[∂t v + (v · ∇)v] = −∇ · p + η∇2v +
(

ζ + 1

3
η

)
∇(∇ · v),

(2)

and conservation of energy results in

∂t

(
1

2
ρv2 + ρe

)
= −∇ ·

[
ρv

(
1

2
v2 + ω

)
+ � + jD

]
. (3)

In the above equations η and ζ are, respectively, the shear
and bulk viscosity coefficients, e is the internal energy per
mass unit, ω is the enthalpy per mass unit, � is the viscous
dissipation function (proportional to the divergence of the
velocity), and jD is the local heat current [2,3,5]. In particular,
the structure of the local heat current field is given by the
well-known Fourier’s law of heat conduction

jD(r, t ) = −κ (T )∇T (r, t ), (4)

with κ (T ) the thermal conductivity. In this paper we are
interested in studying thermal transport in a quiescent in-
compressible fluid in contact with two boundary thermostats
at temperatures T0 and T1 along the x direction, with pe-
riodic boundary conditions along all perpendicular (d − 1)
directions. Quiescence implies that v(r, t ) = 0 ∀ r, t , while
incompressibility implies that the fluid’s mass density and
pressure fields are constant across space, so the only relevant
field in this case is the temperature field T (r, t ), which then
satisfies Fourier’s heat equation [2–5]

∂t T (r, t ) = ∇ · [D(T )∇T (r, t )], (5)

where D = κ
ρcp

is the thermal diffusivity, with cp the specific
heat at constant pressure. Finally, we further assume that the
initial condition is such that the system relaxes to its steady
state in a finite timescale.

The previous description is a macroscopic one. At a more
interesting mesoscopic level, molecular-scale chaotic motions
leave a fingerprint in the form of small fluctuations of the
heat current field [3,5]. This can be taken into account in a
(fluctuating) hydrodynamic description by adding a (weak)
noise term to the current which reflects all the fast microscopic
degrees of freedom which are integrated out in the coarse-
graining procedure leading to this irreversible evolution equa-
tion. The amplitude of this noise term is nontrivial, as it is
coupled to the thermal diffusivity via a fluctuation-dissipation
theorem which guarantees the correct equilibrium state in the
absence of driving [3,5]. In this way the instantaneous fluctu-
ating heat current field can be written as j(r, t ) = jD(r, t ) +
ξ(r, t ), and the temperature field now obeys a stochastic
evolution equation

∂t T (r, t ) + ∇ · [−D(T )∇T (r, t ) + ξ(r, t )] = 0, (6)

where ξ(r, t ) is a Gaussian white noise vector field with

〈ξ(r, t )〉 = 0,

〈ξα (r, t )ξβ (r′, t ′)〉 = 1



σ [T (r, t )]δαβδ(t − t ′)δ(r − r′), (7)

and α, β ∈ [1, d]. The amplitude σ [T (r, t )] is the mobility
transport coefficient, coupled to the thermal diffusivity via a
local Einstein relation, D(T ) = σ (T ) f ′′

0 (T ), with f0(T ) the
equilibrium free energy density of the fluid and ′′ denot-
ing second derivative with respect to the function argument.
Moreover, 
 ≡ ε−d is a (large) parameter controlling the
strength of the noise that arises because of the law of large
numbers when rescaling space and time diffusively as r →
ε−1r and t → ε−2t , respectively, in the coarse graining from
microscopic to mesoscopic scales [73]. Indeed, 
 can be
interpreted as the volume of the microscopic region which is
averaged to obtain the local field value at the mesoscale, and
the limit 
 → ∞ corresponds to the macroscopic hydrody-
namic description of the fluid. Here we are interested in the
(weak noise) limit of large but finite 
, relevant to understand
fluctuations in nanosize systems.

The usual way to proceed now in order to study the prop-
erties of a fluid’s fluctuations would consist in linearizing the
stochastic evolution equation around the steady hydrodynamic
fields and solving the resulting linear problem to obtain the
form of the fluctuations [1,5]. Although this procedure allows
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to compute the lowest-order correlators of the hydrodynamic
fields, information about large fluctuations and higher-order
correlators is lost as a consequence of the linearization. Taking
into account nonlinear corrections (within the framework
of nonlinear fluctuating hydrodynamics) can help in under-
standing the long-time tail behavior of lowest-order corre-
lation functions (the reader can find interesting examples in
Refs. [74–79]). However, it has been long recognized that in
order to explore arbitrary fluctuations an alternative scheme
is needed, one based on the computation of the full stationary
probability distribution for the observable of interest. This can
be achieved using Macroscopic Fluctuation Theory (MFT)
[22], which offer a variational formula for the this probability
distribution starting from the path integral representation of
the fluctuating hydrodynamics of the systems at hand. We
refer the interested reader to existing reviews for a general
overview of this framework [22,40,80–83].

We hence consider a quiescent fluid with an arbitrary
initial temperature profile T (r, 0) = T̄ (r) at time t = 0 dis-
tributed according to the stationary distribution Pst (T̄ ), and
we are interested in the path probability associated to a
particular system trajectory in the mesoscopic phase space
spanned by the temperature and current fields, i.e., a trajectory
{T (r, t ′), j(r, t ′)}t

t ′=0 for all r ∈ �. This path probability can
be obtained from Eqs. (6) and (7) by summing over all
noise field realizations {ξ}t

0 compatible with trajectory {T, j}t
0,

resulting in

P
({T (r, t ′), j(r, t ′)}t

t ′=0

) ∝ exp (−
 I[T, j]), (8)

with

I[T, j] =
∫ t

0
dt ′

∫
�

dr
[j(r, t ′) + D(T )∇T (r, t ′)]2

2σ (T )
(9)

provided that the current and temperature fields are coupled
via the continuity equation, namely,

∂t T (r, t ) + ∇ · j(r, t ) = 0. (10)

As explained above, we are interested in the statistics of
the heat current flowing through the fluid during a long time
interval t . In particular, we define now the empirical space-
and-time-averaged current J as

J ≡ 1

tLd

∫ t

0
dt ′

∫
�

dr j(r, t ′), (11)

and consider the probability distribution for this observable in
the long-time and large-scale separation (i.e., large 
) limits.
This distribution can be written as the path integral over all
possible trajectories of the temperature and current fields,
which, starting from the fluid’s steady state distribution and
weighted by (8), are compatible with the required averaged
current J [see Eq. (11)] and the continuity constraint (10),

P (J; t ) ∝
∫

DT
∫

Dj Pst (T̄ ) P
({T, j}t

0

) t∏
t ′=0

∏
r∈�

δ(∂t ′T + ∇ · j)δ
(

JtLd −
∫ t

0
dt ′

∫
�

dr j
)

, (12)

where δ[·] is the Dirac delta function accounting for the different constraints. We can now just use the Laplace representation
of the delta function to substitute constraints by Lagrange multipliers, namely, a scalar field ψ (r, t ) conjugated to the continuity
equation constraint and a vector λ conjugated to the current, leading to

P (J; t ) ∝
∫

DT
∫

Dj
∫

Dψ

∫
dλ Pst (T̄ ) exp[−
tL(T, j, ψ,λ; t )], (13)

with a Lagrangian functional given by

L(T, j, ψ,λ; t ) = 1

t

∫ t

0
dt ′

∫
�

d

{[
j(r, t ′) + D(T )∇T

]2

2σ (T )
+ ψ (r, t ′)[∂t ′T + ∇ · j] + λ · [J − j(r, t ′)]

}
, (14)

with boundary conditions for the field ψ such that ψ (r, t ) =
0 ∀r ∈ ∂�, where ∂� denotes the system boundary. For long
times and large-scale separation 
, the probability density
function (PDF) of the empirical current obeys a large devi-
ation principle, scaling as P (J; t ) � exp [−
tG(J)], where
the symbol “�” stands for asymptotic logarithmic equality.
This scaling means that this PDF concentrates exponentially
fast around its average value, i.e., such that the probability
of large fluctuations far from the average decay exponentially
with time and 
. The rate function G(J) is the current
large deviation function (LDF) and follows from the previous
Lagrangian via a saddle-point calculation in the long-time
limit:

G(J) = lim
t→∞

{
min

T,j,ψ,λ
L(T, j, ψ,λ; t )

}
. (15)

Interestingly, note that Pst (T̄ ) does not contribute to the LDF
since it appears as a sub-dominant term in the long-time limit.

The problem of heat flux statistics can be formulated not in
terms of the PDF P (J; t ) but instead in terms of its cumulant
generating function. In particular, we define the scaled cumu-
lant generating function (sCGF) as

μ(λ) ≡ lim
t→∞

1

t

ln 〈et
λ·J〉, (16)

where the average is defined with respect to the PDF P (J; t ).
The sCGF works as a dynamical free energy and fully char-
acterizes the PDF of the total current J [35,36]. The vector λ

is conjugated to the averaged current J, in a similar way to
the relation between temperature and energy in equilibrium.
Indeed, the current Jλ associated to a given value of the
parameter λ is fixed by the relation Jλ = ∇λμ(λ). Moreover,
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according to Gärtner-Ellis theorem [40,84,85], the sCGF is
directly related to the current LDF via a Legendre-Fenchel
transform

μ(λ) = max
J

[λ · J − G(J)]. (17)

The cumulants of the current PDF can be now obtained from
the derivatives of the dynamical free energy μ(λ) evaluated at
λ = 0. In particular, introducing

μ
(n)
(n1,...,nd ) ≡

[
∂nμ(λ)

∂λ
n1
1 · · · ∂λ

nd
d

]
λ=0

, (18)

with
∑d

i=1 ni = n and λi the ith component of the
vector λ, one can show for n � 3 that μ

(n)
(n1,...,nd ) =

(t
)n−1〈�Jn1
1 · · · �Jnd

d 〉, with �Ji ≡ Ji − (1 − δn,1)〈Ji〉 and
〈Ji〉 the average current along the i direction. Note that since J
is a space-and-time-averaged current, the cumulants μ

(n)
(n1,...,nd )

are nothing but spatiotemporal integrals of n-point correlators
of the current field [39].

III. THE MOST PROBABLE PATH

We next focus on solving the variational problem defined
by (15). This analysis will lead to explicit predictions for the
current statistics, as well as to a detailed knowledge of the
properties of the optimal (or most probable) path associated
to an arbitrary fluctuation. This optimal path follows from
the solution (TJ, jJ, ψJ,λJ) of the variational problem (15)
and defines the trajectory that the fluid follows in mesoscopic
phase space to sustain a long-time current fluctuation. These
optimal fields are the solution of the following Euler-Lagrange
equations:

∂tψJ = − σ ′
2σ 2 (jJ

2 − D2(∇TJ)2) − D
σ
∇ · (jJ + D∇TJ),

jJ + D∇TJ = σ (∇ψJ + λJ),

∂t TJ(r, t ) + ∇ · jJ(r, t ) = 0,

J = 1
tLd

∫ t
0 dt ′ ∫

�
dr jJ(r, t ′), (19)

with D = D(TJ) and σ = σ (TJ), and σ ′ the derivative of σ

with respect to its argument. As a result, the current LDF takes
the form

G(J) = 1

t

∫ t

0
dt ′

∫
�

dr
[jJ(r, t ′) + D(TJ)∇TJ(r, t ′)]2

2σ (TJ)
, (20)

in terms of the optimal temperature and current fields.
The general solution of the spatiotemporal problem (19)

remains a major challenge in most cases [25,26,86,87]. How-
ever, a powerful conjecture known as additivity principle
has been put forward for systems in d = 1 [38,88–92] and
recently extended for d > 1 [35,36] which strongly simpli-
fies the variational problem at hand. In brief, this additivity
principle assumes that, except for initial and final transients
of negligible statistical weight, the optimal path associated to
a current fluctuation is time independent. The validity of this
conjecture in open systems has been proved in simulations
both for 1D stochastic lattice gases [39,93–95] and d > 1
driven diffusive models [35,36,96]. We hence adopt the ad-
ditivity principle here and assume the solutions of Eq. (19)
to be time independent, i.e., TJ(r), jJ(r) and ψJ(r). Recalling

the boundary conditions for the temperature field described
in the previous section, we have that TJ(0, x⊥) = T0 and
TJ(L, x⊥) = T1, together with

TJ(x, x⊥ + L âi ) = TJ(x, x⊥), ∀i = 2, . . . , d,

∀x⊥ ∈ [0, L]d−1, where we have decomposed the position
vector r = (x, x⊥) along the gradient direction (x) and all
other (d − 1) orthogonal directions (x⊥), with âi the canonical
unit vectors. These boundary conditions correspond to a fluid
in contact with two plates at temperatures T0 and T1 at the x
boundaries at x = 0 and L, respectively, and periodic bound-
ary conditions on the perpendicular (d − 1) subspace. The
symmetry of the boundary conditions leads to the natural as-
sumption that the optimal temperature and current fields will
exhibit structure only along the x direction, i.e., TJ(r) = TJ(x)
and jJ(r) = jJ(x). Together with the additivity principle, this
can be shown to imply (see Appendix A and Refs. [35,36])
that the optimal current field exhibits a nontrivial structure of
the form

jJ(x, x⊥) =
[

Jx,
σ (TJ)

A(TJ)
J⊥

]
, (21)

with the decomposition J = (Jx, J⊥) and

A(TJ) = 1

L

∫ L

0
dx σ [TJ(x)]. (22)

As a result, the probability P (J; t ) is completely characterized
in terms of the optimal temperature profile TJ(x). Considering
(19) and the previous assumptions, the most probable temper-
ature field satisfies the ordinary differential equation [39][

D(TJ)
dTJ

dx

]2

= J2
x + Kσ (TJ) −

[
σ (TJ)

A(TJ)

]2

J2
⊥, (23)

where K is an integration constant fixed by the boundary
conditions, which are given by T0 and T1.

In order to proceed, we now need to specify the func-
tional form of the thermal diffusivity and mobility transport
coefficients, which completely define the model fluid we
will study here. For an incompressible fluid under moderate
boundary temperature gradients, the thermal conductivity can
be considered a constant of the material, and hence the thermal
diffusivity defined above will be a constant, that we take here
to be D = 1/2. Furthermore, in this situation it can be proved
using the fluctuation-dissipation theorem that the standard
deviation of the fluctuating heat current (which is nothing but
the mobility) scales as the local temperature squared [3–5],
so we take σ (T ) = T 2. Indeed, these two transport coeffi-
cients define a broadly studied transport model, the Kipnis-
Marchioro-Presutti model of heat conduction [97], which,
as we see here, captures the heat transport properties of a
quiescent incompressible fluid. With these prescriptions, the
differential equation (23) boils down to

dTJ

dx
= ±2

[
J2

x + KTJ
2 − TJ

4

A2
J⊥2

]1/2

, (24)

where we have fixed L = 1 for simplicity. This equation
can be solved in terms of Jacobi inverse elliptic functions
(see Appendix B), leading to the following reduced optimal
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temperature field:

τ (x) ≡ TJ(x)

T1
= cn[−F0 + (F1 + F0)x; k]

cn(F1; k)
, (25)

where cn(u; k) is the cosine-amplitude Jacobi function with
modulus k [98,99]. The value of the constant parameters F0,1,
as well as the modulus, are fixed by the boundary conditions
and the closure equation (22), namely,

Q1 =
√

1 − k2(F1 + F0)

2 cn(F1; k)
, (26)

Q⊥ = E1 + E0 − (1 − k2)(F1 + F0)

2k cn(F1; k)
, (27)

τ0 = cn(F0; k)

cn(F1; k)
, (28)

where we have defined Q1 = |Jx|/T1, Q⊥ = |J⊥|/T1, τ0 =
T0/T1, and E0,1 = E (am(F0,1; k); k) with am(u; k) the ampli-
tude Jacobi function and E (θ ; k) the Jacobi integral of the sec-
ond kind [98,99]. Note that, assuming without loss of general-
ity that T0 � T1 so τ0 � 1, we have that F0 ∈ [−K(k), K(k)],
F1 ∈ [cn−1(τ−1

0 ; k), K(k)], and k ∈ [0, 1], with F1 � F0 and K
the Jacobi complete elliptic integral of the first kind (using the
notation of Gradshteyn and Ryzhik [98]). In this way, once the
physical variables Q1, Q⊥, and τ0 are fixed, we can obtain F0,
F1, and k from Eqs. (26)–(28). Note also that, for a fixed value
of the external gradient parameter τ0, one can solve Eq. (28)
to obtain

F1 = cn−1

[
1

τ0
cn(F0; k); k

]
. (29)

Therefore, substituting F1 into Eqs. (26) and (27), we conclude
that Q1 and Q⊥ are just functions of F0 and k.

IV. SCALING, STRUCTURE, AND UNIVERSALITY
OF THE OPTIMAL PATH

As shown above, the most probable reduced temperature
profile τ (x) is a continuous positive function written in terms
of cn(u; k), an even and periodic function of its argument
u = −F0 + (F1 + F0)x. Indeed, the cosine-amplitude Jacobi
function presents only one positive maximum located at u =
0 [98,99], i.e., xmax = F0/(F0 + F1), which implies that the
optimal temperature field (defined in the spatial interval x ∈
[0, 1]) exhibits at most two possible typical behaviors: (1)
a single-maximum profile for F0 > 0 or (2) a monotonously
decreasing profile for F0 < 0. The values of Q1 and Q⊥ where
the crossover happens can be found by setting F0 = 0 and
F1 = cn−1(1/τ0; k) on Eqs. (26) and (27) and are a function of
the modulus k ∈ [0, 1] and the external gradient parameter τ0.
This condition defines a limiting curve in the Q1 − Q⊥ plane
for each τ0 separating both behaviors.

Interestingly, Eqs. (26)–(28) lead to a one-to-one corre-
spondence between the set of physical variables (τ0, Q1, Q⊥)
and the parameters (k, F0, F1). The Jacobi-cosinus function
cn(u; k) defining the most probable temperature profile (25)
is just a linear function of space, u = −F0 + (F1 + F0)x, with
constants fixed by (τ0, Q1, Q⊥), while the modulus k captures
the particular functional dependence on u [e.g., cn(u; k =

FIG. 1. Surface defined by the set of points (τ0, Q1, Q⊥) with
fixed modulus k = 0.9. Points in this surface have the same scal-
ing form of the associated optimal reduced temperature field τ (x)
except for a linear transformation of the x coordinate and a suitable
amplitude factor; see Eq. (30). The black dashed line shows the set
of points in this surface with the additional constraint F1 + F0 =
0.4. Reduced optimal profiles along this curve present the same
functional structure except for only a translation of the x coordinate.
The orange dashed line represents the stationary current values given
by (τ0, Qst

1 , Qst
⊥) = (τ0, (τ0 − 1)/2, 0).

0) = cos u while cn(u; k = 1) = sech u]. In this way, the mod-
ulus k parametrizes in a natural way the topology of the
optimal temperature field: all optimal profiles with the same
modulus k share the same functional structure (after a linear
transformation of the x coordinate and a suitable amplitude
factor). Therefore there exist a surface in (τ0, Q1, Q⊥) space,
defined by the constraint on constant k, whose optimal re-
duced temperature profiles follow the scaling function

τ (x) = A(τ0, Q1, Q⊥)cn(u; k), u = −F0 + (F0 + F1)x.

(30)

This defines a universal scaling behavior for the optimal tem-
perature fields responsible for different current fluctuations in
the quiescent incompressible fluid. Note in particular that the
above scaling implies the existence of optimal profiles asso-
ciated to different values of the external gradient parameter
τ0 = T0/T1 with the same functional form. Figure 1 shows
an example of the surface of points (τ0, Q1, Q⊥) having the
same value of k = 0.9 and hence the same scaling behavior.
We note that these surfaces are analytic at all points. Finally,
one can define a stronger universal scaling by demanding that
not only the modulus k is fixed, but also the slope F0 + F1

of the linear map in the scaling function (30). This additional
constraint defines a curve within the (τ0, Q1, Q⊥)-surface of
constant-k along which the optimal temperature field for a
heat current fluctuation has the same functional form except
for a translation along the x coordinate (see the black dashed
line in Fig. 1).
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FIG. 2. Top row (a)–(d): Current fluctuations exhibiting the same scaling form of the optimal reduced temperature profile. Each black solid
line represents a uniparametric family of solutions (Q1(F0), Q⊥(F0 )) of Eqs. (28) and (27) with varying F0 and fixed k, which share the same
scaling form of the optimal profile. Each panel includes curves for k = 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99,
0.999, 0.9999 (displayed counterclockwise). Each panel corresponds to a fixed external gradient parameter τ0, with τ0 = 1.4,

√
2, 1.5, and

2 from left to right. The dashed black line in each panel represents the crossover between monotonous (below the dashed line, F0 < 0) and
nonmonotonous, single-maximum profiles (above the dashed line, F0 > 0). Blue lines separate regions of profiles with 0, 1, and 2 inflection
points. Bottom row (e)–(h): Optimal reduced temperature profiles associated to the different highlighted dots in upper panels. The dashed lines
represents the stationary profile in each case, while the dots locate the corresponding inflection points (if any).

The top row in Fig. 2 presents with black solid lines
different families of current fluctuations which share the
same scaling form of the optimal temperature field (i.e., have
the same value of the modulus k) for different values of
the external gradient parameter τ0. Note that these curves
are parametrized by F0 for each fixed τ0. Remarkably, we
observe that all curves of current fluctuations converge to
the stationary value (Qst

1 , Qst
⊥) = [(τ0 − 1)/2, 0] when F0 →

−K(k), implying that around the nonequilibrium stationary
state all family members have monotonous temperature pro-
files (F0 < 0) and contribute to the fluctuating behavior of
J’s with a probability whose value will be study in the next
section. In particular, we emphasize that all possible scaling
structures of the optimal temperature profile are present when
we consider infinitesimally small fluctuations around the
steady-state current, the dominant family being determined by
the orientation of the infinitesimal current fluctuation vector.

Finally, we have also studied the convexity properties
of the optimal temperature field by analyzing in detail the
form of its second derivative, finding profiles with 0, 1, or 2
inflection points. This rich phenomenology is also displayed
in Fig. 2 (top row), where we show for varying τ0 the regions
corresponding to profiles with different numbers of inflection
points (blue solid lines and numbers). In addition, the particu-
lar shape of the most probable temperature fields for different
values of (τ0, Q1, Q⊥) signaled with points in the upper panels
is also shown; see bottom row in Fig. 2. Important features
to note here are the transition from monotonous to single-
maximum profiles as the distance to the stationary state is

increased (measured in terms of the current), as well as the
change in the number of inflection points appearing in each
one (identified with a dot). The evolution of the number of
inflection points as we move away from the stationary current
is nontrivial, and we notice the reentrant behavior of the curve
delimiting the regime of current fluctuations whose optimal
profiles have no inflection points. This reentrance changes
as the external gradient parameter τ0 is varied, disappearing
for large enough τ0. It is also interesting to stress that the
curves delimiting the number of inflection points intersect
with the curves defining the different scaling profile families
for constant k (see top panels in Fig. 2), meaning that profiles
within the same scaling family can exhibit a variable number
of inflection points despite having the same overall functional
form.

V. HEAT CURRENT STATISTICS

Once the optimal temperature profiles have been deter-
mined, we are in a position to study in detail the probability
density function P (J; t ) of the fluid’s empirical heat current J.
As shown in Sec. II, the PDF P (J; t ) obeys a large deviation
principle for long times of the form P (J; t ) � exp [−t
G(J)],
which defines the current LDF G(J). The MFT equations lead
to a variational problem for G(J), which can be written in
terms of the optimal temperature and current fields as shown
in Eq. (20). As a result, using the additivity principle [88] and
taking into account the structure of the optimal temperature
fields (25) and its relation with the optimal heat current (21),
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FIG. 3. The dark (outer) surface represents the exact current LDF
G(J) for T0 = 2 and T1 = 1 (so τ0 = 2); see Eq. (31). The red (inner)
surface corresponds to Gaussian approximation Ggauss(J) around the
stationary state for the same parameters; see Eq. (34). The red point
at the bottom represents the stationary state.

we arrive at the following expression for the current LDF:

G(J) = Jx

2

(
1

T0
− 1

T1

)
+ 1

8
(F0 + F1)2 + 1

4
(F0 + F1)

×
[

sn(F1; k) dn(F1; k)

cn(F1; k)
+ sn(F0; k) dn(F0; k)

cn(F0; k)

− E0 − E1

]
, (31)

written in terms of the parameters (k, F0, F1) linked to the
physical variables (τ0, Q1, Q⊥) via Eqs. (26)–(28). From this

expression, it is easy to check that the Gallavotti-Cohen
fluctuation theorem [58–63], relating the probability of an
arbitrary current fluctuation J with its time-reversed current
−J, holds in this case, namely,

G(J) − G(−J) = 2ε · J = 2|ε|Jx, (32)

where ε = 1
2 (T −1

0 − T −1
1 )x̂ is the nonequilibrium driving

force (with x̂ the unit vector along the gradient direction),
related to the rate of entropy production in the nonequilibrium
fluid appearing as a consequence of the boundary temperature
gradient. Moreover, the symmetry of the problem implies that
the LDF also satisfies G(Jx, J⊥) = G(Jx,−J⊥) ∀Jx, J⊥.

Interestingly, for 1D driven diffusive systems with a
quadratic mobility σ (T ), it has been recently shown [89,100]
that the current LDF has a simple expression in terms of
a nontrivial scaling parameter. A natural question is then
whether the current LDF derived here for a d-dimensional
quiescent fluid with a quadratic mobility σ (T ) = T 2 obeys
a similar scaling picture. As far as we know, there exist
no such a simple scaling formulation for fluctuations of the
vectorial current in terms of a single, well-defined parameter,
though still there can exist an analogous transformation when
considering fluctuations of the empirical current restricted
to the direction of the boundary gradient. We believe that
the main reason of such lack of simple scaling resides in
the nontrivial structure adopted by the most probable current
vector field [see Eq. (21)], a direct consequence of the Weak
Additivity Principle [35,36].

To better understand the fluid’s heat current statistics, it is
interesting to analyze the behavior of G(J) in two opposing
limits, i.e., for small current fluctuations around the stationary
state defined by Jst = (Jst

x = T1(τ0 − 1)/2, Jst
⊥ = 0), and its

behavior in the far tails of the distribution. In the first case, by
expanding G(J) around Jst keeping only up to second-order
contributions, the current LDF can be approximated by (see
Appendix C)

G(Q̃) = Ggauss(Q̃) − 3
(
Q̃2

1 + Q̃2
⊥
)

2
(
1 + τ0 + τ 2

0

){
2(τ0 − 1)

(
4 + 7τ0 + 4τ 2

0

)
5
(
1 + τ0 + τ 2

0

)2 Q̃1 + 9

175
(
1 + τ0 + τ 2

0

)4

[−5
(
4 + 2τ0 − 30τ 2

0 − 57τ 3
0

− 30τ 4
0 + 2τ 5

0 + 4τ 6
0

)(
Q̃2

1 + Q̃2
⊥
) + 2(τ0 − 1)2

(
16 + 61τ0 + 91τ 2

0 + 61τ 3
0 + 16τ 4

0

)(
Q̃2

⊥ − Q̃2
1

)] + O(Q̃
3
)

}
, (33)

where we have introduced an excess reduced current vec-
tor Q̃ = (Q̃1, Q̃⊥), with the definitions Q̃1 ≡ Q1 − |Jst

x |/T1,
Q̃⊥ ≡ Q⊥ − |Jst

⊥|/T1, and where

Ggauss(Q̃) = 3
(
Q̃2

1 + Q̃2
⊥
)

2
(
1 + τ0 + τ 2

0

) (34)

captures the Gaussian fluctuations around the steady state
expected from the central limit theorem. In Fig. 3 we represent
the exact G(J) of Eq. (31) (dark outer surface) for τ0 =
2, together with the Gaussian part of the expansion (33),
Ggauss, (red inner surface). We stress here the non-Gaussian,
asymmetric structure of the exact G(J), which can be however
approximated by a deformed Gaussian on both axis at least
for moderate current fluctuations. The dominant corrections of

the optimal reduced temperature field beyond the steady-state
(linear) profile can be also computed to first order in Q̃,
leading to

τ (x) = τ0 − x(τ0 − 1) + 2(τ0 − 1)

1 + τ0 + τ 2
0

x(1 − x)

× (1 + 2τ0 − x(τ0 − 1))Q̃1 + O(Q̃
2
), (35)

i.e., a polynomial deformation of the linear stationary profile.
We are also interested on the leading behavior of G(J)

for currents far from stationary state behavior. This can
be studied in detail by focusing on two different limits,
namely, (|Jx| � Jst

x , J⊥ = 0) and (Jx = 0, |J⊥| � 0). The
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corresponding expansion is performed in Appendix C and
leads to

G(Jx, 0) = Jx

T0
− π2

8
+ π2(1 + τ0)T1

16Jx
+ O

(
J−2

x

)
for |Jx| � Jst

x , (36)

G(0, |J⊥|) = 1

8
ln

(
4|J⊥|2T 3

1

T0

)[
ln

(
4|J⊥|2T 3

1

T0

)
+ 1 + τ 2

0

T 2
1 |J⊥|2

+ O(|J⊥|−4)

]
for |J⊥| � 0. (37)

This implies in particular that large current fluctuations along
the gradient direction decay exponentially in the current,

rather than in a Gaussian manner as a naive central-limit anal-
ysis would suggest. More interestingly, the statistics of large
current fluctuations orthogonal to the thermal gradient exhibit
logarithmic behavior, which makes these rare fluctuations
much more probable than anticipated within the Gaussian ap-
proximation. This interesting behavior points out once again
to the complex analytic behavior of the heat current LDF, in
contrast with the apparent smooth and simple structure shown
in Fig. 3 for moderate current fluctuations.

With the aim of computing the first few cumulants of the
current distribution, we calculate now the scaled cumulant
generating function (sCGF) μ(λ) of the current distribution;
see Eq. (16) and Sec. II. Indeed, considering the form of
G(J) near the stationary state [Eq. (33)] and the Legendre
duality between μ(λ) and G(J) [Eq. (17)] the sCGF can be
expanded as

μ(λ) = 1

2
(T0 − T1)λ1 + (

λ2
1 + λ2

⊥
)[1

6

(
T 2

0 + T0T1 + T 2
1

) + 1

45
(T0 − T1)

(
4T 2

0 + 7T0T1 + 4T 2
1

)
λ1 + 9

1890

(
12T 4

0 + 8T 3
0 T1

− 5T 2
0 T 2

1 + 8T0T 3
1 + 12T 4

1

)
λ2

1 + 1

1890

(
44T 4

0 + 76T 3
0 T1 + 75T 2

0 T 2
1 + 76T0T 3

1 + 44T 4
1

)
λ⊥2

]
+ O(λ5), (38)

where we have decomposed λ = (λ1,λ⊥) along the gradient (λ1) and all orthogonal (λ⊥) directions. We are now in position
to compute the lower-order cumulants by differentiating with respect to the components of the λ vector; see Eq. (18). The first
derivatives yield the steady-state value of the current components, 〈Jx〉 = Jst

x = (T0 − T1)/2 and 〈Jα〉 = 0, ∀α �= x. The next few
cumulants for arbitrary boundary temperatures T0 and T1 compatible with the perturbation expansions (τ0 > 1) can be written as

lim
t→∞ t


〈(
Js − Jst

s

)2〉 = 1

3

(
T 2

0 + T0T1 + T 2
1

)
,

lim
t→∞(t
)2

〈(
Jx − Jst

x

)3〉 = 2

15
(T0 − T1)

(
4T 2

0 + 7T0T1 + 4T 2
1

)
,

lim
t→∞(t
)2

〈(
Jx − Jst

x

)
J2
α

〉 = 2

45
(T0 − T1)

(
4T 2

0 + 7T0T1 + 4T 2
1

)
,

lim
t→∞(t
)3

〈(
Jx − Jst

x

)4〉 = 4

35

(
12T 4

0 + 8T 3
0 T1 − 5T 2

0 T 2
1 + 8T0T 3

1 + 12T 4
1

)
,

lim
t→∞(t
)3

〈(
Jx − Jst

x

)2
J2
α

〉 = 2

945

(
76T 4

0 + 74T 3
0 T1 + 15T 2

0 T 2
1 + 74T0T 3

1 + 76T 4
1

)
,

lim
t→∞(t
)3

〈
J4
α

〉 = 4

315

(
44T 4

0 + 76T 3
0 T1 + 75T 2

0 T 2
1 + 76T0T 3

1 + 44T 4
1

)
,

lim
t→∞(t
)3

〈
J2
αJ2

β

〉 = 4

945

(
44T 4

0 + 76T 3
0 T1 + 75T 2

0 T 2
1 + 76T0T 3

1 + 44T 4
1

)
, (39)

where s ∈ [1, d] and α �= β, with α, β ∈ [2, d] corresponding to any pair of different coordinates in the subspace orthogonal to
x. Interestingly, remarkable relations between different cumulants can be now derived from (39). In particular

3 lim
t→∞ t2〈(Jx − Jst

x

)
J2
α

〉 = lim
t→∞ t2〈(Jx − Jst

x

)3〉
, 3 lim

t→∞ t3〈J2
αJ2

β

〉 = lim
t→∞ t3〈J4

α

〉
. (40)

Whether these relations are a particular result restricted to
this model fluid, or rather they reflect a deeper underlying
symmetry, remains unknown at this point. A possible origin
for these interesting cumulant relations is the Gallavotti-
Cohen symmetry (32) stemming from the reversibility of
microscopic dynamics. In Ref. [64], Andrieux and Gaspard
showed that the Gallavotti-Cohen fluctuation theorem leads to
interesting relations among the linear and nonlinear response
coefficients of the current at arbitrary orders. However, the

relations (40) are not restricted to the linear-response regime,
being valid for arbitrary driving; moreover, these relations link
cumulants of the same order (unlike the Andrieux-Gaspard
hierarchies). We thus conclude that, as far as we know,
the Gallavotti-Cohen symmetry is not uniquely responsible
of the observed relations, but might play a key role. In
particular, we believe that the set of equations (40) reflects
also the particular structure of the optimal fields for this
problem.
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VI. CONCLUSION

In summary, we have delved into the heat current statistics
of an incompressible quiescent d-dimensional fluid subject to
a boundary temperature gradient in one direction. This analy-
sis has been carried out within the framework of fluctuating
hydrodynamics, using tools borrowed from large deviation
theory and macroscopic fluctuation theory. This framework
provides powerful techniques to determine the full heat cur-
rent probability distribution, based on the computation of
the most probable trajectories and the current LDF. In this
way, under the well-established additivity conjecture (which
considers the optimal paths sustaining atypical values of the
current to be time-independent), we have determined the
explicit form of the most probable temperature fields. We
have analyzed their topological properties as a function of the
external baths temperatures (T0, T1) and the desired empirical
current J, defining different regimes where temperature pro-
files exhibit varying behaviors. Interestingly, our solution to
the fluctuation problem shows that optimal temperature fields
can be naturally classified in an infinite set of curves, each
set sharing the same mathematical structure, parametrized
in terms of the modulus k of a Jacobi inverse elliptic
function.

Such characterization of the optimal temperature fields
opens the door to the computation of the full heat current
probability distribution, as codified in the current LDF. In
particular, we have obtained the exact analytical form of
the heat current LDF, analyzing its behavior both for small
fluctuations around the nonequilibrium steady state, and in the
far tails of the distribution. We observe that near the stationary
state corrections to Gaussian behavior are small, and the heat
current distribution can be well approximated by a deformed
Gaussian along all directions. On the other hand, the behavior
of current LDF for large values of the current is far more
complex, pointing out to the intricateness of fluctuations far
from equilibrium. In particular, we find logarithmic tails in the
current LDF for large fluctuations orthogonal to the thermal
gradient, showing that these fluctuations are far more probable
than previously anticipated. Finally, reformulating the statis-
tical problem in terms of the associated cumulant generating
function, we have obtained analytic formulas for the first few
cumulants of the heat current distribution. These results allow
us to find new relations between some of these cumulants,
which imply integral relations between different correlators
of the heat current field. This finding opens the door to
further experimental research to test these results, as the
lower-order cumulants of both the empirical heat current and
the temperature can be readily measured in actual experiments
[9–19]. Prospective experimental systems where to look for
these effects are for instance nonequilibrium fluids confined
at the nanoscale, where fluctuations play a dominant role, as
well as turbulent media or even fusion plasmas characterized
by strong temperature gradients along magnetic field lines.
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APPENDIX A: OPTIMAL CURRENT FIELD

In this Appendix we prove a relevant property satisfied by
the most probable path sustaining an atypical value of the
space-and-time-averaged heat current.

Property. Consider the following boundary conditions for
the optimal temperature field:

TJ(0, x⊥) = T0; TJ(L, x⊥) = T1;

TJ(x, x⊥ + Lâi ) = TJ(x, x⊥), ∀i = 2, . . . , d, (A1)

where we write r = (x, x⊥) with x ∈ [0, L] and x⊥ ∈
[0, L]d−1, where âi are the canonical unit vectors. If TJ(r) =
TJ(x) and jJ,x(r) = jJ,x(x), with jJ,x the component of the
current in the x direction, then the most probable current is
of the form

jJ(x, x⊥) =
(

Jx,
σ (TJ)

A(TJ)
J⊥

)
; A(TJ) = 1

L

∫ L

0
dx σ [TJ(x)].

(A2)

Proof. The additivity principle conjectures that the optimal
path associated to a current fluctuation is time-independent.
Under this hypothesis, the set of coupled equations (19)
derived in the main text transforms into

σ ′

2σ 2
(jJ

2 − D2(∇TJ)2) + D

σ
∇(D∇TJ) = 0, (A3)

jJ + D∇TJ = σJ(∇ψJ + λJ), (A4)

∇ · jJ = 0, (A5)

J = 1

�

∫
�

dr jJ, (A6)

where TJ = TJ(r), jJ = jJ(r), D = D(TJ), and σ = σ (TJ).
Writing Eq. (A4) in components and assuming the field ψJ to
be twice continuously differentiable in its spatial domain, the
following general property can be proved in general [35,36]:

∂α

(
jJ,β

σ

)
= ∂β

(
jJ,α

σ

)
; α, β ∈ [1, d], (A7)

where jJ,γ is the γ component of the vector field jJ(r), and
∂γ the spatial derivative with respect to the coordinate xγ .
Furthermore, one can easily realize that Eq. (A3), together
with TJ(r) = TJ(x), leads to

jJ
2 = j2

J,x +
∑
α �=x

j2
J,α = F (x), (A8)

with F (x) a function depending only on coordinate x. There-
fore, assuming jJ,x(r) = jJ,x(x), we obtain from Eq. (A7) that
jJ,α = Cα (x⊥)σ , where the α subscript refers to all coordi-
nates orthogonal to x, and Cα (x⊥) is a function depending (at
most) on the orthogonal coordinates x⊥. Using this expression
in Eqs. (A7), (A8), and (A5) we find

∂αCβ = ∂βCα, (A9)
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∑
α

C2
α = R, (A10)

∑
α

∂αCα = W, (A11)

respectively, with R and W two constants. At this point,
differentiating Eq. (A10) with respect to xβ , and taking into
account Eq. (A9), it can be shown that∑

α

Cα∂αCβ = 0. (A12)

Differentiating again with respect to xβ and summing over
all β coordinates, together with Eqs. (A9) and (A11),
we arrive at ∑

α

∑
β

(∂αCβ )2 = 0, (A13)

which implies that Cβ (x⊥) should be a constant. As a re-
sult, the most probable current field is of the form jJ(r) =
( jJ,x(x),C⊥σ ), which, considering Eqs. (A5) and (A6), finally
leads to (A2), as we want to prove. Note that in dimension
d = 2 it can be proved that the optimal current field jJ is of
the form (A2) by only hypothesizing TJ = TJ(x).

APPENDIX B: OPTIMAL TEMPERATURE FIELD

In this Appendix we determine the analytical expression
for the most probable temperature field. Moreover, we will
exhaustively analyze its mathematical properties in order to
better characterize the statistics of the heat current in our in-
compressible quiescent model fluid. For our particular model
fluid, the optimal temperature field associated to a space-and-
time-averaged heat current fluctuation J is the solution of the
following differential equation (see main text):

dTJ

dx
= 2s

[
J2

x + KTJ
2 − TJ

4

A2
J2

⊥

]1/2

, (B1)

with s = ±1 and where, for simplicity, we have fixed L = 1
without loss of generality. This expression can be rewritten
in terms of the extrema T± of the optimal temperature field,
i.e., the zeros of the quartic polynomial J2

x + KTJ
2 − TJ

4

A2 J2
⊥,

resulting in

dTJ

dx
= 2s|Jx|

[(
1 − η+TJ

2
)(

1 + η−TJ
2
)]1/2

, (B2)

with the definition η± = ±1/T 2
± , such that

(η+η−)1/2 = |J⊥|
A|Jx| , (B3)

and we consider one of the η’s constants fixed by boundary
conditions. We can integrate Eq. (B2) between two arbitrary
spatial points (xA, xB) such that the slope sign s is conserved
in the interval∫ TJ (xB )

TJ (xA )
dTJ

[(
1 − η+TJ

2
)(

1 + η−TJ
2
)]−1/2 = 2s|Jx|(xB − xA).

(B4)

It is now natural to transform Eq. (B4) into a Jacobi’s integral
of the first kind F (θ ; k) [98,99] by doing the change of
variables cos θ = √

η+TJ, leading to

2sQ1T1
√

η+√
1 − k2

(xB − xA) = F (θ (xA); k) − F (θ (xB); k), (B5)

where

F (θ ; k) =
∫ θ

0
d θ̄

1

(1 − k2 sin2 θ̄ )1/2
, (B6)

and where we have defined the modulus via k2 = (1 +
η+/η−)−1, and Q1 = |Jx|/T1. We can invert Eq. (B5) by using
the relation

cos θ = cn(F (θ ; k); k), (B7)

which defines the cosine-amplitude Jacobi function cn(u; k)
of modulus k [98,99], resulting in

τ (xB) = 1

T1
√

η+
cn

[
−F (θ (xA); k)

+ 2sQ1T1
√

η+√
1 − k2

(xB − xA); k

]
, (B8)

with τ (x) = TJ(x)/T1. Since the cn(u; k) function appearing
in Eq. (B8) has a positive maximum and a negative minimum,
and taking into account that τ (x) is defined positive, the opti-
mal temperature field presents at most two possible behaviors:
(1) a monotonous decreasing profile or (2) a single-maximum
profile. We analyze next each case separately.

1. Monotonous profile

In this case, assuming without loss of generality that
T0 > T1, we have that s = −1 for all x ∈ [0, 1]. Therefore,
considering Eq. (B8) with xA = 0 and xB = x, the optimal
temperature field takes the form

τ (x) = cn[F0 + (F1 − F0)x; k]

cn(F1; k)
, (B9)

with F0,1 � 0 two constants. In order to completely compute
the temperature field TJ(x) we need to fix the values of F0, F1,
and k through boundary conditions and the closure equation

A =
∫ 1

0
dx σ [TJ(x)]. (B10)

Indeed, taking into account the boundary conditions, both
Eq. (B5) and the constraint τ (0) ≡ τ0 = T0/T1 lead to

Q1 =
√

1 − k2(F1 − F0)

2 cn(F1; k)
, (B11)

τ0 = cn(F0; k)

cn(F1; k)
, (B12)

respectively, and from (B10) we obtain

Q⊥ = E1 − E0 − (1 − k2)(F1 − F0)

2k cn(F1; k)
, (B13)

with Q⊥ = |J⊥|/T1, and where

E0,1 = E (am(F0,1; k); k), (B14)
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where am(u; k) is the amplitude Jacobi function and E (θ ; k)
the Jacobi integral of the second kind [98,99]. Remarkably,
as a consequence of assuming τ0 � 1, we find that F0 ∈
[0, K(k)], F1 ∈ [cn−1(τ−1

0 ; k), K(k)] with F1 � F0 and K the
Jacobi complete elliptic integral of the first kind (using the
notation used by Gradshteyn and Ryzhik [98]).

2. Single-maximum profile

In this case s = +1 for x ∈ [0, x∗] while s = −1 for
x ∈ [x∗, 1], where x∗ is the maximum location where
dτ (x)/dx|x=x∗ = 0. This maximum position can be obtained
from Eq. (B8) by taking xA = 0, xB = x∗ and forcing the
argument of cn(u; k) to be equal to zero, arriving at

x∗ = F0

√
1 − k2

2Q1T1
√

η+
. (B15)

In this way, the optimal temperature profile can be determined
by considering Eq. (B8) for both x > x∗ and x < x∗, resulting
in

τ (x) = cn[−F0 + (F1 + F0)x; k]

cn(F1; k)
, (B16)

where the values of F0, F1 � 0 and k are fixed again by the
boundary conditions and the closure equation (B10), leading
again to Eq. (B12) and

Q1 =
√

1 − k2(F1 + F0)

2 cn(F1; k)
, (B17)

Q⊥ = E1 + E0 − (1 − k2)(F1 + F0)

2k cn(F1; k)
. (B18)

Interestingly, Eqs.(B16), (B17), and (B18) corresponding to
the single-maximum case map onto Eqs. (B9), (B11), and
(B13) corresponding to the monotonous behavior by changing
F0 → −F0; this allows us to write both solutions in an unified
way. In particular, from now on, given Q1, Q⊥, and τ0 fixed
by boundary conditions and Eq. (B10), the values of F0,

F1, and k are determined from equations (B12), (B17), and
(B18) with F0 ∈ [−K(k), K(k)], F1 ∈ [cn−1(τ−1

0 ; k), K(k)],
and k ∈ [0, 1] which includes both possibilities: F0 < 0 for the
monotonous case and F0 > 0 for the single-maximum case.

3. Convexity behavior

Furthermore, once the solution (B16) has been deter-
mined, we can now characterize the convexity behavior
of the optimal temperature field as a function of the pa-
rameters (τ0, Q1, Q⊥). Indeed, since the second derivative
of cn(u; k) takes the form d2cn(u; k)/du2 = −cn(u; k)(1 −
2k2 + 2k2 cn(u; k)), there are no inflection points for k2 < 1/2
and the profile is always concave in this regime. For k2 > 1/2
we observe that, for a fixed value of τ0, both (Q1, Q⊥) are
parametrized by (F0, k), leading to the following regions with
different number of inflection points. First, for τ0 �

√
2 we

have
(1) If F0 > F (1)

0 (k) and k2 � 1/2, with F (1)
0 (k) =

cn−1(B(k); k) and B(k) = [(2k2 − 1)/(2k2)]1/2, the optimal
temperature profile presents two inflection points located at

x1,2 = [
F0 ± F (1)

0 (k)
]
/[F0 + cn−1(1/τ0; k)]. (B19)

(2) If F (2)
0 � |F0| � F (1)

0 and k2 � 1/2, with F (2)
0 (k) =

cn−1(τ0B(k); k), the optimal profile presents only one inflec-
tion point located at x1.

On the other hand, for τ0 �
√

2
(1) If F0 > F (1)

0 (k) and k2 � 1/2, we find that the profiles
present two inflection points at x1 and x2.

(2) If F (2)
0 � |F0| � F (1)

0 and 1/2 � k2 � τ 2
0 /[2(τ 2

0 − 1)],
the optimal temperature profile has only one inflection point
located at x1.

(3) If 0 � |F0| � F (1)
0 and 1 � k2 � τ 2

0 /[2(τ 2
0 − 1)], the

optimal profile presents again only one inflection point located
at x1.

Finally, outside these regions, no inflection points appear
for any value of the parameters.

APPENDIX C: LIMITING CASES OF LDF

In this Appendix we study the behavior of the heat current large deviation function both near the steady-state current and in
the far tails corresponding to rare current fluctuations. For that, we start from the exact expression for the current LDF obtained
in the main text, namely,

G(J) = Jx

2

(
1

T0
− 1

T1

)
+ 1

8
(F0 + F1)2 + 1

4
(F0 + F1)

[
sn(F1; k) dn(F1; k)

cn(F1; k)
+ sn(F0; k) dn(F0; k)

cn(F0; k)
− E0 − E1

]
, (C1)

with the different parameters (which depend on J) defined above.

1. Fluctuations around the stationary state

First, let us introduce the reduced current vector Q = (Q1, Q⊥), with the definitions Q1 ≡ |Jx|/T1, Q⊥ ≡ |J⊥|/T1. For a fixed
k, it is easy to show that the convergence to the stationary value Qst = ((τ0 − 1)/2, 0) takes place when F0 → −K(k) (see
Sec. IV). As a consequence, the behavior of the current LDF near the stationary state can be analyze by fixing F0 = −K(k) + ε

for small values of ε and any k value. Expanding Eqs. (26) and (27) of the main text around ε = 0 we realize that they have
the structure Q̃α = Qα − Qst

α = a0ε
2(1 + a1ε

2 + · · · ), with α = 1,⊥. It hence seems reasonable to parametrize Q̃1 = R sin θ

and Q̃⊥ = R cos θ and rewrite the expressions as functions of R and θ . Afterwards, we expand Q̃1/Q̃⊥ = tan θ in terms of ε

and look for the k expansion on ε compatible with such expansion and whose coefficients are functions of tan θ . Then we
substitute the k expansion on the Q̃1 expansion and invert the series to find ε2 and k2 as a series expansion on R. In particular,
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we find

k2 = 1

2
(1 − sin θ ) + 9

(
1 + τ0 + τ 2

0 + τ 3
0 + τ 4

0

)
10(τ0 − 1)

(
1 + τ0 + τ 2

0

)2 R cos2 θ + O(R2),

ε2 = 12τ 2
0

τ 3
0 − 1

R − 12τ 2
0

(
27 + 27τ0 + 7τ 2

0 + 7τ 3
0 + 7τ 4

0

)
5(τ0 − 1)2

(
1 + τ0 + τ 2

0

)3 R2 sin θ + O(R3). (C2)

It is important to note that the expansions are well defined whenever R/(τ0 − 1) < 1, implying the equilibrium limit (τ0 → 1)
is singular and cannot be studied by an analytical continuation of the nonequilibrium steady state using Eqs. (C2). Substituting
these expansion on the expression for the current LDF we find

G(Q̃) = 3
(
Q̃2

1 + Q̃2
⊥
)

2
(
1 + τ0 + τ 2

0

)[
1 − 2(τ0 − 1)

(
4 + 7τ0 + 4τ 2

0

)
5
(
1 + τ0 + τ 2

0

)2 Q̃1 − 9

175
(
1 + τ0 + τ 2

0

)4

( − 5
(
4 + 2τ0 − 30τ 2

0 − 57τ 3
0

− 30τ 4
0 + 2τ 5

0 + 4τ 6
0

)(
Q̃2

1 + Q̃2
⊥
) + 2(τ0 − 1)2

(
16 + 61τ0 + 91τ 2

0 + 61τ 3
0 + 16τ 4

0

)(
Q̃2

⊥ − Q̃2
1

)) + O(Q̃
3
)

]
. (C3)

In Fig. 3 we show in red the gaussian part of Eq. (C3), Ggauss(Q̃) = 3(Q̃2
1 + Q̃2

⊥)/(2(1 + τ0 + τ 2
0 )), for τ0 = 2, making apparent

the non-Gaussian asymmetric structure of the exact current LDF. Moreover, we can use expansions (C2) around the stationary
state to obtain the leading corrections to the linear steady-state temperature profile for small current fluctuations, obtaining

τ (x) = τ0 − x(τ0 − 1) + 2(τ0 − 1)

1 + τ0 + τ 2
0

x(1 − x)(1 + 2τ0 − x(τ0 − 1))Q̃1 + O(Q2). (C4)

2. Far tails of the current LDF

The fluctuating behavior far from the stationary state Jst = (T1(τ0 − 1)/2, 0) can be better analyzed in two different limits:
(1) (|Jx| � Jst

x , J⊥ = 0) and (2) (Jx = 0, |J⊥| � 0). The behavior in the first case, (|Jx| � Jst
x , J⊥ = 0), can be obtained by

plugging k = 0 into Eq. (C1) and expanding the expression around its maximum value using F0 = π/2 − ε, which for Jx > 0
results in

G(Jx, 0) � π

2ε
− 4 + τ0(π2 + 4)

8τ0
+ π (3 + 5τ0)

24τ0
ε + O(ε2), (C5)

with

Q̃1 = Q1 − Qst
1 = πτ0

2ε

[
1 − 2ε

π
+ ε2

6
+ O(ε3)

]
. (C6)

Inverting this series we obtain

ε = πτ0

2Q̃1
− πτ 2

0

2Q̃2
1

+ π (24 + π2)τ 3
0

48Q̃3
1

+ O
(
Q̃−4

1

)
, (C7)

which finally leads to

G(Jx, 0) � Jx

T0
− π2

8
+ π2(1 + τ0)T1

16Jx
+ O

(
J−2

x

)
, for |Jx| � Jst

x , J⊥ = 0. (C8)

In order to find the behavior for −Jx we employ the Gallavotti-Cohen relation G(J) − G(−J) = 2εJx:

G(−Jx, 0) = G(Jx, 0) + Jx

T1
− Jx

T0
= Jx

T1
− π2

8
+ π2(1 + τ0)T1

16Jx
+ O

(
J−2

x

)
, Jx > 0. (C9)

Therefore the LDF for large current fluctuations along the gradient direction decays linearly with Jx, i.e., much more slowly than
the quadratic decay one would expect from a naive Gaussian ansatz. Note also that the asymptotic slopes of G(Jx, 0) for positive
and negative values of the currents Jx are just the inverse temperatures of the left and right reservoirs, respectively.

The second limit, (Jx = 0, |J⊥| � 0), corresponds to k2 → 1 and F0 → π/2, leading to

G(0, |J⊥|) = 1

8
(F0 + F1)2, (C10)

with

Q1 = 0, Q⊥ = cosh F1(tanh F0 + tanh F1)/2, τ = cosh F1/ cosh F0. (C11)
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Expanding these expressions for large values of |J⊥|, we obtain the following asymptotic form for the LDF

G(0, |J⊥|) = 1

8
ln

(
4|J⊥|2T 3

1

T0

)[
ln

(
4|J⊥|2T 3

1

T0

)
+ 1 + τ 2

0

T 2
1 |J⊥|2 + O(|J⊥|−4)

]
. (C12)

Remarkably, G(0, |J⊥|) exhibits a logarithmic behavior for large current fluctuations orthogonal to the gradient direction. This
intricate structure points out to the surprisingly complex analytic behavior of the large deviation function function.
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