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Preface: Physics, Computation, and the Mind 
— Advances and Challenges at Interfaces 

 

This volume originated at the 12th Granada Seminar, and contains the main lectures 
and a selection of contributed papers in that conference. This is the twelfth of a series 
of Granada Lectures previously published by: 

World Scientific (Singapore 1993), 
Springer Verlag (Lecture Notes in Physics volumes 448 and 493), 
Elsevier (Computer Physics Communications volumes 121 and 122), and  
American Institute of Physics (Conference Proceedings Series, volumes 574, 661, 

779, 887, 1091 and 1332). 
These books and the successive editions of the Seminar since 1990 are described in 
detail at http://ergodic.ugr.es/cp/. This web also contains updated information on the 
next edition. 

The Granada Seminar is defined as a small topical, interdisciplinary conference whose 
pedagogical effort is especially aimed at young researchers. In fact, one interesting 
aspect of this meeting is the opportunity given to the youngest to present their results 
and to discuss their problems with leading specialists. There were in this edition a total 
of 57 lectures and 39 poster contributions. One hundred twenty participants came 
from 23 countries: Spain contributed with 35%, the rest of Europe including Iran, 
Israel, Russia and Turkey with 39%, and America with 21% (the rest came from Japan 
and Australia); half the participants received some, either total or partial support from 
the organization.  

The 12th Granada Seminar was organized and mostly financed by the Institute Carlos I 
for Theoretical and Computational Physics, sponsored by the European Network for 
Scientific Computation CECAM, the European Physical Society and the University of 
Granada, and endorsed by the Spanish Physics Society and the American Physical 
Society.  

We also wish to express gratitude to all those who have collaborated in making this 
event a success. In particular, we mention the remarkably high quality and friendly 
cooperation of invited speakers and other participants, whose personal effort enabled 
us to accomplish the goals of the Seminar, the Steering Committee's help in designing 
format and contents, and further in situ priceless collaboration from Joaquín J. Torres, 
J. Cortés and other colleagues, and from the Ph.D. students and postdocs in our group. 
This edition of the Seminar was held from 17 to 21 of September 2012 in the charming 
village of La Herradura, a remarkable spot of the Tropical Coast of Granada, Spain, 
where the participants enjoyed a paradisiacal setting. 

Physics, Computation, and the Mind - Advances and Challenges at Interfaces
AIP Conf. Proc. 1510, 1-2 (2013); doi: 10.1063/1.4776494

©   2013 American Institute of Physics 978-0-7354-1128-9/$30.00

1



Following the welcome speech, it is to be highlighted that this edition of the Granada 
Seminar is a straight consequence of the evolution and popularization of technologies 
such as encephalography, magnetic resonances, and positron emission tomography, 
which produce detailed static and dynamic pictures of the brain and its processes, and 
tiny electrodes and probes which detect and accurately measure the electric pulses 
generated in areas that are well localized and so small that include ideally only one or 
at most a few neurons and synapses today. While developing to so highly sophisticated 
standards, these technologies are becoming very widely used, so much so that are now 
familiar tools not only in specialized research laboratories but also in many hospitals. 
Therefore, myriads of valuable data concerning the structure and function of the 
nervous system are constantly becoming easily available to many scientists.  

The old challenge of trying to understand what consciousness is, how intelligence can 
emerge from relatively unintelligent neurons, and why there are different levels of 
intelligence can therefore be accepted now. The data from laboratories and hospitals 
are certainly feeding scientists in neurobiology but also in the apparently distant 
mathematics and physics; particularly statistical physics which nowadays masters the 
modeling of complex systems is eager to handle good data on the brain, which is a 
paradigm of complexity.  

But this is not the only justification for looking at the interfaces between disciplines. 
This meeting was also motivated by the fact that there is a slow though observable 
convergence between biology systems and digital ones which, in addition to intriguing, 
is a field with infinite applications that should prove be most relevant to humanity.  

Finally, let me notice that an effort has been made by authors and editors to offer 
pedagogical notes here; in particular, each topic is comprehensively described within 
its scientific context. We try to mold the Granada Lectures into a series of books that 
help introduce the beginner to novel advances in statistical physics and to the creative 
use of computers in scientific research, as well as to serve as a work of reference for 
teachers, students and researchers.  

Pedro L. Garrido  and  Joaquín Marro   Granada, 21 November 2012 
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Brain complexity born out of criticality
E. Tagliazucchi∗ and D. R. Chialvo†

∗Neurology Department and Brain Imaging Center, Goethe University, Frankfurt am Main,
Germany.

†Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.

Abstract. In this essay we elaborate on recent evidence demonstrating the presence of a second
order phase transition in human brain dynamics and discuss its consequences for theoretical ap-
proaches to brain function. We review early evidence of criticality in brain dynamics at different
spatial and temporal scales, and we stress how it was necessary to unify concepts and analysis
techniques across scales to introduce the adequate order and control parameters which define the
transition. A discussion on the relation between structural vs. dynamical complexity exposes future
steps to understand the dynamics of the connectome (structure) from which emerges the cognitome
(function).

Keywords: brain; phase transition; connectome.

WHY CRITICALITY?

Complexity, in simple terms, is all about how diversity and non-uniformity [1] arises
from the uniform interaction of similar units. In all cases, the dynamics of the emergent
complex behavior of the whole cannot be directly anticipated from the knowledge of the
laws of motion of the isolated parts. Early forerunners of complexity science, namely
statistical mechanics and condensed matter physics, have identified a peculiar scenario
at which, under certain general conditions, such complexity can emerge: near the critical
point of a second order phase transition. At this point, complexity appears as a product
of the competition between ordering and disordering collective tendencies, such that the
final result is a state with a wide variety of dynamic patterns exhibiting a mixture of
order and disorder.
As argued elsewhere [2, 3] the dynamics of the human brain exhibit a large degree of

concordance with those expected for a system near criticality. From the cognitive side,
brain’s complexity is an almost obvious statement: the ultimate products of such com-
plexity are, for instance, the nearly unpredictable human behavior and the underlying
subjective experience of consciousness, with its bewildering repertoire of possible con-
tents. However, the proposal that the same mechanisms underlying physical complexity
also underlie the biological complexity of the brain is surprisingly recent. The descrip-
tion of the dynamical rules governing neurons at the microscopic level [4] and the first
mathematical demonstration of a second order phase transition in a many body system
[5] were almost contemporaries. However, these developments were separated by a large
temporal gap from the first proposals of criticality in brain dynamics [2, 6]. Being a rel-
atively recent proposal, the consequences of such hypothesis are still far from clear. In
the present essay we first discuss recent empirical evidence favoring this hypothesis, fo-
cusing on the presence of a second order phase transition in large scale brain dynamics

Physics, Computation, and the Mind - Advances and Challenges at Interfaces
AIP Conf. Proc. 1510, 4-13 (2013); doi: 10.1063/1.4776495

©   2013 American Institute of Physics 978-0-7354-1128-9/$30.00
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[7], and then explore some possible consequences.

SCALE INVARIANCE IN BRAIN DYNAMICS: EARLY FINDINGS

The early evidences supporting criticality as a plausible dynamical regime for brain
activity can be roughly classified according to the spatial and temporal resolutions at
which they were obtained from the experimental techniques used for the recording of
brain activity. The results exposed in this section are important to introduce the recent
finding of a second order transition in large scale brain dynamics, since the strategy
used for its uncovering can be regarded as a transfer of analysis techniques used at
microscopic scales to the macroscopic large scale domain.
A landmark of the critical regime which occurs during a second order phase transition

is the divergence of correlation length. As order emerges, the constituents of the system
must organize themselves instantaneously. Also at this point, any external perturbation
will also have the highest impact on the system, as measured by the susceptibility. For
that to occur, the dynamics of individual units must be mutually influenced even for
those which are macroscopically separated and not directly connected. The divergence
of correlation length implies scale invariance (i.e., fractality) in the system, as the pres-
ence of a characteristic scale would violate the divergence required by the instantaneous
onset of the ordered phase. In fMRI experiments, it has been demonstrated that func-
tional connectivity networks are scale invariant [8] and, most remarkably, are virtually
indistinguishable from correlation networks obtained in the Ising model at the onset
of the second order phase transition [9]. Also, this scale invariance has been directly
demonstrated for fMRI data [10], as well as the divergence in the correlation length
[11].
We emphasize that this evidence of scale free brain dynamics at the large scale domain

has insofar treated brain activity as a continuously variable. Whether this was the case
or its continuous nature emerged as an artifact due to experimental and physiological
blurring remained unknown. On the other hand, experiments at smaller (microscopic
scales) have concentrated in the description of brain activity as discrete avalanching
events, spreading throughout the cortex in a scale free fashion [12]. These scale free
avalanches have been exposed using electrophysiological techniques in different settings
[7, 13, 14]. Self organized critical systems are known to dissipate energy in form
of power law distributed avalanches [15, 2] , hence, this is direct evidence favoring
the hypothesis that brain achieves critical properties through self-regulation and does
not require fine tuning of parameters. We re-emphasize that experiments at this scale,
either single unit or Local Field Potential (LFP) recordings, demonstrate scale-free
intermittence and bursting, with the intensity of the discrete burst obeying a power-law
distribution.
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FIGURE 1. Order, disorder and susceptibilty in a second order percolation phase transition. A. The
state of the system (black dots represent unnocuppied sites, white represents occupied sites) at sub-
critical and critical concentrations. The effect of a small concentration change on the largest cluster (order
parameter, red cluster) and other smaller clusters (blue) is shown, demonstrating how a small perturbation
can induce large changes near the critical point (but not during the sub-critical phase) B. Order parameter,
its variability (σ2) and susceptibility (χ) as a function of the control parameter (left) and percolation
diagram of active sites vs. number of clusters (right). In this case, the control parameter is defined as the
ratio of occupied to the total number of sites (concentration of active sites).

A PHASE TRANSITION IN CORTICAL DYNAMIC AND ITS
CONSEQUENCES

As compelling as the above experimental findings of scale invariance may be, they
fail to reveal clues about its origin. Eventually, what is needed is to identify from the
data the fundamental elements of a second order phase transition, namely the dynamical
changes in an order parameter as a function of some control parameter. The derivation
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of those is not required solely for theoretical reasons but is also of important practical
relevance: a control parameter allows to quantify the “degree of criticality” present in
the system. As in any finite non-equilibrium system, brain activity fluctuations impose
spontaneous changes in the dynamical regime. An order and control parameter would
allow, for instance, to dissipate the idea that the dynamical regime of the brain is fixed
and therefore to study the impact of criticality in the spontaneously fluctuating aspects
of behavior and cognition.
A leap forward in this direction provided for the first time a way to estimate these

parameters [7]. The analysis was carried out at the level of whole-brain human fMRI
data, an imaging modality known for its excellent spatial resolution. The control param-
eter defined here is roughly equivalent to the instantaneous global activity level. The
order parameter is equivalent to the size of the largest cluster of activated cortical ac-
tivity (normalized by the global activity level). With these definitions, a scatter plot of
order vs. control parameters showed a sharp transition around a critical level of global
activity, yielding a diagram which resembles those derived for other systems undergoing
a second order phase transition.
Before exposing the rationale behind this choice of order and control parameters, we

will briefly review the key insights which allowed their identification. As anticipated
in the previous section, these are related to the fusion of analysis techniques used at
different scales, allowing a unified interpretation of the dynamical properties of the
brain.
The most important insight of this work was its departure from techniques which

estimate time averages of activity (during extended periods of time) and to focus on
charactering spatiotemporal instantaneous activity. Since the early days of fMRI, the
Blood Oxygen Level Dependent (BOLD) signal is treated as a continuous smooth signal,
even in spite of a large body of evidence showing that neural activity (at all scales)
happens in bursts. Following this natural line of thought, we discarded low excursions
of the hemodynamic signals and focused on large amplitude events [16]. This procedure
is analogous to the LFP thresholding used at smaller scales to uncover avalanching
activity [12, 17]. In formal terms, this is achieved by the reduction of the signal to a
point process, which in turn is constructed by the introduction of a Poincaré section
of the BOLD signal, as usually done in dynamical systems [18, 19, 20, 21, 22, 23].
Notably, the resulting point-process remarkably resembled the results of resting-state
BOLD signal deconvolution, giving formal support for its introduction.
The point process allows, for the first time, the visualization at each time step of

the brain spatial pattern of activation. Thus, this approach allows us to perform a true
spatiotemporal analysis of fMRI data. This information is then used to identify both
parameters: the control parameter, which is defined as the sum of all voxels above a
threshold (i.e. those active in the point process) and the order parameter as the size
of the largest cortical cluster. The computation of these parameters from the fMRI
data is straightforward applying a cluster labeling algorithm to the spatiotemporal point
process.
These definitions for order and control parameters are of clear interpretability in

terms of degrees of order/disorder. Consider a moment in time in which the brain has
a low value of the order parameter, i.e. the largest cluster of cortical activation is small
compared to the total activated gray matter. It is possible to accommodate a vast number

7



of such clusters on the cortical surface, hence, the entropy is high, as corresponds to
a disordered state. Following the increase of the control parameter a point is reached
in which a giant cluster of cortical activity emerges, comprising and integrating many
different functional systems. Since all activations have coalesced into this single large
cluster, there is little room for variation: entropy is lower, as corresponds to an ordered
state. In the extreme, a single cluster spans all active voxel, giving only one possible
state (a globally activated state with zero entropy).
It is useful to view these parameters in analogy to those used to quantify the dynamical

regime of the percolation model, in which occupied (active) sites are placed on a lattice
with different concentrations (defined as the ratio of occupied to total sites) and the size
of the largest cluster is taken as a measure of order. Figure 1 shows an illustration of the
model and the evolution of different quantities due to changes in the control parameter,
which in this case is the concentration of sites. Despite the fact that the percolation model
has no dynamics, it serves an an useful example to introduce the ideas of order parameter,
control parameter and the maximum variability and susceptibility of the critical state, as
discussed below. In Fig. 2 we summarize the evidence of a second order phase transition

A

B

C

D

E

F

G H

FIGURE 2. Identification of a second order phase transition in fMRI dynamics. A. Decomposition of an
hemodynamic signal into a point process (left) which generates an stereotypical waveform similar to the
hemodynamic response function, the fMRI signal response to a single and discrete electrophysiological
activation (right). B. Percolation diagram of active sites vs. number of clusters. C. Order parameter,
variability and residence times as a function of the control parameter (active sites). D. Distribution of
cluster sizes. E. Distribution of cluster sizes at the three different dynamical regimes. F. Examples of
avalanches triggered from the visual (up) and insular (bottom) cortex. G. Fractal dimension of the active
sites obtained using a box counting algorithm. H. Distribution of avalanche sizes and avalanche lifetimes.
Figure redrawn from [7].

found recently [7]. We introduce the point process decomposition of the hemodynamic
signal, we show the evolution of the order parameter vs. the control parameter, as well
as the variability and the residence times (the definition is introduced below), as was

8



similarly presented in Fig. 1 for the percolation model. This figure also presents results
on the dynamical evolution of clusters, which spread as avalanches, a result consistent
with previous findings at smaller scales [12].
Clusters (or “blobs”, as they are usually refereed to in the neuroimaging community)

represent co-activations (as evidenced by the point-process) of contiguous brain regions
which are usually associated with sensory, motor, or higher order cognitive systems. For
instance, statistics over time averages in a visual stimulation experiment would reveal
a blob in the visual cortex (and similarly in other areas for other experiments). Seen
this way, clusters represent a section or (level set) of the Statistical Parametric Map
(SPM) which encodes the spatial distribution of the model fit statistical significance.
Such model fit is performed during extended periods of time. However, the point process
not only reveals that this activations appear spontaneously in the resting state but also
shows their relationship with the dynamical regime: order means a shared co-activation
(integration) of the processes underlying these clusters, disorder means an increased
segregation. In between, the transition point arguably represents an optimum balance of
segregation/integration. It also corresponds to the point in which the brain displays the
higher variability in its repertoire of states, as evidenced by a peak in the variability of
the order parameter vs. the control parameter (Fig. 2B, Fig. 2C).
As noted above, the brain fluctuates in and out of this regime. However, we demon-

strated that most of the time it stays at the transition point, as evidenced by the compu-
tation of residence times (Fig. 2C. Residence times quantify how much time the system
spends at each possible state of the space of dynamical variables. In this case, we have
tracked the state of the system using the order and control parameters and we demon-
strated that the system stays for more prolonged periods at the state corresponding to
the critical control parameter. Incidentally, this may explain why direct evidence for the
presence of a second order transition had to wait so long: since on average the brain
spends most of the time in the transition point, any approach which is based on time
averaged quantities is bound to highlight only the critical state, but not the super- (disor-
dered) and sub- (ordered) critical states, as can be done with the point process approach.
Quantification of the cluster spatio-temporal evolution demonstrates scale-free

avalanches spreading in fractal-like structures (with dimension slightly greater than
two, see Fig. 2F, Fig. 2G, Fig. 2H). This result is a confirmation of what was previ-
ously known for brain dynamics at smaller scalers by means of electrophysiological
experiments [12]. However, it highlights the fact that predictions based on properties
of the critical state are manifest in all spatial and temporal scales of brain dynamics.
Scale invariance dictates that avalanches of activity must follow the same distribution
regardless of their size and that events as large as the size of the system must be found.
Both predictions are clearly confirmed by analysis of fMRI dynamics in the computation
of power law exponents. Importantly, the theory of phase transitions provides a set of
critical exponents which may be computed for this data and shed light on a possible
universality class for brain dynamics.
Finally, a peak in variability is related to a peak in the susceptibility of the system

near the critical point of a second order phase transition. To introduce the concept
of susceptibility, imagine a physical system upon which we exert forces. We expect
such forces to elicit changes in the system. Susceptibility can be roughly defined as
the ratio of the elicited response and the exerted influence. In finite critical systems,
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FIGURE 3. Two views of the integration-segregation dilemma. Panel A shows a structural point
of view, in which neural structures exhibit different regularity and complexity. According to this, the
structural connectivity of the human brain has a high complexity and intermediate regularity, with a
crucial balance of integration and segregation acquired trough evolutionary selection [27]. Panel B depicts
a dynamical alternative. According with the proposal discussed here, the three type of regimes in A (with
higher or lower complexity) can be dynamically (and transiently) generated by any system undergoing a
second order phase transition (even with trivial and homogeneous structural connectivity), because they
represent the three generic dynamical regimes of the system. Colors in the three graphs label the clusters
with coherent activity, thus in the most ordered regime (top right) the entire brain is active and coalesces
into a single activated cortical cluster, whereas in the most disordered one (bottom left), each brain region
acts independently. It is only at criticality (middle) that coherent clusters of all sizes are possible, thus
optimizing the integration/segregation balance. Panel A redrawn from the figure in Box 2 of [27] rotated
90 degrees counterclockwise. Panel B redrawn from [28].

susceptibility is maximized at the critical point, therefore, the capacity of the system to
react to external changes is maximized. Given the need of flexibility and reactiveness
of the brain, the endowment of maximum susceptibility due to the critical state is a
very attractive possibility from an evolutionary point of view. One must contrast this
non-equilibrium view with that of many models (such as the attractor networks of the
Hopfield model [29]) in which, after the system reaches its final state, it has a vanishing
susceptibility (since small changes which could elicit large responses at the critical state
are not capable of shifting the system from the equilibrium point or attractor). The
relationship between equilibrium and non-equilibrium models and the inclusion of noise
in dynamical equations will be discussed in the next session.
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ORDER/DISORDER VIS A VIS INTEGRATION/SEGREGATION

As discussed already elsewhere [3] the idea of a continuous phase transition in brain
dynamics is related to the ability of the brain to simultaneously integrate and segregate
information, a point championed by Edelman, Tononi and Sporns [24, 25, 26, 27].
In their own words: “Nervous systems facing complex environments have to balance
two seemingly opposing requirements. First, there is a need quickly and reliably to
extract important features from sensory inputs. This is accomplished by functionally
segregated (specialized) sets of neurons, e.g. those found in different cortical areas.
Second, there is a need to generate coherent perceptual and cognitive states allowing an
organism to respond to objects and events, which represent conjunctions of numerous
individual features. This need is accomplished by functional integration of the activity
of specialized neurons through their dynamic interactions" [24].
The cartoons in Fig. 3 show schematically that low complexity is expected for inter-

actions occurring at both extreme degrees of order and disorder. It is only at the inter-
mediate level that complexity peaks, when diverse mixtures of order and disorder are
present. Panel A (taken from [27]) illustrates the point for the structural case, in which
the brain structure molded trough evolution is able to optimize both integration and seg-
regation. The case in panel B represents the dynamical scenario (taken from [28]) of
a second order phase transition. In this case, as the control parameter is increased, the
order parameter also increases, slowly first and then suddenly at the transition point. The
overimposed pictures represent the top view of the brain from simulations of its activity
at different regimes (unpublished data from [28]). The three examples are the type of
clusters (as defined already for the results in Fig. 2) found at disordered, intermediate
and ordered regimes. It is only at the critical regime that clusters of all sizes can be ob-
served, which in dynamical terms represent the balance between high integration (a few
big clusters) and high segregation (many small clusters). Indeed this mixture is charac-
terized by a scale invariant distribution of cluster sizes (see Fig. 2D for the distribution
found experimentally).
Before moving away from Fig. 3, it need to be noted that, although unlikely to be a

realistic possibility, here and only in terms of considering mechanisms, the complexity
exhibited by the networks depicted in Panel A could also arise from a phase transition.
An example can be bond percolation, for which is known that the most complex network
structures arise at the percolation threshold.
It is important to note two additional points about dynamics and structural complexity.

First of all, we do not stress the segregation/integration balance by itself: it is considered
simply a consequence of the physics of phase transitions, which are, arguably, of a more
fundamental nature. Still, the relation between these concepts clearly deserves further
theoretical and experimental investigations.
The second point to remark is a bit subtler: criticality endows an arbitrary graph

with similar dynamic complexity (i.e., similar integration/segregation balance) than the
structural complexity of the brain. However, this is not meant to imply that any arbitrary
structure, provided with critical dynamics, can “think” like a brain. An understanding
of the relation between the connectome (an exhaustive description of all structural
connections) and what we call cognitome (an equally exhaustive description of the
functional repertoire of the brain) and the role of dynamics is still ahead and much work
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still needs to be done.
A lesson taught by the findings on critical phenomena in brain dynamics is that the

explanative power of physical theories should not be disregarded in biology just because
it provides all encompassing, holistic explanations as opposed to detailed, reductionistic
descriptions of myriads of experimental facts. A glaring example is the question of what
role noise plays in brain dynamics and where it is generated. Often theories postulate a
“key role” for noise to adequately explain response variability in healthy brain function
and proceed to explain the observations in the light of very detailed noisy processes.
In the same direction, the information content of the brain BOLD signal’s variability
per se received increasing interest. For instance, it was shown recently [31] in a group of
subjects of different age, that the BOLD signal variability (standard deviation) is a better
predictor of the subject age than the average. Furthermore, additional work focused on
the relation between the fMRI signal variability and task performance, and concluded
that faster and more consistent performers exhibit significantly higher brain variability
across tasks than the poorer performing subjects [32]. From the current perspective,
all these observations have the same underlying explanation: maximum variability is
a straightforward consequence of the critical regime as shown recently [11]. Noise
is endogenous to non-equilibrium systems at the transition point and it needs not to
be introduced as an ad-hoc equilibrium explanation every time a neurobiological fact
displays a large degree of variability.

SUMMARY AND OUTLOOK

In this essay we have exposed recent experimental evidence demonstrating the presence
of a second order phase transition in human brain dynamics, we have explored some of
its consequences. In doing so, we have stressed that the application of these concepts
should be aimed as a unifying physical explanation of the brain. We have also stressed
that biological theories should take advantage of the all-encompassing framework pro-
vided by physical theories (in particular, that of critical phenomena) instead of relying
on reductionistic ad-hoc explanations tailored for each experimental fact.
After establishing that resting state brain activity displays many signatures of sub,

super and critical states, a question clearly needs to be addressed: what is the neurobio-
logical role of these dynamical regimes? Since the brain continuously enters and leaves
the critical regime (but remains most of the time at this point), one could be tempted
to speculate about the possibility of a more permanent displacement. In other words,
if criticality is important for healthy brain function, what happens if this property is
lost? To gain insights on this question we propose to study brain states which radically
differ from wakeful rest (by far the most studied condition in fMRI resting state anal-
yses). Examples could be deep sleep, anesthesia, coma, as well as different states of
consciousness induced by drug intake. We believe that new exciting venues of research
will be open to clarify the role of these fluctuations around criticality in relation to these
different neurobiological states.
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Abstract. Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally
found in vitro and in vivo, and exhibit a robust critical behaviour. Avalanche activity can be modelled
within the self-organized criticality framework, including threshold �ring, refractory period and
activity-dependent synaptic plasticity. The size and duration distributions con�rm that the system
acts in a critical state, whose scaling behaviour is very robust. Next, we discuss the temporal
organization of neuronal avalanches. This is given by the alternation between states of high and
low activity, named up and down states, leading to a balance between excitation and inhibition
controlled by a single parameter. During these periods both the single neuron state and the network
excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms. Finally,
we verify if a system with no characteristic response can ever learn in a controlled and reproducible
way. Learning in the model occurs via plastic adaptation of synaptic strengths by a non-uniform
negative feedback mechanism. Learning is a truly collective process and the learning dynamics
exhibits universal features. Even complex rules can be learned provided that the plastic adaptation
is suf�ciently slow.
Keywords: spontaneous activity; neural networks; learning.
PACS: 05.65.+b, 05.45.Tp, 89.75.-k, 87.19.L-

INTRODUCTION

Spontaneous neuronal activity generally exhibits slow oscillations between high activity
periods, or bursts, followed by substantially quiet periods. Bursts can last from a few
to several hundreds of milliseconds and, if analysed at a �ner temporal scale, show
a complex structure in terms of neuronal avalanches. In vitro experiments allow to
record avalanches [1, 2] from mature organotypic cultures of rat somatosensory cortex
where they spontaneously emerge in super�cial layers. The size and duration of neuronal
avalanches follow power law distributions with very stable exponents, which is a typical
feature of a system acting in a critical state, where large �uctuations are present and
the response does not have a characteristic size. The same critical behaviour has been
measured also in vivo from rat cortical layers during early post-natal development
[3], from the cortex of awake adult rhesus monkeys [4], using microelectrode array
recordings, as well as for dissociated neurons from rat hippocampus [5, 6] or leech
ganglia [6]. Recent results have shown that the critical dynamics in the brain resting
state is a necessary condition for many brain functions [7].

The quiet periods measured between bursts, also called down-states, can last up to
several seconds. The emergence of these down-states can be attributed to a variety of
mechanisms: a decrease in the neurotransmitter released by each synapse, either due to
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the exhaustion of available synaptic vesicles or to the increase of a factor inhibiting the
release [8] such as the nucleoside adenosine [9], the blockage of receptor channels by
the presence, for instance, of external magnesium [10], or else spike adaptation [11].
A down-state is therefore characterized by a disfacilitation, i.e. absence of synaptic
activity, of a large number of neurons causing long-lasting returns to resting potentials
[12] and its onset presents a high level of synchrony. Recently, it was shown analytically
and numerically that self-organized critical behaviour characterizes up-states, whereas
down-states are subcritical [13].

Whereas action potentials are rare during down-states, small amplitude depolarizing
potentials, reminiscent of miniature potentials from spontaneous synaptic release, and
some synaptic input occur at higher frequencies. The non-linear ampli�cation of small
amplitude signals contributes to the generation of larger depolarizing events bringing the
system back into the up-state, as observed in cortical slabs [14], dissociated cultures [15]
and slice cultures [16]. The analysis of the amount of time striatal spiny neurons [17, 18]
and cortical pyramidal neurons [19] spend at each value of the membrane potential
shows that both cell types toggle between two preferred membrane potentials [20]: A
very negative one in the down state, and a more positive, depolarized one, in the up-
state. The neuron up-state being just a few millivolts from the action potential threshold,
suggests that during the up-state neurons respond faster and more selectively to synaptic
inputs. For cortical neurons the up-state would be a metastable state, i.e. the membrane
potential would soon decay down to the resting potential value, if network mechanisms
would not sustain the activity. The up-state has therefore network, rather than cellular,
properties.

The temporal organization of neuronal avalanches can be characterized by means of
the waiting time distribution. Each avalanche is characterized by its size si, its starting
and ending times, t ii and t fi . The properties of temporal occurrence are analysed by
evaluating the distribution of waiting times Δti= t ii+1−t fi . This is a fundamental property
of stochastic processes, widely investigated for natural phenomena [21] and able to
discriminate between a simple Poisson and a correlated process. Indeed, in the �rst
case the distribution is an exponential, whereas it exhibits a more complex behaviour
with power law regime if correlations are present. For a wide variety of phenomena,
earthquakes, solar �ares, rock fracture, etc., this distribution always shows a monotonic
behaviour. In a recent paper [22] this distribution has been analysed for freely behaving
and anaesthetized rats. The distributions show consistently a decreasing behaviour.
Universal scaling features are observed when waiting times are rescaled by the average
occurrence rate for freely behaving rats, whereas curves for anaesthetized rats do not
collapse onto a unique function.

Recently, the waiting time distribution has been measured for different cultures of rat
cortex slices [23]. The curves exhibit a complex non-monotonic behaviour with com-
mon features: an initial power law regime and a local minimum followed by a more or
less pronounced maximum (Fig. 1). More precisely, all curves show an initial power
law regime between 10 and about 200ms, with an average exponent 2.15± 0.32. For
Δt > 200ms curves can become quite different with the common characteristics of a lo-
cal minimum located at 200ms < Δtmin < 1s, followed by a more or less pronounced
maximum at Δt � 1− 2s. This behaviour is not usually observed in natural phenom-
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FIGURE 1. (Color online) The distribution of waiting times for seven different slices of rat cortex. Ex-
periments were performed on coronal slices from rat dorsolateral cortex attached to a poly-D-lysine coated
60-microelectrode array and grown at 35.5 oC in normal atmosphere and standard culture medium with-
out antibiotics for 4-6 weeks before recording. Avalanche activity was measured from cortex-striatum-
substantia nigra triple cultures or single cortex cultures as reported previously[1].

ena and suggests that avalanche occurrence is not a pure Poisson process. In order to
investigate the origin of this behaviour, we simulate avalanche activity by a neuronal
network model [24, 25, 26], which is able to reproduce the scaling properties of neu-
ronal avalanches.

NEURONAL MODEL

We here discuss a neuronal network model inspired in self-organized criticality ideas
[27]. The model implements several physiological properties of real neurons: a continu-
ous membrane potential, �ring at threshold, synaptic plasticity and pruning [24, 25, 26].
We consider N neurons at the nodes of the chosen network, characterized by their poten-
tial vi. The neuron positions will then be ordered in space for regular lattices and small
world networks, organized in a hierarchical manner for the Apollonian network and ran-
domly chosen in two dimensions for the scale-free and fully connected networks. To
each neuron we assign an out-going connectivity degree, kout , on the chosen lattice. We
implement scale-free networks according to the distribution measured by fMRI mea-
surements of ongoing activity in humans [28]. Each neuron has a degree equal to a
random number between kminout = 2 and kmaxout = 100 according to the probability distri-
bution n(kout) ∝ k−2

out . The two neurons are chosen according to a distance dependent
probability, p(r) ∝ e−r/5<r>, where r is their spatial distance [29]. Once the network
of output connections is established, we identify the resulting degree of in-connections,
kin j , for each neuron j. To each synaptic connection we assign an initial random strength
gi j, where gi j �= g ji, and to each neuron randomly either an excitatory or an inhibitory
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character, with a fraction pin of inhibitory synapses. Whenever at time t the value of the
potential at a site i is above a certain threshold vi ≥ vmax, the neuron sends action poten-
tials which arrive to each of the kouti pre-synaptic buttons and lead to a total production
of neurotransmitter proportional to vi. As a consequence, the total charge that could en-
ter into connected neurons is proportional to vikouti . Each of them receives charge in
proportion to the strength of the synapses gi j

v j(t+1) = v j(t)±
vi(t)kouti
kin j

gi j(t)
∑k gik(t)

(1)

where the sum is extended to all out-going connections of i. The normalization by
kin j in Eq.(2) insures a controlled �ring behaviour for neurons with a high number
of in-going terminals, whereas the plus or minus sign is for excitatory or inhibitory
synapses, respectively. In regular networks neurons have the same number of ingoing
and outgoing connections, therefore Eq.(1) reduces to the simpler expression v j(t+1) =
v j(t)± vi(t)

gi j(t)
∑k gik(t)

. The same consideration holds for small world networks.
The �ring rate of real neurons is limited by the refractory period, i.e. the brief period

after the generation of an action potential during which a second action potential is
dif�cult or impossible to elicit. The practical implication of refractory periods is that
the action potential does not propagate back toward the initiation point and therefore
is not allowed to reverberate between the cell body and the synapse. In our model,
once a neuron �res, it remains quiescent for one time step and it is therefore unable
to accept charge from �ring neighbours. This ingredient indeed turns out to be crucial
for a controlled functioning of our numerical model. In this way an avalanche of charges
can propagate far from the input through the system. The initial values of the neuron
potentials are uniformly distributed random numbers and the value of vmax is �xed equal
to 6 in all simulations. Moreover, a small fraction (10%) of neurons is chosen to be
output sites, i.e. an open boundary, with a zero �xed potential, playing the role of sinks
for the charge. They model neurons connected to neurons not belonging to the slice
and avoid that an excess to charge in�ux would lead to supercritical behaviour. Each
time neuronal activity stops in the network, an external stimulus is necessary to trigger
further activity, which therefore mimics the nutrients from the bath needed to keep a real
neuronal network alive. This stimulus consists in increasing the potential of a random
neuron by a random quantity uniformly distributed between 0 and vmax.

During the propagation of an avalanche according to Eq. (1), we identify the bonds
connecting two successively active neurons, namely neurons whose activity is corre-
lated. The strength of their connections is increased proportionally to the activity of the
synapse, namely the membrane potential variation of the post-synaptic neuron induced
by the presynaptic neuron

gi j(t+1) = gi j(t)+α(v j(t+1)− v j(t))/vmax (2)

where α a dimensionless parameter. Once an avalanche of �rings comes to an end, the
strength of all inactive synapses is reduced by the average strength increase per bond

Δg= ∑
i j,t

δgi j(t)/Na (3)
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FIGURE 2. The distributions of avalanche size (circles), duration (square) and the total potential
variation during one avalanche (triangle) for 100 con�gurations of scale-free network with N = 16000
neurons (α = 0.6, Np = 10000, pin = 0.05). The dashed line has a slope -1.5, whereas the dot-dashed
line has a slope -2.1. The continuous line represents the experimental distribution of avalanche sizes in rat
cortex slices. Experimental data are shifted for better comparison.

where Na is the number of bonds active in the previous avalanche. Here α is the only
parameter controlling both the strengthening and the weakening rule in the Hebbian
plasticity and represents the ensemble of all possible physiological factors in�uencing
synaptic plasticity. By implementing these rules, our neuronal network "memorizes" the
most used paths of discharge by increasing their strength, whereas the less solicited
synapses slowly atrophy. Indeed, once the strength of a bond is below an assigned small
value gt = 10−4, we remove it, i.e. set its strength equal to zero, which corresponds to
the so-called pruning.

We implement synaptic plasticity rules during a series of Np stimuli in order to let the
activity tune the synaptic strengths, initially set at random. The extension of the plastic
adaptation procedure then represents the level of experience, or age, of the system,
whose response we monitor over a time-scale much shorter than the one needed for
structural adaptation.

Avalanche activity

After "aging" the system applying plasticity rules during Np external stimuli, we sub-
mit the system to a new sequence of stimuli with no modi�cation of synaptic strengths.
The response of the system to this second sequence models the spontaneous activity of
a trained neuronal network with a given level of experience. We analyse this activity by
measuring the avalanche size distribution n(s) and the time duration distribution n(T).

We measure the distribution of neuronal avalanche sizes, de�ned either as the total
number of �ring neurons, or as the sum of their voltage variations during an avalanche.
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This distribution exhibits a power law behaviour, with an exponent equal to 1.5± 0.1,
quite stable with respect to parameters. This scaling behaviour is also robust for densi-
ties of inhibitory synapses up to 10%, whereas the scaling behaviour is lost for higher
densities. Moreover, the distribution of avalanche temporal durations is also a power law
with an exponent close to −2.0. Both these values show an excellent agreement with ex-
perimental data. Extensive studies have veri�ed that the critical behaviour of avalanche
distributions does not depend on parameter values or network properties (regular, small-
world, Apollonian networks). Results imilar to the ones for random initial conductances
are found for equal initial conductances. The dependence of the critical behaviour on
synaptic strengths has been recently investigated in networks of integrate-and-�re neu-
rons [30]. Only for fully connected networks, which undergo plastic adaptation routines
of different length, all networks exhibit supercritical behaviour, namely an excess of
very large avalanches, due to the high level of connectivity in the system [31]. More-
over, these scaling properties do not depend on system size, indicating that the network
is in a critical state and self-regulates, by adjusting synaptic strengths, producing the
observed scale-invariant behaviour.

Implementation of up and down states

In order to model the waiting time distribution measured experimentally,we imple-
ment the alternation between up and down-states, both at the level of a single neuron
potential and a network state [23]. At the end of each avalanche we measure its size
in terms of the sum of depolarizations δvi of all active neurons, sΔv = ∑δvi. If the last
avalanche is larger than a threshold, sΔv > sminΔv , the system transitions into a down-state
and neurons active in the last avalanche become hyperpolarized proportionally to their
previous activity, namely we reset

vi = vi−hδvi (4)

where h > 0. This equation implies that each neuron is hyperpolarized proportionally
to its previous activity, i.e. its potential is the lower, the higher its potential variation
in the previous avalanche δvi. This rule introduces a short range memory at the level
of a single neuron and models a number of possible mechanisms: the local inhibition
experienced by a neuron, due to spike adaptation, adenosine accumulation, synaptic
vesicle depletion, etc.

Conversely, if the avalanche just ended has a size sΔv ≤ sminΔv , the system either will
remain, or will transition into an up-state. All neurons �ring in the previous avalanche
are not set equal to zero resting potential but to the depolarized value

vi = vmax(1− sΔv/sminΔv ) (5)

The neuron potential then depends on the response of the whole network via sΔv, in
agreement with measurements of the neuronal membrane potential which remains close
to the �ring threshold in the up-state. sminΔv controls the extension of the up-state and
therefore the level of excitability of the system. The high activity in the up-state must be
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FIGURE 3. (Color online) Waiting time distributions measured experimentally are compared with
the average numerical distributions for 100 networks with N = 64000 neurons. Left: numerical curve
(sminΔv = 140 and h = 0.017) �tting the experimental curve with blue squares in Fig. 1; Right: numerical
curve (sminΔv = 110 and h = 0.02) �tting the experimental curve with red diamonds in Fig. 1. For both
experimental curves the best agreement is reached by numerical curves with R � 10−4. In the inset the
waiting time distribution evaluated separately in the up and downstate. Statistical error bars not shown are
comparable to the symbol size.

sustained by collective effects in the network, otherwise the depolarized potentials would
soon decay to zero, and therefore the random stimulation in the up-state has an amplitude
that depends on past activity. Eqs. (4) and (5) each depend on a single parameter, h and
sminΔv , which introduce a memory effect at the level of single neuron activity and the
entire system, respectively. In order to reproduce the behavior observed experimentally,
the parameters sminΔv and h are controlled separately. However, simulations show that the
ratio R = h/sminΔv is the only relevant quantity controlling the temporal organization of
avalanches.

Numerical simulations show that the system indeed switches between up and down
states, with different temporal durations. The numerical waiting time distributions (Fig.
3) exhibit the non-monotonic behaviour of the experimental curves, where the position
of the minimum is controlled by the value of sminΔv and the power law regime scales with
the same exponent ∼ −2 as experimental data. The different contribution from the two
states is re�ected in the activity temporal scale. The up-state generates strongly clustered
avalanches, originating the power law regime of the waiting time distribution, whose
extension depends on sminΔv . Large Δt between avalanches generated in the upstate are ob-
served with a very small probability, which increases with decreasing h. Conversely, the
waiting time distribution evaluated in the down-state has a bell-shaped behaviour cen-
tered at large intertimes which depends on h, i.e. for a larger disfacilitation of the network
the probability to observe intermediate waiting times decreases in favour of long Δt. The
presence of the minimum and the height of the relative maximum are sample dependent
(Fig. 1) and for each sample the agreement between numerical and experimental data
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depends on the subtle balance between excitation and inhibition. For different samples,
optimal agreement is realized when the ratio R= h/sminΔv � 10−4. Enhancing excitation,
by increasing the threshold value sminΔv , produces a major shift in the data. Increasing
inhibition, by increasing the parameter h, generates the opposite effect, recovering the
good agreement with experimental data. Interestingly, the avalanche size and duration
distributions also reproduce the experimental scaling behaviour for the parameter values
expressing the balance between excitatory and inhibitory components. The abrupt tran-
sition between the up and down-state, controlled by a threshold mechanism, generates
the minimum observed experimentally.

LEARNING

Here we discuss the learning performance of this neuronal network acting in a critical
state [26]. We apply Boolean rules at input neurons and we monitor the response at one
output neuron. These nodes are randomly placed in the network under the condition
that they are not boundary sites and they are mutually separated on the network by kd
nodes. kd represents the chemical distance on the network and plays the role of the
number of hidden layers in a perceptron. We test the ability of the network to learn
different rules: AND, OR, XOR and a random rule RAN with three inputs. A single
learning step requires the application of the entire sequence of states at the input neurons,
monitoring the state of the output neuron. For each rule the binary value 1 is identi�ed
with the output neuron �ring, namely the neuron membrane potential at a value greater
or equal to vmax at some time during the activity. Conversely, the binary state 0 at the
output neuron corresponds to the physiological state of a real neuron which has been
depolarized but fails to reach the �ring threshold membrane potential during the entire
avalanche propagation. Once the input sites are stimulated, we let the avalanche evolve
to its end according to Eq. 1. If at the end of the avalanche the propagation of charge
did not reach the output neuron, we consider that the state of the system was unable
to respond to the given stimulus, and as a consequence to learn. We therefore increase
uniformly the potential of all neurons by units of a small quantity, β = 0.01, until the
con�guration reaches a state where the output neuron is �rst perturbed. We then compare
the state of the output neuron with the desired output.

Plastic adaptation is applied to the system according to a non-uniform negative feed-
back algorithm. Namely, if the output neuron is in the correct state according to the rule,
we keep the value of synaptic strengths. Conversely, if the response is wrong we mod-
ify the strengths of those synapses involved in the information propagation by ±α/dk,
where dk is the chemical distance of the presynaptic neuron from the output neuron. The
sign of the adjustment depends on the mistake made by the system: If the output neuron
fails to be in a �ring state we increase the used synapses by a small additive quantity
proportional to α . Synaptic strengths are instead decreased by if the expected output
0 is not ful�lled. This adaptation rule intends to mimic the feedback to the wrong an-
swer triggered locally at the output site, for instance by some hormons, and propagating
backward towards the input sites.

We �rst analyse the dependence of the learning performance on the number of neu-
rons. Indeed, as the system size increases the number of highly connected neurons be-
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FIGURE 4. Percentage of con�gurations learning the XOR rule as function of the number of learning
steps, for α = 0.005, kd = 3, the initial minimum connectivity degree equal to 3 and different numbers of
neurons N (from 250 to 1000 bottom to top).

comes larger. A well connected system provides better performances, therefore we could
expect that the size dependence re�ects the same effect. In Fig. 4 we show data for a set
of parameters and different system sizes. The learning performance indeed improves
with the system size since the overall level of connectivity improves for larger systems.
Next we check the ability of the system to learn the different rules. The fraction of
con�gurations learning the AND rule versus the number of learning steps for different
values of the plastic adaptation strength α . We notice that the larger the value of α the
sooner the system starts to learn the rule, however the �nal percentage of learning con�g-
urations is lower. The �nal rate of success increases as the strength of plastic adaptation
decreases. This result is due to the highly non-linear dynamics of the model, where �ring
activity is an all or none event controlled by the threshold. The result that all rules give
a higher percentage of success for weaker plastic adaptation, is in agreement with re-
cent experimental �ndings on visual perceptual learning, where better performances are
measured when minimal changes in the functional network occur as a result of learning
[32].

CONCLUSIONS

Extensive simulations have shown that a novel brain model with activity dependent
plasticity, implemented on different lattices is able to capture the main statistical features
of spontaneous brain activity. The ingredients of the model are close to most functional
and topological properties of real neuronal networks. The avalanche size and duration
distributions show a power law behaviour with exponents 1.5 ± 0.1 and 2.0 ± 0.1,
respectively, compatible the values found experimentally for neuronal avalanches. The
complex non-monotonic temporal organization of neuronal avalanches is controlled by
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the system balance level between excitation and inhibition expressed by the parameter
R. Avalanches are temporally correlated in the up-state, whereas down-states are long
term recovery periods where memory of past activity is erased. The good agreement
with experimental data indicates that the transition from an up-state to a down-state
has a high degree of synchronization. Moreover it con�rms that alternation between up
and down-states is the expression of a homeostatic regulation which, during periods of
high activity, is activated to control the excitability of the system and avoid pathological
behaviour. These collective effects must be supported by the single neuron behaviour,
which toggles between two preferential states, a depolarized one in the up-state and a
hyperpolarized one in the down-state. The model con�rms that the depolarized neuron
state is a network effect: the avalanche activity itself determines how close to the �ring
threshold a neuron stays in the up-state. Conversely, the hyperpolarized state is a form
of temporal auto-correlation in the neuron activity. Finally, the investigation of the
learning ability of this model has evidenced that the learning dynamics is a cooperative
mechanism where all neurons contribute to select the right answer and negative feedback
is provided in a non-uniform way. Despite the complexity of the problem and the high
number of degrees of freedom involved at each step of the iteration, the system can
learn successfully even complex rules. The neuronal network has a “universal" learning
dynamics, even complex rules can be learned provided that the plastic adaptation is
suf�ciently slow.

REFERENCES

1. J. M. Beggs, and D. Plenz, J. Neurosci. 23, 11167–11177 (2003).
2. J. M. Beggs, and D. Plenz, J. Neurosci. 24, 5216–5229 (2004).
3. E. D. Gireesh, and D. Plenz, Proc. Nat. Acad. Sci. USA 105, 7576–7581 (2008).
4. T. Petermann, T. C. Thiagarajan, M. A. Lebedev, M. A. L. Nicolelis, D. R. Chialvo, and D. Plenz,

Proc. Nat. Acad. Sci. USA 106, 15921–15926 (2009).
5. A. Mazzoni, F. D. Broccard, E. Garcia-Perez, P. Bonifazi, M. E. Ruaro, and V. Torre, PLoS ONE

2(5), e439 1–12 (2007).
6. V. Pasquale, P. Massobrio, L. L. Bologna, M. Chiappalone, and S. Martinoia, Neuroscience 153,

1354–1369 (2008).
7. E. Tagliazucchi, P. Balenzuela, D. Fraiman, and D. Chialvo, Front. Physiol. 3, article 15 (2012).
8. K. J. Staley, M. Longacher, J. S. Bains, and A. Yee, Nature Neurosci. 1, 201–209 (1998).
9. S. M. Thompson, H. L. Haas, and B. H. Gähwiler, J. Physiol. 451, 347–363 (1992).
10. E. Maeda, H. P. Robinson, and A. Kawana, J. Neurosci. 15, 6835–6845 (1995).
11. M. V. Sanchez-Vives, L. G. Nowak, and D. A. McCormick, J. Neurosci. 20, 4286–4299 (2000).
12. I. Timofeev, F. Grenier, and M. Steriade, Proc. Nat. Acad. Sci. USA 98, 1924–1929 (2001).
13. D. Millman, S. Mihalas, A. Kirkwood, and E. Niebur, Nature Phys. 6, 801–805 (2010).
14. I. Timofeev, F. Grenier, M. Bazhenov, T. J. Sejnowski, and M. Steriade,Cereb. Cortex 10, 1185–1199

(2000).
15. D. Eytan, and S. Marom, J. Neurosci. 26, 8465–8476 (2006).
16. D. Plenz, and A. Aertsen, Neuroscience 70, 893–924 (1996).
17. D. Plenz, and S. T. Kitai, J. Neurosci. 18, 266–283 (1998).
18. E. A. Stern, D. Jaeger, and C. J. Wilson, Nature 394, 475–478 (1998).
19. M. O. Cunningham et al, Proc. Nat. Acad. Sci. USA 103, 5597–5601 (2006).
20. A. Hasenstaub, R. N. Sachdev, and D. A. McCormick, J. Neurosci. 27, 9607–9622 (2007).
21. L. de Arcangelis, C. Godano, E. Lippiello, and M. Nicodemi, Phys. Rev. Lett. 96, 0511021–4 (2006).
22. T. L. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D. R. Chialvo, M. A. L. Nicolelis, and S. Ribeiro,

PLoS ONE 5(11), e14129 1–14 (2010).

23



23. F. Lombardi, H. J. Herrmann, C. Perrone-Capano, D. Plenz, and L. de Arcangelis, Phys. Rev. Lett.
108, 2287031–5 (2012).

24. L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann, Phys. Rev. Lett., 96, 0281071–4 (2006).
25. G. L. Pellegrini, L. de Arcangelis, H. J. Herrmann, and C. Perrone-Capano, Phys. Rev. E 76,

0161071–9 (2007).
26. L. de Arcangelis, and H. J. Herrmann, Proc. Natl. Acad. Sci. USA 107, 3977–3981 (2010).
27. P. Bak, How nature works. The science of self-organized criticality, Springer, New York, 1996.
28. V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, Phys. Rev. Lett. 94,

0181021-4 (2005).
29. B. Roerig, and B. Chen , Cereb. Cortex 12, 187–198 (2002).
30. A. Levina, J.M. Herrmann, and T. Geisel, Nature Phys. 3, 857 (2007); Phys. Rev. Lett. 102, 1181101-

4 (2009).
31. L. de Arcangelis, Eur. Phys. J. Special Topics 205, 243-257 (2012).
32. C. M. Lewis, A. Baldassarre, G. Committeri, G. L. Romani, and M. Corbetta, Proc. Natl. Acad. Sci.

USA 106, 17558–17563 (2009).

24



The emergence of spontaneous activity in
neuronal cultures

J. G. Orlandi∗, E. Alvarez-Lacalle†, S. Teller∗, J. Soriano∗ and J.
Casademunt∗

∗Departament d’ECM, Facultat de Física, Universitat de Barcelona. Martí i Franqués 1, 08028
Barcelona, Spain.

†Departament Física Aplicada, EETAC. Universitat Politècnica de Catalunya BarcelonaTech.
Esteve Terrades 5, 08860 Castelldefels, Spain.

Abstract. In vitro neuronal networks of dissociated hippocampal or cortical tissues are one of the
most attractive model systems for the physics and neuroscience communities. Cultured neurons
grow and mature, develop axons and dendrites, and quickly connect to their neighbors to establish a
spontaneously active network within a week. The resulting neuronal network is characterized by a
combination of excitatory and inhibitory neurons coupled through synaptic connections that interact
in a highly nonlinear manner. The nonlinear behavior emerges from the dynamics of both the neu-
rons’ spiking activity and synaptic transmission, together with biological noise. These ingredients
give rise to a rich repertoire of phenomena that are still poorly understood, including the emergence
and maintenance of periodic spontaneous activity, avalanches, propagation of fronts and synchro-
nization. In this work we present an overview on the rich activity of cultured neuronal networks,
and detail the minimal theoretical considerations needed to describe experimental observations.

Keywords: neuronal cultures; spontaneous activity.
PACS: 87.19.L-, 87.19.lj, 87.18.Tt

INTRODUCTION

Understanding the activity and network structure of neurons in the mammalian brain,
and relating it to a particular brain process or function, is one of the major challenges
of modern neuroscience [1]. One of the most fundamental question to address is the
emergence of spontaneous activity in neuronal assemblies, a crucial mechanism in living
neuronal networks involved in the correct formation, survival and refinement of neuronal
circuits. Indeed, rhythmic spontaneous episodes of activity are widespread in neuronal
tissues in the form of brain rhythms [2]. However, spontaneous activity is not limited to
naturally–formed in vivo neuronal tissues. Brain slices and in vitro neuronal cultures are
also spontaneously active. Specifically, in vitro neuronal circuits lead to networks that
self–organize, grow and mature to constitute a spontaneously active network [3]. The
robust presence of spontaneous activity in such different structures hints at the presence
of general mechanisms —in both neuronal dynamics and connectivity— that initiate and
control it.

Neuronal cultures are typically prepared from specific regions of embryonic rat brains.
After dissociation and plating, neurons connect within a day, and show rich spontaneous
activity as early as day in vitro 5-6 [4]. Activity is typically monitored through Calcium
Fluorescence Imaging, which can simultaneously record thousands of neurons in large
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areas at ∼ 20 ms resolution, or through Multi-Electrode Arrays (MEAs) [3], which
deliver high, ∼ μs resolution but with a limited number of recording sites, on the order
of 100. The emergence of spontaneous activity in cultures is characterized by bursting
episodes of collective neuronal activation combined with quieter inter–bursts intervals.

A good starting point to study activity–initiation mechanisms in cultures is to con-
sider networks that are almost unidimensional, i.e. where the width of the culture is
much smaller than the characteristic diameter of the neuron’s dendritic tree (around 300
μm). The predominant activity pattern in these lines is the appearance of pulses (bursts)
of neuronal activity that initiate in localized zones along the line, termed burst initiation
zones. This observation was first investigated by Feinerman et al. [5, 6], who showed that
these pulses propagate at constant velocity, sequentially activating the neurons in their
path. Indeed, the line behaves like a chain–like network that extends with equal proba-
bility towards both ends of the system. The velocity of the activity front predominantly
depends on the connectivity properties of the network, with velocities that double when
inhibitory synapses are blocked. The same authors also reported that the nucleation of
the front predominantly occurs in the regions with higher connectivity [6].

The natural step after investigation 1D neuronal networks is to test whether these
basic behaviors, namely activity–initiation features and burst propagation, also appear
in bi–dimensional neuronal cultures. However, this endeavor is difficult to assess since
one has to access large areas, and with both high temporal and spatial resolution. In this
context, and as we treat below, modeling and in silico simulations may provide a first
hint on spontaneous activity driving mechanisms in much more complex networks.

MODELING NEURONAL CULTURES DYNAMICS

The theoretical and numerical analysis [7] of one–dimensional cultures showed that,
to reliably reproduce the experimental observations, simple Integrate–and–fire models
are not sufficient. The neuron models must include a slow variable that mimics the
presence of slow K+ channels in the soma as well as spike frequency adaptation. The
set of equations that include these ingredients while keeping the minimum number of
components are described in the two–dimensional Izhikevich model [8]. Furthermore, to
fully describe the observed activity, the chemical synapses connecting any two neurons
must have short–term depression [9], which takes into account the limited number of
available neurotransmitters. This limitation results in a decrease of synaptic efficiency
with use, while synapses recover slowly at a constant rate.

In the absence of stimuli, neurons fire spontaneously with a characteristic frequency
that follows Poisson statistics. Although the source of spontaneous activity is still un-
clear, miniature post–synaptic currents generated by the spontaneous release of neuro-
transmitter’s vesicles at the synapses seems to be the leading candidate [10]. This minis
can be considered as a shot noise, i.e. a Poisson process acting at each synapse and that
generates post–synaptic currents, but of smaller amplitude than the evoked ones.
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DISCUSSION

The picture of burst initiation becomes less clear when more detailed topological proper-
ties are included in systems beyond unidimensional cultures. Studies using MEAs in two
dimensional cultures have not revealed any clear pattern of activity, and several studies
have theorized about the driving mechanisms of bursting behavior. Those studies range
from the concept of leader neurons [11] to the hypothesis of different network structures
and neuronal subtypes [12]. It was also suggested, based on both experiments and theo-
retical models, that activity may be described as neuronal avalanches with distributions
that resemble those observed in Self–Organized Criticality [13].

On the other hand, the emergence of collective activity, just as the network reaches
maturity, can be explained statically as a problem of quorum percolation [4, 14]. When
a critical fraction of neurons become active at the same time, they can excite all their
neighbors and in turn, through an iterative process, the entire network. However, a
dynamical description of the process that includes all the relevant time scales as well
as the network properties [15] is still pending.

In conclusion, the initiation and propagation of spontaneous activity is a challenging
problem that has not been fully addressed yet. There are still several open questions con-
cerning the identification of fundamental ingredients at the dynamical and topological
levels, in particular the incorporation of realistic connectivity maps.
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Abstract. Brain rhythms contribute to every aspect of brain function. Here, we study critical and
resonance phenomena that precede the emergence of brain rhythms. Using an analytical approach
and simulations of a cortical circuit model of neural networks with stochastic neurons in the pres-
ence of noise, we show that spontaneous appearance of network oscillations occurs as a dynamical
(non-equilibrium) phase transition at a critical point determined by the noise level, network struc-
ture, the balance between excitatory and inhibitory neurons, and other parameters. We find that the
relaxation time of neural activity to a steady state, response to periodic stimuli at the frequency of
the oscillations, amplitude of damped oscillations, and stochastic fluctuations of neural activity are
dramatically increased when approaching the critical point of the transition.
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PACS: 87.19.lc, 87.19.lj, 87.19.ll, 87.19.lm, 87.19.ln

INTRODUCTION

Brain rhythms contribute in every aspect of brain function from sensory and cognitive
processing, and memory to motor control [1]. Origin and physiological functions of
brain rhythms are a topic problem in neuroscience. Brain rhythms are also related to
many unusual phenomena observed in the brain. Interactions between billions of neurons
give rise to phase transitions, self-organization, and critical phenomena [2, 3]. Phase
transitions were observed, for example, in human bimanual coordination [4, 5, 6, 7, 8]
and in living neural networks stimulated by electric fields [9]. There are evidences that
epileptic seizures, alpha and gamma oscillations, and the ultraslow oscillations of BOLD
fMRI patterns emerge as a result of non-equilibrium phase transitions. Neural avalanches
are one more example of critical collective phenomena observed in the brain [10, 3].
Various resonance phenomena were also observed in the brain. Experimental inves-

tigations of CA1 neuronal networks from mammalian brain demonstrated that stochas-
tic resonance can enhance effects of intrinsic 4-10 Hz hippocampal theta and 40 Hz
gamma oscillations [11]. Recently, using a functional imaging technique, Sasaki et al.
[12] revealed that the majority of rat CA1 neurons act collectively like a band-pass filter.
Damped oscillations and the Berger effect are also related to brain rhythms. The Berger
effect manifests itself in activation of alpha waves on the electroencephalogram when
the eyes are closed and diminution of alpha waves when they are opened [13].
In the present paper, we study collective dynamics of neural networks composed by

excitatory and inhibitory neurons in the presence of noise. Based on exact analytical cal-
culations and numerical simulations, we show that spontaneous emergence of network
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oscillations occurs as a dynamical (non-equilibrium) phase transition at a critical level
of noise. The transition manifests itself in slowing down of the relaxation of a perturbed
neural activity to a steady state, a strong enhancement of stochastic fluctuations of ac-
tivities of neural populations and an increase of the linear response function to afferent
periodic stimuli at the frequency of neural oscillations. We show that near to the critical
boundary, neural networks act as damped harmonic oscillators or band-pass filters that
pass frequencies within a certain range and attenuate frequencies outside that range.

CORTICAL CIRCUIT MODEL

We use a cortical circuit model [14] composed of Ne pyramidal cells (excitatory neurons)
and Ni interneurons (inhibitory neurons) that form a sparsely connected network. The
probability that there is a synaptic connection between two neurons is c/N where
N =Ne+Ni is the total number of neurons and c is the mean degree. This network has the
structure of a directed classical random graph (or Erdős-Rényi graph) with the Poisson
degree distribution Pn(c) = cne−c/n! where n is the number of presynaptic neurons.
Neurons receive sporadic inputs from a remote part of the cortex and synaptic noise.
Neurons fire with a constant firing frequency ν that is the same for both excitatory and
inhibitory neurons. The total input Vm to a neuron with index m, m = 1,2, . . . ,N, is the
sum of random spikes from noise, excitatory and inhibitory neurons,

Vm(t) =
N

∑
n=1

kn(t)anmJnm +ξ (t), (1)

where kn(t) is the number of spikes that arrive from presynaptic neuron n during the
time interval [t − τ, t], τ is the integration time. Below we will consider the case τν ≤ 1
when the number of spikes kn(t) is 1 or 0. If we assume that the emissions times of
spikes of different neurons are uncorrelated, then the parameter τν has a meaning of
the probability that a postsynaptic neuron receives a spike from an active presynaptic
neuron during time τ . Furthermore, anm is the adjacency matrix, i.e., anm = 1 if there is
a direct edge from neuron n to neuron m, otherwise anm = 0. Jnm is the efficacy of the
synapse connecting neuron n with neuron m. Jnm is positive if presynaptic neuron n is
excitatory and it is negative if the neuron is inhibitory. ξ (t) is the number of random
spikes from noise that neuron m receives during the time interval [t − τ, t]. We use the
Gaussian distribution for ξ (t),

G(ξ ) = Aexp
[
− (ξ −〈n〉)2

2σ2

]
, (2)

where A is the normalization constant, σ2 is the variance, 〈n〉 is the mean number of
random spikes determined by the mean rate ωrs, 〈n〉 = ωrsτ . Note that noise in our
model is actually shot noise. According to Schottky’s theorem, the intensity of this noise
is proportional to 〈n〉.
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We consider stochastic neurons. Their response on input is a stochastic process that
occurs with a certain rate. Two rules determine dynamics of stochastic neurons [14]:

1. If the total input Vm(t) at an inactive excitatory or inhibitory neuron m at time t is
at least a certain thresholdΩ (i.e.,Vm(t)≥Ω), then this neuron is activated at a rate
μe or μi, respectively, and fires with a cyclic frequency ν .

2. Active excitatory (inhibitory) neuron m is inactivated at a rate μe (μi) if Vm(t)<Ω.

We assume that 1/μe and 1/μi are of the order of the first spike latencies of excitatory
and inhibitory neurons, respectively. We introduce the ratio

α ≡ μi/μe (3)

that plays an important role in our model, as it will be shown below. The advantage of
this model with stochastic neurons is that it can be solved analytically.

In numerical simulations, we studied sparsely connected networks of size N = 103−
105 and applied the following algorithm. We divided time t into intervals of width
Δt = τ . At each time step, for each neuron, we calculated the input Eq. (1), taking into
account that each active presynaptic neuron contributes with a spike with probability
τν . The number of random spikes from noise in this input is generated according to the
Gaussian distribution, Eq. (2). Then, with the probability τμa, a = e, i, we updated the
states of all neurons using the stochastic rules formulated above. We used the following
parameters: the fraction of excitatory neurons is ge = Ne/N = 75%, the fraction of
inhibitory neurons is gi = Ni/N = 25%, the mean number of connections c = 1000 (750
excitatory and 250 inhibitory connections), the threshold Ω = 30, and the variance of
noise σ2 = 10. Following [15], we chose Jie = Jii ≡ Ji, Jee = Jei ≡ Je, and Ji = −3Je.
These parameters agree with anatomical estimates for cortex. In cortex, the fraction gi
of inhibitory neurons is between 0.15 and 0.3, the mean number of synaptic connections
c is about 7000. The threshold Ω is between 15 and 30 in neural networks in vivo [9]
and about 30−400 in the brain. The level of noise 〈n〉 was varied in the interval 0−150
spikes per integration time τ . We also assumed that, for simplicity, τν = 1 and τμe = 0.1.

Dynamical behavior of the model is described by the fractions ρe(t) and ρi(t) of active
excitatory and inhibitory neurons, respectively, at time t. We will call them ‘activities’
of the neural populations. Using the rules of the stochastic dynamics formulated above
and assuming that activities are changed slightly during the integration time τ , in the
infinite size limit N → ∞, we find a rate equation [14],

dρa(t)
μadt

= fa(t)(1−ρa(t))−ρa(t)+Ψa(ρe(t),ρi(t)). (4)

for a = e, i. The function Ψa(ρe,ρi) is the probability that at time t the input to a
randomly chosen excitatory or inhibitory neuron is at least the threshold Ω. For the
model under consideration Ψi(ρe,ρi) =Ψe(ρe,ρi)≡Ψ(ρe,ρi), where

Ψ(ρe,ρi) =
∞

∑
k=0

∞

∑
l=0

∞

∑
ξ=−∞

Θ(Jek+Jil+ξ−Ω)G(ξ )Pk(geρec̃)Pl(giρic̃). (5)

Here Θ(x) is the Heaviside step function, the parameter c̃ is defined as c̃ ≡ cντ , and
Pk(geρec̃) and Pl(giρic̃) are the probabilities that a randomly chosen neuron receives k
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FIGURE 1. Schematic phase diagram of the cortical model and critical and resonance phenomena near
the critical boundary of the non-equilibrium phase transition to sustained network oscillations.

spikes from active presynaptic excitatory and l spikes from inhibitory neurons, respec-
tively, during the time window τ at given activities ρe and ρi. The functions fe(t) and
fi(t) represent a rate of spontaneous activation of excitatory and inhibitory neurons, re-
spectively, by stimulus, for example, an electric field. The rate equation (4) is similar to
the Wilson-Cowan equations [16, 17], see also [14]. Equation (4) is asymptotically exact
in the limit N → ∞.
Steady states of the neural populations can be found from Eq. (4), supposing dρa/dt =

0 in the limit t → ∞. If ρe(t) and ρi(t) at time t are close to steady state activities ρe(∞)
and ρi(∞), then Eq. (4) enables us to describe relaxation of ρa(t) to the steady state. We
introduce

δρa(t)≡ ρa(t)−ρa(∞) = Re(Aae−γt) (6)

where Aa is a complex amplitude. Using the standard perturbation theory, we solve
Eq. (4) in the first order in δρa(t). We find

γ± =
1

2
(B1+B2)± 1

2

[
(B1−B2)

2+4αDeiDie

]1/2
, (7)

where we introduced parameters B1 = 1−Dee, B2 = α(1−Dii), Dab = dΨa(ρe,ρi)/dρb
for a,b = e, i. respectively. Derivatives Dab are determined by the activities ρe(∞) and
ρi(∞) from the non-linear equation Eq. (4) when dρa/dt = 0 [14]. The real and imagi-
nary parts of the complex rate γ (γr ≡ Re(γ−) and γi ≡ Im(γ−)) determine the relaxation
rate and the angular frequency of damped oscillations, respectively. Notice that the pe-
riod of the oscillations equals 2π/γi.
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Analyzing behavior of γr and γi in dependence on α and 〈n〉, we obtain the phase
diagram in Fig. 1. One can see that there are three regions. There is a region I (small
noise level and/or large α) where the relaxation of the neural activity to a steady state
is exponential (γr > 0 and γi = 0). In region II, the neural activity relaxes in a form of
damped oscillations (γr > 0 and γi 	= 0). In region III, network oscillations are sustained.
A similar phase diagram was found in [14] for a simpler model. If α is above a critical
value αt , that corresponds to the α-coordinate of the top point of the region III in Fig. 1,
then with increasing the noise level 〈n〉, the activities ρe and ρi in the steady state
undergo a first-order phase transition at a critical noise level nc. A similar discontinuous
transition was observed in living neural networks in vitro when living neural networks
were stimulated by an electric field [9]. Neuronal avalanches are precursors of this phase
transition. Activation (or inactivation) of one neuron can trigger avalanche process of
activation (or inactivation) of a cluster of neurons. In cortex, neuronal avalanches have
been observed experimentally [10], see the review [3].
If the parameter α < αt , sustained networks oscillations appear in a certain ‘optimal’

range of the noise level 〈n〉 between two critical points. Weak noise can not stimulate
network oscillations. Too strong noise over-activates neural networks and only damped
oscillations can occur. The critical boundary of region with the sustained oscillations is
determined by the condition that the relaxation rate γr is zero,

γr = Re(γ−) = 0, (8)

where the complex frequency γ− is given by Eq. (7). For the parameters given above and
τ = 10 ms, frequencies of the oscillations lie in the range of brain waves (1– 100 Hz).

LINEAR RESPONSE FUNCTION AND BAND-PASS FILTER
BEHAVIOR

Now we study critical phenomena that precede the non-equilibrium phase transition
from asynchronious dynamics to sustained oscillations. For this purpose we calculate
the linear response of the neural network to a time-dependent stimulus fe(t) and fi(t) in
Eq. (4) for region I and II. Here we are not studying a response in region III that needs
a special consideration. A response of the neural population a = e, i to a weak stimulus
fa(t) is determined by the linear response function χab(t − t ′),

Δρa(t)≡ρa(t)−ρa(∞)=∑
b=e,i

∫ t

−∞
χab(t−t ′) fb(t ′)dt ′. (9)

Solving Eq. (4) in the linear-response regime, we find that in the regions I and II the
neural network behaves as a damped oscillator driven by a force Fe(t),

d2Δρe(t)
dt2

+2ζω0
dΔρe(t)

dt
+ω2

0Δρe(t) = Fe(t), (10)

(see, for example, in [18]). Here we introduced the damping ratio ζ = γr/ω0 and a

frequency ω0 = (γ2r +γ2i )1/2. In region I, the network is critically damped because ζ = 1
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and it is underdamped in region II, where ζ < 1. In the case fe(t) 	= 0 and fi(t) = 0,
the force Fe(t) equals Fe(t) = (1−ρe(∞))(B2 fe(t)+d fe(t)/dt). The parameter B2 was
defined above. Solving Eq. (10) leads to a response function,

χee(t − t ′) = Xee−γr(t−t ′) sin
[
γi(t − t ′)+Φe

]
. (11)

where Xe=(1−ρe(∞))[1+(B2−γr)2/γ2i ]1/2 andΦe= tan−1[γi/(B2−γr)] (one finds a sim-
ilar result for Xi and Φi of inhibitory neurons). If γr > 0, then Eq. (11) shows loss of
memory in the neural network with increasing time interval t−t ′. If γr tends to zero,
the memory becomes long-range. The Fourier transform χ̃ee(ω) of the linear response
function is

χ̃ee(ω) =
(1−ρe)(iω+B2)

ω2
0 −ω2+2iζω0ω

. (12)

Equation (12) shows that at ζ < 1, the neural network acts as a band-pass filter. The
spectral intensity as a function of ω has a maximum at a resonance frequency ωr ≈
ω0

√
1−2ζ 2 at ζ < 1/

√
2. The maximum value ‖χ̃ee(ωr)‖2 depends on the noise level

〈n〉. When approaching the critical point, γr → 0, the value ‖χ̃ee(ωr)‖2 diverges as
χ̃ee(ωr) ∝ 1/γ2r → ∞, while the angular frequency of damped oscillations γi tends to the
frequency of stable network oscillations. This behavior signals that, in this regime, in the
presence of noise, a neuronal network can amplify periodic signals. This amplification
may be a mechanism of stochastic resonance observed in brain [19].
The band pass filter behavior described by Eq. (12) seems to be supported by mea-

surements of response of rat CA1 neurons to afferent stimulation in vitro [12]. These
measurements revealed that the majority of rat CA1 neurons act collectively like a band-
pass filter and fire synchronously in response to a limited range of presynaptic firing
rates (20− 40 Hz) that are in the range of gamma oscillations in the rat hippocampus
[20]. One can also note that, a long time ago, a number of characteristics of a band-pass
filter behavior and a resonance response on sin wave trains already have been observed
in EEG recordings of alpha activity [21]. Based on Eq. (12), we suggest that band-pass
filter behavior observed in Sasaki et al. [12] and Tweel [21] is a manifestation of the
critical phenomena near to the transition to neural network oscillations.

STOCHASTIC FLUCTUATIONS OF NEURONAL ACTIVITY

EEG measurements demonstrate that brain activity always contains a stochastic com-
ponent. In this section we will show that stochastic fluctuations are enhanced when a
neural network is close to the critical point of the non-equilibrium phase transition. For
characterizing stochastic fluctuations, we introduce the autocorrelation function

Cab(t) =
1

T

∫ T

0
δρa(t1)δρb(t1+ t)dt1, (13)

where δρa(t) = ρa(t)− ρa describes fluctuations of activity ρa(t) of population a,
a = e, i, around the mean value ρa (see, for example, Ref. [22]). Cab(t) is a measure
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of correlations between values of δρa(t1) and δρb(t1 + t) at two different instants
separated by a lag t and averaged over an arbitrary large time window T . The Wiener-
Khintchine theorem states that the power density spectrum of the fluctuations is the
Fourier transform of the autocorrelation function.
For calculating the autocorrelation function, one uses the standard method [22, 23].

In the deterministic equation (4), we assume that fa(t) is a stochastic force that satisfies
conditions 〈 fa(t)〉 = 0 and 〈 fa(t) fb(t ′)〉 = f 20 δ (t − t ′)δa,b. If fluctuations are small, the
autocorrelation function may be found in the linear response theory [22, 23]. Assuming,
for simplicity, fi(t) = 0, we obtain Eq. (9) that leads to

Cee(t) = 2π f 20

∫ ∞

−∞
eiωt‖χ̃ee(ω)‖2dω, (14)

where the linear response function χ̃ee(ω) is given by Eq. (12). In the region of damped
oscillations, the autocorrelation function Cee(t) has a form

Cee(t) = Aee−γr|t| cos
(
γi|t|+Φe

)
. (15)

The parameter Ae and the phase Ψe behave as Ae ∝ 1/γr and Φe ∝ γr/γi at small γr.
For inhibitory neurons we obtain a similar behavior. Thus, stochastic fluctuations of
activities of excitatory and inhibitory neural populations are enhanced when approaching
the critical point γr = 0, Eq. (8), of the emergence of network oscillations (see Fig. 1).
However, the linear-response approximation is not valid when fluctuations become
sufficiently large. This occurs near to the non-equilibrium phase transition and non-
perturbative methods are required for calculating Cab(t).

CONCLUSION

In the present paper, using a cortical model with stochastic neurons, we have showed
that, in neuronal networks, spontaneous appearance of sustained network oscillations
occurs as a non-equilibrium phase transition. The critical point is determined by the level
of noise, structure of the neural network, the balance between excitatory and inhibitory
neurons, and other parameters. We have found critical and resonance phenomena that
precede the transition. The important property of this transition is that, at the critical
point, the relaxation time of the neuronal activity to a steady state becomes infinite in
the infinite size limit. An increase of the response of neural networks to periodic afferent
stimulations and a strong enhancement of stochastic fluctuations of activities of neural
populations are also the critical phenomena that precede the transition. Note, that these
phenomena are general properties of second-order phase transitions observed in physi-
cal, chemical and biological systems (see, for example, Stanley [24], Haken [25], Kelso
[8]). These critical phenomena have been observed near the non-equilibrium phase tran-
sition in human hand movements [4, 5, 6, 7, 8]. The noise-induced nonequilibrium phase
transition found in [26] is one more example of a phase transition with similar critical
phenomena. Furthermore, we have demonstrated that near to the critical point, neuronal
networks behave as damped harmonic oscillators or band-pass filters in agreement with
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band-pass filter behavior observed in vitro in networks of CA1 neurons in mammalian
brain [12]. We suggest that band-pass filter behavior is a manifestation of critical phe-
nomena near to the transition to network oscillations.
We have also demonstrated that, in the cortical model, stochastic neural activity

generated by a stochastic force is similar to spontaneous alpha activity observed in EEG
recordings of both a normal man and human epileptic seizures of petit mal activity [27].
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Critical behavior near a phase transition
between retrieval and non-retrieval regimes in a

LIF network with spatiotemporal patterns
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Abstract. We study the associative memory dynamics of a network of spiking integrate and �re
neurons with Poisson noise. We introduce an order-parameter, and we study the critical regime
at the transition between the region of persistent replay of stored patterns and the region of no-
reply. At critical spiking threshold the order parameter �uctuations are maximized, as expected for
a phase transition. Moreover we also found that, at the critical point, the avalanche size and duration
distributions follow power laws. In conclusion our simple model suggests that avalanche power
laws in cortical spontaneous activity may be the effect of a network at the critical point between
successful associative memory regime and no-retrieval regime.
Keywords: associative memory; phase transitions; criticality.
PACS: 87.18.Sn, 87.19.lv, 87.19.lj

INTRODUCTION

It has been conjectured that the cortex operates near a critical point [1, 2, 3], as re�ected
also by the power laws of avalanches size distribution, and maximization of �uctua-
tions. Notably, also large scale fMRI analysis [4] demonstrates that the resting brain
spends most of the time near the critical point of a second order transition, and exhibits
avalanches of activity ruled by the same dynamical and statistical properties described
for neuronal events at smaller scales.
Here we study the different regimes of a network of integrate and �re units, whose

learningmechanism is based on the Spike-Time-Dependent Plasticity, subject to external
noise. The temporal patterns we consider are periodic spatiotemporal patterns of spikes.
The storage capacity of this model, in absence of noise, has been studied in [5, 6]. Here
we study the spontaneous dynamics, in absence of any stimulation, when Poissonian
noise is added to the post-synaptic potential of the units. An important result of this paper
is the study of the critical point and of the different regimes observed by changing the
excitability parameters of the network. To characterize the transition between the regime
of permanent replay and the regime of no-replay, we evaluate the order parameter and
its �uctuations as a function of the spiking threshold of the coupled neurons. Finally,
avalanches size and duration distributions are studied at this critical point.

Physics, Computation, and the Mind - Advances and Challenges at Interfaces
AIP Conf. Proc. 1510, 36-43 (2013); doi: 10.1063/1.4776499
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THE MODEL

The spiking model has been introduced in [5, 7]. Here we brie�y review the model
and add the noise term. We have N coupled units. The single unit model is a Leaky
Integrate-and-Fire (LIF) in the Spike Response Model (SRM) formulation [9, 8]. In this
formulation, the post-synaptic membrane potential of neuron i is given by:

hi(t) = ∑
j
Ji j ∑

t̂ j>t̂i
ε(t− t̂ j)+ηi(t), (1)

where ηi(t) is a Poissonian noise, Ji j are the synaptic connections, ε(t) describes the
response kernel to incoming spikes, and the sum over t̂ j runs over all pre-synaptic �ring
times following the last spike of neuron i. Namely, each pre-synaptic spike j, with arrival
time t̂ j, is supposed to add to the membrane potential a post-synaptic potential of the
form Ji jε(t− t̂ j), where

ε(t− t̂ j) = K
[
exp

(
−
t− t̂ j

τm

)
− exp

(
−
t− t̂ j

τs

)]
Θ(t− t̂ j) (2)

where τm is the membrane time constant (here 10 ms), τs is the synapse time constant
(here 5 ms), Θ(t) is the Heaviside step function, and K is a multiplicative constant chosen
so that the maximum value of ε(t) is one.
The Poissonian noise ηi(t) is modelled as

ηi(t) = ∑
t̂noise>t̂i

Jnoiseε(t− t̂noise). (3)

The times t̂noise and the strengths Jnoise are extracted randomly and independently for
each neuron i, The intervals between times t̂noise on the single neuron are extracted from
a Poissonian distributionP(δ t)∝ e−δ t/τnoise , while the strength Jnoise is extracted for each
time t̂noise from a Gaussian distributionwith mean J̄noise and standard deviation σ(Jnoise).
When the membrane potential hi(t) exceeds the spiking threshold θ i

th, a spike is
scheduled, and the membrane potential is reset to the resting value zero. While in
previous work [5] we used a unique value of spiking threshold θ i

th for all units, here
we use two values of θ i

th, a low threshold θth1 for N1 < N to model units more sensible
to noise, and a higher threshold θth2 for the others N2 = N−N1 units.
Numerical simulations of the dynamics are performed for a network with P stored

patterns, where connections Ji j are determined via the learning rule inspired to the STDP,
previously introduced in [10, 11, 12, 7, 13]. The synaptic strength of the connection Ji j,
due to a periodic spike train of period T μ , when the learning time is longer than the
period T μ of the learned pattern, is formulated as follows:

δJμ
i j =

∞

∑
n=−∞

A(tμj − tμi +nT μ) (4)

where tμj are the spike times of the neuron j in the pattern μ , and the learning win-
dow A(τ), used to model STDP, is the one introduced and motivated by [14], A(τ) =

37



ape−τ/Tp − aDe−ητ/Tp if τ > 0, A(τ) = apeητ/TD − aDeτ/TD if τ < 0, with the same
parameters used in [14] to �t the experimental data of [15], ap = γ [1/Tp+η/TD]−1,
aD = γ [η/Tp+ 1/TD]−1, with Tp = 10.2 ms, TD = 28.6 ms, η = 4, γ = 42. Notably,
this function A(τ) satis�es the balance condition

∫ ∞
−∞A(τ)dτ = 0. When A(τ) is used

in Eq. (4) to learn phase-coded patterns with uniformly distributed phases, then the bal-
ance condition assures that the averaged connections (1/N)∑ j Ji j are of order 1/

√
N,

and therefore it assures a balance between excitation and inhibition.
The spike patterns used in this work are periodic spatio-temporal sequences, made

up of one spike per cycle and each of which has a phase φ μ
j randomly chosen from a

uniform distribution in [0,2π). The set of timing of spikes of unit j can be de�ned as

tμj +nT μ = (
φ μ
j

2π
+n)T μ .

Thus, each pattern μ is characterized by the period T μ (or frequency νμ = 1/T μ ) and
the speci�c phases of spike φ μ

j of the neurons j = 1, ..,N. When multiple phase coded
patterns are stored, the learned connections are simply the sum of the contributions from
individual patterns, namely

Ji j =
P

∑
μ=1

δJμ
i j . (5)

THE ORDER PARAMETER

To measure quantitatively the success of the retrieval, in analogy with the Hop�eld
model, we introduce a dynamical order parameter, which estimates the overlap between
the network collective activity during the spontaneous dynamics and the stored spa-
tiotemporal pattern. This quantity is maximal (equal to one) when collective activity is
periodic and the ordering of spiking times coincide with that of the stored pattern, and
is order � 1/

√
N when the spike timings are uncorrelated with the stored ones.

The order parameter is de�ned by

mμ =max
Tw

1
〈Ns〉

〈|M(t,Tw)|〉 , (6)

with
M(t,Tw) = ∑

j=1,...,N
t<t∗j<t+T

w

e−i2πt∗j /T
w
ei2πtμj /T

μ
(7)

where t∗j is the spike timing of neuron j during the spontaneous dynamics, Tw is a
“probe” period of the collective spontaneous periodic dynamics, the average 〈· · · 〉 is
done on the starting time t of the window, and 〈Ns〉 is the average number of spikes on a
window of time Tw.
We then de�ne the �uctuations of the order parameter by

σ(mμ)2 =max
T μ

1
〈Ns〉2

[〈
|M(t,Tw)|2

〉
−〈|M(t,Tw)|〉2

]
. (8)
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FIGURE 1. Regime of correct replay. Spontaneous dynamics without any stimulation in a noisy en-
vironment with θth2 = 80, θth1 = 26, N = 3000, νμ = 3Hz. Spikes are shown with units sorted on the
vertical axes according to order of units in the �rst (a) or second (b) stored pattern. Units with threshold
θth1 = 26 are shown in green, the other in black. Permanent replay of �rst pattern is observed, initiated by
the noisy units (low threshold, more sensible to noise).

FIGURE 2. Critical regime. Spontaneous dynamics without any stimulation in a noisy environment
with θth2 = 90, θth1 = 26, N = 3000, νμ = 3Hz. Spikes are shown with units sorted on the vertical axes
according to order of units in the �rst (a) or second (b) stored pattern. Short transient replays of the two
patterns are initiated, from time to time.

Note that, when the dynamics is such that the pattern is not replayed continuously,
but there are short and incoherent segments of different patterns (as in Fig. 2), it is not
possible to evaluate consistently the time scale at which the pattern is replayed. For this
reason, we de�ne the order parameter looking at the time window Tw which maximizes
it. Of course, when the pattern is periodic, this coincides with the period of the pattern,
but our de�nition works also when short replays are hidden in a non-periodic spike train,
such as here and in many experimental situations.
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The phase transition and the critical point

An important result of this paper is the study of the different regimes observed by
changing the spiking thresholds of the units.
We explore the parameter space, �nding that there’s a transition between persistent

replay regime and no-replay regime and at the transition point there’s a critical behavior,
in which short transient replays are initiated by noise and then fade away.
We perform numerical simulations of our network embedded in the noisy environment

described previously, in absence of any external stimulation.
Figures 2 and 1 show the spontaneous dynamics of a network of N = 3000 units,

P= 2 stored patterns with νμ = 3 Hz, and randomly chosen phases φ μ
i , with noise given

by Eq. (3) with τnoise = 1 ms, J̄noise = 0, σ(Jnoise) = 5, N1 = 200 units with θth1 = 26
and the other N−N1 = 2800 units with θth2 = 80,90, respectively in Figs. 2 and 1.
As shown in many raster plot of in-vitro spontaneous dynamics with neuronal

avalanches, there is often a small subset of units which has a higher spiking rate then
the other units. These units with spontaneous higher spiking rate are modelled here as a
subset of units with lower spiking threshold, therefore more sensible to the Poissonian
noise which acts on the membrane potentials of all the units of the network. If some
of these low-threshold units belongs to one of the stored pattern and have consecutive
phases in this pattern, then it may happen that these units are able to initiate a collective
replay of the pattern. To check this hypothesis, therefore, we consider that for each
stored pattern there is a small subset of N1/P units, with consecutive phases in the
pattern, that have low spiking threshold θth1. While the others N−N1 units will have
threshold θth2.
To put in evidence the replay of different patterns, we show the raster plot of the

network dynamics with different sorting on the vertical axes. In Fig. 2 the raster plot of
the network dynamics is shown with a different sorting of units on the vertical axes. In
Fig. 2a, the units are sorted according to increasing values of stored phases in pattern
μ = 1, while in Fig. 2b units are sorted according to μ = 2. It can be seed that, from
time to time, there is a short transient replay of one of the two the patterns. When pattern
μ = 1 is recalled, a short sorted sequence of spikes appears in Fig. 2a, while when pattern
μ = 2 is retrieved, a short sorted sequence of spikes appears in Fig. 2b.
At a lower value of the threshold θth2, namely θth2 = 80, the �rst pattern that is re-

played (randomly chosen by the noise) lasts for very long times, seemingly permanently,
as shown in Fig. 1a and 1b, where only pattern μ = 1 is replayed.
In Fig. 3a we show the order parameter (circles) and its �uctuations (stars) for three

values of θth2, namely θth2 = 80, 90, 100, with θth1 = 26 and N = 3000. The behavior
for the other values of θth1 (not shown), namely θth1 = 22 ,24, 28, and 30, is similar, but
the value θth1 = 26 gives the highest values of the order parameter.
Then we �x Tw to the value that maximize the order parameter, and we study the order

parameter mμ and its �uctuations σ(mμ) as a function of the spiking threshold θth2,
with θth1 = 26 �xed, as shown in Fig. 3b. At low spiking threshold (θth2/N = 0.027)
the order parameter is high and �uctuations are low, indicating that, as shown in Fig.
1a, the noise is able to initiate a successful long-lasting replay of the stored pattern. At
high threshold (θth2/N = 0.033) both order parameter and its �uctuations are low. At
the dynamic critical point (θth2/N = 0.03) between the two regimes, the �uctuations of
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a) b) c)
FIGURE 3. a) Order parameter (circles) and its �uctuations (stars) as a function of the chosen window
Tw, with θth1 = 26 and for different θth2, for N = 3000. b) and c) Order parameter and its �uctuations as
a function of θth2/N, for N = 3000 and N = 10000.

the order parameter are maximized, as expected in a phase transition.
We further characterize the critical behavior studying the behavior of order parameter

and its �uctuations in a larger network with N = 10000. We performed numerical
simulations of a network with N = 10000, and Ji j given by Eq. (4) and (5), with P = 2
stored patterns at νμ = 3 Hz, noise given by Eq. (3) with taunoise = 1 ms, J̄noise = 0,
σ(Jnoise) = 5. Analogously to the case with N = 3000, where N1/N was 0.0667, here we
choose N1 = 667 units with θth1 and the other N−N1 units with θth2. The behavior as a
function of θth2 has been studied, with θth1/N and θth2/N in the same range as in the case
N = 3000. Indeed previous investigations (see Fig. 6d of [5]) has shown that the relevant
parameter is the threshold scaled by the network size. The numerical simulations of
the N = 10000 network con�rm that at the transition between high order parameter
regime and low order parameter regime, there’s a critical point in which �uctuations of
order parameter are maximized. The �uctuations are larger when the size of the network
increases.

NEURAL AVALANCHES AT THE CRITICAL POINT

In order to characterize the noise-induced collective dynamics near the critical point,
we study the inter-spikes-intervals statistics and the sizes and durations of avalanches of
spikes.
As usual, an avalanche is de�ned by the activity that occurs over some contiguous

set of bins that all have non-zero activity (i.e., at least one spike in each bin), but are
preceded and succeeded by at least one bin of zero activity.
The distribution of inter-spike intervals among consecutive spikes of the network (ISI)

is shown in Fig. 4 for spiking threshold θth2 = 80,90,105 and N = 3000.
For the three threshold values θth2 = 80,90,105 the average ISI is respectively

0.03,0.1 and 0.15ms. A unique bin width, equal to 0.1ms i.e. the order of magnitude
of the network ISI, is used to bin the spike trains and evaluates the avalanches. For each
avalanche, we measure its duration T in ms, its size s de�ned as the total number of

41



a) b) c)
FIGURE 4. Network inter spike intervals at θth2 = 80,90,105 respectively in a,b,c. N=3000, all param-
eters are the same used in Figs. 1,2.

a) b) c)
FIGURE 5. Distribution of avalanches duration at θth2 = 80,90,105 respectively in a,b,c. N=3000, all
parameters are the same used in Figs. 1,2. For comparison the line f (T ) = T−2.3 is shown. The distribution
approaches a power law at the critical point θth2 = 90.

spikes within the avalanche, and its shape de�ned as the temporal pro�le of the spikes
of the avalanche.
Figure 5 shows the duration distribution for the three regimes, showing that at the

critical point θth2 = 90 the duration distribution approaches a power law, with exponent
close to α = 2.3. Figure 6 shows the sizes distribution at the three different spiking
thresholds. At the critical point (6.b) the size distribution is a power law, with critical
exponent β = 2. Finally the Fig. 7 shows the sizes s(T ) of the avalanche of duration T ,
as a function of duration T. Again at the critical point the function approach a power law,
with exponent k = 1.3, in agreement with results of [2].
Therefore the same critical value of the threshold which gives the maximization of

the �uctuation of the order parameter gives also a power law avalanches distribution.
This is in agreement with the picture discussed previously showing that at critical
threshold there are transient reactivations of different stored patterns which last for
different durations, and the reactivation may be as large as the full network or involve
only a short number of units. These results suggest that the critical avalanches observed
experimentally may be the manifestation of a system at the dynamical critical point of a
phase transition between a permanent retrieval regime with stable dynamical attractors,
and a non-retrieval regime.
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a) b) c)
FIGURE 6. Distribution of avalanches sizes at θth2 = 80,90,105 respectively in a,b,c. N=3000, all
parameters are the same used in Figs. 1,2. For comparison the line f (s) = s−2 is shown. The distribution
approaches a power law at the critical point θth2 = 90.

a) b) c)
FIGURE 7. Avalanche size as a function of duration,at θth2 = 80,90,105 respectively in a,b,c. N=3000,
all parameters are the same used in Figs. 1,2. For comparison the line < s> (T ) = T 1.3 is shown.
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Observing scale-invariance in non-critical
dynamical systems

C. Gros and D. Marković

Institute for Theoretical Physics, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany.

Abstract. Recent observation for scale invariant neural avalanches in the brain have been discussed
in details in the scienti�c literature. We point out, that these results do not necessarily imply that the
properties of the underlying neural dynamics are also scale invariant. The reason for this discrepancy
lies in the fact that the sampling statistics of observations and experiments is generically biased by
the size of the basins of attraction of the processes to be studied. One has hence to precisely de�ne
what one means with statements like ‘the brain is critical’. We recapitulate the notion of criticality,
as originally introduced in statistical physics for second order phase transitions, turning then to the
discussion of critical dynamical systems. We elucidate in detail the difference between a ’critical
system’, viz a system on the verge of a phase transition, and a ’critical state’, viz state with scale-
invariant correlations, stressing the fact that the notion of universality is linked to critical states.
We then discuss rigorous results for two classes of critical dynamical systems, the Kauffman net
and a vertex routing model, which both have non-critical states. However, an external observer
that samples randomly the phase space of these two critical models, would �nd scale invariance.
We denote this phenomenon as ’observational criticality’ and discuss its relevance for the response
properties of critical dynamical systems.
Keywords: criticality; critical states; scale invariance; observational criticality; dynamical systems.
PACS: 64.60.av, 64.60.aq, 64.60.De, 05.45.-a, 05.65.+b, 05.70.Jk

INTRODUCTION

The notion of criticality stems from statistical mechanics and is fundamentally related
to the deeply routed concept of universality [1, 2]. As critical equilibrium systems
show scale invariance it is natural to assume that the same would hold for critical non-
equilibrium systems [3, 4]. The situation is however substantially more complex for
classical dynamical systems far from equilibrium and the subject of our deliberations.
The discussion will revolve around three central concepts.

CRITICAL SYSTEM A system is denoted critical when being located right on the
transition point of a second order phase transition [5, 6].

CRITICAL STATE The state of a thermodynamic or dynamical system is denoted critical
when exhibiting scale invariance [5, 7]. Critical thermodynamic systems dispose
always of a critical state, critical dynamical systems not necessarily.

OBSERVATIONAL CRITICALITY The experimental observation of a dynamical system
generically involves a stochastic sampling of its phase space. Scale invariance may
be observed for a critical dynamical system which does not dispose of a critical
state [8, 9, 10].
This dichotomy is caused by the difference between mean and typical properties.
It turns out that for critical dynamical systems the scaling behavior of the typical
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AIP Conf. Proc. 1510, 44-53 (2013); doi: 10.1063/1.4776500
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FIGURE 1. Illustration of a second order phase transition. The low-temperature phase is characterized
by an order parameter which drops continuously to zero at the critical temperature Tc. The system becomes
increasingly susceptible to perturbations coupling to the order parameter close to the transition point, the
respective response functions diverge algebraically.

attractor may differ qualitatively from the scaling of the mean attractor, as de�ned
by randomly sampling a phase space.

We will start by recapitulating the central notions of the theory of critical thermo-
dynamic systems, stressing the fact that the scale invariance, which is observed in this
case, is deeply intertwined with the concept of universality. We will then discuss two
examples of critical dynamical systems for which the scaling behavior at criticality is, at
least in parts, exactly known.

CRITICALITY IN STATISTICAL PHYSICS

In statistical physics a phase transition is termed a second order phase transition when
the ordering process starts continuously at the critical temperature Tc, when lowering the
temperature T of the system, compare Fig. 1. Otherwise, when the low-temperature state
discontinuously appears, one speaks of a transition of �rst order. The theory of critical
phenomena deals with second order phase transitions [11].

Scaling towards criticality. For a second order phase transition there are precursors
of the impending transitions, which can be measured experimentally using appropriate
probes. For example, applying an external magnetic �eld to a ferromagnetic system will
lead to a strong response, in terms of the induced magnetization, close to the transition.
In general this response will diverge as

∼
1

|T −Tc|γ
, (1)
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where γ > 0 is the critical exponent 1. Power-laws like Eq. (1) are denoted scale invariant,
as they do not change their functional form when rescaling the argument via |T −Tc| →
c|T −Tc|, where c > 0 is an arbitrary scaling factor.

Critical state. At criticality, T = Tc, the thermodynamic state is very special, its
correlation function being scale invariant both in the spatial and the temporal domain.
For a magnetic system, with moments S(x) at x, the equal time correlation function

D(r) ≡ D(x−y) =
〈
S(x)S(y)

〉
− 〈S〉2

obeys the scaling relations

D(r) ∝
{

e−r/ξ T �= Tc
r−α T = Tc

, ξ ∝
1

|T −Tc|z
, (2)

with ξ being termed the correlation length and z the critical dynamical exponent [12, 13].

Absence of microscopic length scales. The scaling of the correlation function (2) is
very intriguing, since it implies that all microscopic scales (length, time, energy, etc.)
become irrelevant at criticality. As an example consider the Schrödinger equation

ih̄
∂Ψ(t,r)

∂ t
= −ER

(
a2

0Δ +
2a0
|r|

)
Ψ(t,r) ER =

me4

2h̄2 , a0 =
h̄2

me2

which determines the properties of most matter we know. The Schrödinger equation
contains two scales, the Rydberg energy ER = 13.6eV, which determines the energy
level spacing, and the Bohr radius a0 = 0.53Å, which determines the extension of the
atoms. Any Hamiltonian known is characterized by corresponding scales, but these
become irrelevant at criticality and do not determine the magnitude of the critical
exponents.

Universality. The symmetry of the high-temperature phase is broken at a second
order phase transition. For example, in a magnetic systems with classical moments,
these magnetic moments point in any direction for T > Tc, the symmetry of the high
temperature phase is O(3), the symmetry group of the sphere. In the low-temperature
phase the magnetic moments point however predominantly into a speci�c direction,
breaking spontaneously the O(3) symmetry of the order parameter.

A central result of the modern theory of phase transitions is now that the critical
exponents are determined solely by two factors: the dimensionality of the system and
the symmetry of the order parameter. This relation is termed ‘universality’ as it al-
lows to classify second order phase transitions into a relatively small number of dis-
tinct classes [5, 1, 2]. Results obtained using a given microscopic model are valid for
all models within the same universality class. Universality is the core to our understand-
ing of second-order phase transition, the scale invariance of the critical state being a
manifestation of it.

1 Critical exponents may differ for T < Tc and T > Tc
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FIGURE 2. The evolution of the order parameter of the NK-network. Shown is the overlap, as given by
Eq. (4), in the long-time limit, of two initially close trajectories. In the frozen state the overlap becomes
maximal, since the two trajectories �ow into the same attractor. In the chaotic state two initially close
states diverge, the Lyapunov exponent is positive.

BOOLEAN NETWORKS

In equilibrium thermodynamics one studies systems in the thermodynamic limit where
the number of components N becomes in�nitely large, N → ∞. Phase transitions hence
take place, in statistical physics, in systems made-up of many similar units. We consider
here an equivalent setting for non-equilibrium phase transitions. A dynamical system
can be described as a set of N differential equations,

d
dt
xi(t) = fi(x1, ..,xN;η), i= 1, ..,N , (3)

where fi determines the time evolution of the dynamical variables xi(t) which are related
to each of the system’s elements. Here η denotes a generic control parameter. Random
Boolean networks are de�ned by three speci�cations [14].

BOOLEAN VARIABLES The variables xi ∈ {0,1} are Boolean and the time t =
0,1,2, . . . discrete.

RANDOM COUPLING FUNCTIONS The coupling functions are Boolean, fi ∈ {0,1},
and selected randomly.

CONNECTIVITY The coupling functions are determined by only a subset of K ran-
domly selected controlling elements and not by all N Boolean variables. Hence the
term ‘Boolean network’. The control parameter K is denoted connectivity.

Random Boolean networks are also termed NK- or Kauffman nets [15]. They show a
phase transition for connectivity K = 2, being regular for Z < 2 and chaotic for Z > 2
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FIGURE 3. There are many cyclic attractors in the phase space of boolean networks and routing models.
Each attractor comes with its distinct basin of attraction, which is made up of the cycle itself together with
all points of phase space �owing into the attractor.

[16].

K < 2 K = 2 K > 2
frozen critical chaotic

The order parameter is given by the overlap

lim
t→∞

(
1−||y−x||

)
(4)

of two initially close trajectories x(t) and y(t), where ||..|| denotes the Manhattan
distance, that is, the sum of the absolute differences of coordinates of x and y. In the
frozen phase the overlap is maximal, since close-by trajectories will end up in the
same attractor, see Fig. 2. The dynamics becomes chaotic however for Z > 2, and two
trajectories diverge, with their mutual overlap decreasing.

Attractors and cycles. The time evolution of any dynamical network with �nite
phase space, which is Ω = 2N for the NK net, is determined by the number and the
size of its cyclic attractors. The Kauffman net is critical for Z = 2 and one may ask the
question to which extend this criticality is re�ected in the statistics of its attractors.

Any attractor comes with a respective basin of attraction, as illustrated in Fig. 3,
de�ned as the set of all points in phase space �owing into the attractor. In the ordered
phase a small number of attractors with large basins of attraction dominates phase space
and the dynamics is hence very stable, nearby trajectories converge. In the chaotic phase,
for Z > 2, the number of attractors is however very large and the size of their respective
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FIGURE 4. Illustration of information spreading on networks. When information spreads diffusively
(left), it may be passed on to any number of subsequent vertices. When information is conserved (center),
the information can be considered as a package which can be passed on only to a single downstream site.
Alternatively one can consider information routing (right), where an incoming package is routed to an
outgoing link.

basins of attraction correspondingly smaller. Nearby trajectories tend to diverge, being
attracted by different cycles.

Finite-size scaling. To calculate the properties of a dynamical or thermodynamic
system directly in the thermodynamic limit is most of the time dif�cult or impossible.
Alternatively one can evaluate the quantity of interest for �nite systems size N and
then extrapolate to large system size, a procedure denoted �nite-size scaling. For scale
invariant states, like the critical thermodynamic state, �nite size scaling involves power-
laws. The reason is that there are no length scales at criticality in statistical physics
and power-laws are the only scale invariant relations. Conversely we expect �nite-size
scaling to be algebraic whenever the underlying state is critical, viz scale invariant.

Initial numerical calculation for the Z = 2 Kauffman net did indeed �nd that the
number of attractors, scales polynomial, like

√
N [15]. The same scaling relation was

also found for the mean cycle length. However it has recently been show rigorously,
that the number of attractors actually increases faster than any power of N, viz super-
polynomial [16, 17]. The intrinsic state of the critical Z = 2 Kauffman net is hence not
scale invariant.

Observational scale invariance. The phase space Ω = 2N of the NK network in-
creases exponentially with system size N. Numerical studies have hence to resort to
appropriate statistical sampling of phase space. Actually, this is also what an experimen-
tal observer would do when examining a dynamical system at a random starting time. It
may now be the case that a relatively small number of attractors dominate phase space
and the results of a statistical sampling procedure, see Fig. 3.

In order to illustrate this scenario we discuss now a �ctional example. Let’s assume
that there are big attractors of the order of

√
N, each having on the average a basin of

attraction of the size
∼

Ω
√
N

=
2N
√
N

.
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FIGURE 5. Illustration of of a N = 4 sites vertex routing model which has (left) three cyclic attractors.
Note that more than one cycle can pass through any given vertex, as the phase space (right) is made up by
the collection of the N(N− 1) = 12 directed links.

There could be in addition a very large number of point attractors, each having a basin
of attraction of size one. For example the number of point attractors could scale super-
polynomial like

∼ 2
√
N .

In this case their combined relative contribution

∼
2
√
N

Ω
=

2
√
N

2N
=

1
2
√
N

to phase space would still vanish in the thermodynamic limit N → ∞. This is what
happens for the Z = 2 Kauffman net. The typical attractor is very small and not seen
by a stochastic sampling procedure. A relatively small number of big attractors with
large basins of attraction dominate phase space and determine the statistics as sampled
by an external observer.

VERTEX ROUTING MODELS

Criticality and conservation laws are intrinsically related. A branching process is critical,
to give an example, when the average number of offspring is equal to the number of
parents, that is, when average activity remains constant. It is hence possible to construct
critical dynamical systems when incorporating a conservation of activity levels. An
example for this procedure are vertex routing models [18].

Information can spread diffusively or via routing processes, see Fig. 4. For the later
case one considers information packages transmitted at every vertex via randomly se-
lected routing tables. The phase space is hence given by the collection of directed links,
the phase space volume Ω = N(N− 1) scales algebraically. More than one cycle can
hence pass through a given vertex. The number of cycles passing through a given model
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FIGURE 6. Exact results for the vertex routing model. The mean cycle length (left) for both quenched
and on-the-�y dynamics and the the mean cycle number (right), which can be evaluated only for quenched
dynamics.

can be viewed as a measure for information centrality which has a non-trivial distribu-
tion in the thermodynamic limit [18].

Exact solution. The routing dynamics can be mapped to a random walk in con�g-
uration space, the collection of directed links, and solved exactly [19, 14]. The number
〈CL〉(N) of cycles of length L is given by

〈CL〉(N) =
N((N−1)2)!

L(N−1)2L−1((N−1)2 +1−L)!
, (5)

for fully connected graphs with N vertices. In addition to the exact expression (5) for
the intrinsic cycle length distribution of the routing model, one can also derive the
distribution of cycle length an observer would �nd when randomly sampling phase
space. In this case the probability to �nd a given cycle of length L is weighted by the
size of its basin of attraction. The resulting cycle length distribution is

〈CL〉(N) ∝
Lmax
∑
t=L

((N−1)2)!
(N−1)2t((N−1)2 +1− t)!

. (6)

Algorithmically the difference between the expressions (5) and (6) is equivalent to
quenched deterministic and on-the-�y stochastic dynamics. Quenched dynamics is
present when the routing tables are selected once at the start and then kept �xed, whereas
for on-the-�y dynamics one randomly generates an entrance to a routing table ‘on the
�y’, viz only when needed.

Scaling of the vertex routing model. One can evaluate the exact expressions (5)
and (6) for very large system size N, the results are shown in Fig. 6, respectively for
the average cycle length 〈L〉 and the overall number of cycles. Only relative quantities
can be evaluated with on-the-�y dynamics and hence 〈L〉 but not the total number of
cycles present. The results are given in Table 1, where we have included also results
for a modi�ed vertex routing model, a Markovian variant. On-the-�y routing results in
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TABLE 1. The scaling behavior of the vertex routing model (�rst row) and of
a modi�ed routing model with nor routing memory (second row). Corrections ∼
log(N) are present for quenched dynamics, viz for the intrinsic model behavior.
An observer would however obey power-law scaling, as given by the on-the-
�y dynamics, which can evaluate only relative quantities (and not the overall
number of cycles).

quenched on the �y
vertex
routing

number of cycles
mean cycle length

log(N)
N/ log(N)

–
N

markovian
model

number of cycles
mean cycle length

log(N)√
N/ log(N)

–√
N

power-law scaling for the average cycle length, in contrast to the exact properties of the
respective model, which contains logarithmic corrections.

DISCUSSION

When probing a dynamical or thermodynamical system, like the brain or a magnet, one
needs to perturb the system and measure the resulting response. The probing protocol
may be considered unbiased when the phase space is probed homogeneously. If the
dynamical system being probed contains attractors, or attractor relics [20, 21], these
will dominate the statistics of the response. It may now happen that properties of the
attractors, like the cycle length for the case of cyclic attractors, have a highly non-trivial
statistics in the sense, that the characterizing properties of the typical attractor differ
qualitatively from the average behavior probed by random sampling phase space. In this
the intrinsic or typical properties of the system differ from the one an observer would
�nd when sampling phase space randomly.

We have argued in this study, that this situation does indeed occur for critical dynami-
cal systems, at least for the classes of critical systems for which exact results are known,
Boolean networks and vertex routing models. We believe that further investigation into
this question is warranted for additional classes of critical dynamical systems, in order
to examine the question whether power-law scaling is independent, or conditional, on
universality in critical dynamical systems. This is an open issue. Here we found that the
intrinsic state of two critical dynamical systems is not scale invariant, a property typ-
ically associated with universality in thermodynamics, but experimentally probing the
system stochastically would result in power-law scaling.
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Abstract. The ability of a neuronal tissue to ef�ciently process and transmit information depends
on both the intrinsic dynamical properties of the neurons and the connectivity between them. One
of the few experimental systems where one can vary the connectivity of a neuronal network in
a control manner are neuronal cultures. Here we show that, by combining neuronal cultures with
different pattering techniques, we can control and dictate the connectivity of neuronal networks. The
emerging cultures are characterized by a rich spontaneous activity, but with some dynamical traits
that can be ascribed to the underlying, engineered wiring architecture. Simple patterned cultures
can be obtained by plating neurons onto prede�ned topographical molds, which guide neurons and
connections through complex paths. In contrast to homogeneous cultures, characterized by an on/off
behavior where all neurons �re in a short time window, patterned cultures show more complex
spatio–temporal dynamics, and with varying propagation paths and velocities. Patterned cultures
provide a valuable tool to understand not only the interplay activity–connectivity, but also aspects
such as the emergence and maintenance of spontaneous activity, synchronization, or the presence of
speci�c dynamic motifs.
Keywords: engineered neuronal cultures; spontaneous activity; wave propagation; models of neu-
ronal activity; percolation.
PACS: 87.85.Wc, 87.18.Sn, 87.19.lh, 87.19.lj, 87.19.ll, 87.19.lq, 87.19.lv, 87.19.lw, 64.60.ah

INTRODUCTION

Any nervous system, from the smallest neuronal network of a worm to the sophisticated
human brain, consists of an intricate mesh of connections that constitute the neuronal
circuitry. This architecture, together with the processing units that are the neurons, de�ne
the computational capabilities of the neuronal network. However, the whole picture of
the relationship between connectivity, neuronal activity and function remains elusive,
and its characterization is one of the major challenges of modern neuroscience.
Uncovering the complexity of a neuronal network, and ultimately the human brain,

is obviously a daunting task. The exploration of the brain at a macroscopic scale (top-
down approach) by non–invasive activity–measuring techniques (such as fMRI, EEG or
MEG) in combination with graph–theoretical analyses [1] is shedding light on diverse
brain functions as well as the interplay between brain areas. However, despite the clinical
relevance of macroscopic approaches and their prominent role in cognitive neuroscience
[2], the sheer size of the brain, the limited spatial resolution of the imaging techniques,
and the simultaneous occurrence of several processes, hinders the identi�cation of rel-
evant neuronal network processes. The emergence and maintenance of complex brain
rhythms [3] as well as the neuron–level mechanisms behind electrical or optical stim-
ulation [4] are some pivotal aspects that are not properly addressed by macroscopic
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approaches.
At the other extreme, microscopic (bottom–up) approaches are based on the detailed

description of connections, brain cells, and biochemical processes. One of the most
prominent examples is the Blue Brain Project [5]. However, microscopic approaches
may become unaccessible for their cumbersomeness and over–detail [6], and often fail
at providing a clear picture of the emergence of collective phenomena.
Given the above dif�culties, mesoscopic approaches are gradually catching the atten-

tion of the neuroscience community [7] as an intermediate exploratory platform. The
goal is to identify basic processes and dynamical aspects that emerge from networks
constituted by hundreds to thousands of neurons. The mesoscopic approach is proving
successful to understand the emergence of function from connectivity and activity data.
In the worm C. elegans, for instance, although its precise wiring diagram was unraveled
about 25 years ago, it was not until mesoscopic tools were introduced —with the promi-
nent support of network theory tools [8, 9]— that a clear picture of animal’s function
started to take shape [10, 11].
C. elegans is one of the most important mesoscopic model systems in neuroscience

and a valuable tool to understand the interplay connectivity–activity–function [10, 11].
However, its �xed wiring architecture can be viewed as a drawback that limits the
exploration of other network con�gurations and scenarios. By engineering a living
neuronal network one could shape the connectivity of the network and ascribe the
emerging neuronal dynamics to the underlying architecture. Such a powerful concept
forms the basis of patterned (or engineered) neuronal cultures.

Neuronal cultures

Neuronal cultures in general [12, 13] constitute one of the most attractive experi-
mental tools for the neuroscience and physics communities alike. Cultures are typically
prepared by isolating neurons from speci�c neuronal tissues (such as the retina, spinal
cord, or brain cortex) and plating them in biocompatible substrates (Fig. 1a). With ade-
quate culturing conditions, neurons quickly connect to one another to form a new, spon-
taneously active neuronal network within a week [13, 14, 15]. Spontaneous activity in
cultures is characterized by bursts of neuronal activity combined with quiescent inter–
burst intervals. Several factors determine the structure and frequency of occurrence of
these network bursts, including the level of maturation of the network circuitry, neuronal
excitability, and the balance between excitation and inhibition [14, 16].
The activity of hundreds to thousands of cells in vitro can be simultaneously moni-

tored using calcium �uorescence imaging techniques (Fig. 1b) [17, 18]. A major draw-
back of this technique, however, is that the typical frame rate during acquisition is slower
than the cell’s �ring dynamics. Furthermore, the poor signal–to–noise ratio is such to
make hard the detection of elementary �ring events. On the contrary, other techniques
such as multielectrode arrays (MEAs, Fig. 1c) [13, 19, 16] allow to discriminate single
spikes, but are restricted to smaller populations of neurons. Additionally, the source of
the spiking events can be often dif�cult to resolve since neurons are, in general, not lo-
cated at the recording sites. Calcium imaging, despite its limitations, is a fast evolving
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FIGURE 1. Neuronal cultures. (a)–(b) Neurons on a glass cover slip, showing a bright �eld (left) and
calcium �uorescence (right) images. Circular objects in (a) and bright spots in (b) are neurons. (c) Culture
on a multielectrode arrays system. Black circles are electrodes. (d) One–dimensional neuronal culture
on a chemically patterned line 170 μm wide and 12 mm long. (e) Sketch of the preparation of PDMS
patterned molds through photo–lithography. (f) Con�nement of neurons using a pierced PDMS mold.
(g)–(h) Patterned networks growing at the top (left) and bottom (right) parts of a PDMS topographical
mold. For the latter, the valleys of the mold correspond to circular cavities and channels. Scale bars are
100 μm in all images except (d), that is 500 μm.

technique that can monitor a large population of neurons, both in vitro and in vivo.
Neuronal cultures, for their accessibility and versatility, provide a platform for study-

ing both fundamental features and complexity in neuronal networks. These studies in-
clude, among others, self–organization and criticality [20, 21], development [15, 19, 16],
connectivity [15, 22], and patterns of activity [14, 16]. They also constitute a pivotal tool
to understand the in�uence of noise in neuronal circuits [23] and the emergence of syn-
chronization [24, 25]. Neuronal cultures are also perfectly suited platforms to perturb
neuronal networks in a control manner. Several strategies have been devised in the last
years to stimulate neuronal networks in vitro, either locally (at a single neuron level)
or globally (the entire network). Electric [26] and magnetic [27] stimulation have been
for several years the standard protocols to act on neuronal networks, until the relatively
recent advent of optical tools through optogenetics [28].
In cultures, the process of isolating and plating the neurons erases any information on

the wiring architecture of the native tissue. Therefore, neurons in culture typically con-
nect to their closest neighbors, giving rise to networks whose connectome and dynamics
may dramatically differ from the native ones. This aspect is one of the major criticisms
to neuronal cultures. In studies with brain slices [29], for instance, the connectivity is
preserved along the plane of the slice, making them more adequate for investigations in
which the circuitry is crucial, such as in the understanding of rhythmic activity in the
visual cortex [29].
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The relative simplicity of the connectivity diagram in a neuronal culture can be
viewed, however, as a positive aspect. First, the connectivity of the culture can be mod-
i�ed through patterning, providing a very valuable tool to study the interplay between
activity and connectivity. Second, cultures serve as a unique laboratory in the quest for
identifying general mechanisms governing the dynamics in neuronal tissues, such as
synchronization or the emergence of robust activity patterns. And third, the process of
growth, maturation, and stabilization of a neuronal culture is related to concepts as im-
portant as self–organization or criticality, of pivotal importance in Physics.
In the present work we illustrate the potential of neuronal cultures to address diverse

problems. Speci�cally, we show how engineered neuronal cultures become excellent
tools to explore the subtle interplay between activity and connectivity, a paradigm of
neuroscience whose comprehension is just starting to be uncovered.

EXPERIMENTS IN PATTERNED NEURONAL CULTURES

Engineered neuronal networks are not a novelty. They were introduced over two decades
ago and are under continuous development [30]. Often combined with micro�uidics
[31, 32], the use of engineered cultures lays in the interest for immobilizing neurons
in prede�ned locations [33], or to restrict their development along pre–patterned areas
[36]. They also bring the possibility to ’tailor’, design small neuronal circuits [34, 35].
In other words, engineered cultures bring the opportunity to dictate the connectivity of
the network and engender very different architectures. These cultures proved successful
in addressing questions as diverse as synchronized oscillations [35], front propagation
[36], information coding [37], activity initiation mechanisms [38], neuronal logic [39],
mutual synchronization [40], and the role of connectivity in activity propagation [41].
Although there are several strategies to control the connectivity of a neuronal culture

through patterning, two of the most successful methods are chemical con�nement and
physical trapping. The �rst one consists in the imprint of adhesive proteins in prede�ned
locations of a substrate, giving rise to a pattern where neurons adhere. An illustrative
and powerful design consists in a long line several mm long and just few tens of microns
wide. As shown in Fig. 1d, neurons adhere solely to the coated areas, leaving the
rest of the substrate unpopulated. This method forms the basis for the preparation of
one–dimensional neuronal cultures [36, 37, 38]. It can also be extended to form more
complex, two–dimensional structures, for instance to create small islands of neurons
connected to one another, a design known as clustered neuronal cultures [34, 35]. The
second method, physical trapping, is based in the preparation of PDMS topographical
(Fig. 1e) or pierced (Fig. 1e-f) molds using photolithographic techniques.
Photolithography is a process that �rst creates a negative relief of a photo–mask (typ-

ically printed on transparency �lm) out of a resin. The procedure involves a photosensi-
tive resist that is irradiated with UV light through the photo–mask to engrave the desired
pattern on the substrate (black areas of the pattern are protected, while the transparent
ones are exposed). This process induces cross–linking in the irradiated parts, and after
development one obtains a resin mold with the negative relief of the photo–mask. PDMS
is next poured over the relief and cured to get the �nal mould, where the black areas of
the original design correspond to the valleys of the PDMS topography. One typically
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obtains topographical structures that are 50 μm deep. By chemically treating either the
top or bottom parts the PDMS mold ((Figs. 1g and 1h, respectively) one can prepare
cultures that grow solely in the treated areas and following complex paths.
In addition to topographical molds, one can also prepare resins 200− 300 μm high

and pour the PDMS just below the resin level. In this way one can design pierced PDMS
molds with complex shapes. Neurons are then plated with the mold in contact with the
substrate, thus con�ning the neurons solely in the mold openings.
Patterned cultures offer immense possibilities for the freedom and versatility of the

designs that one can create. To illustrate this potential, we provide below experimental
results on two typical systems, namely an unidimensional culture, and a bidimensional
one formed by interconnected islands of neurons.

One–dimensional cultures

We use calcium �uorescence imaging in all our experiments. Spontaneous neuronal
activity is monitored through a high–speed CMOS camera attached to a microscope,
providing images with a size of 800× 400 pixels that cover a maximum area of 6× 3
mm2. By processing the acquired images we can study each burst in detail by identifying
single neurons in the images and associating them to regions of interest (ROIs). We
monitor neuronal activity at acquisition speeds in the range 50−200 frames per second,
allowing the detection of the onset times of neuronal activation with good precision.
Unidimensional neuronal cultures are obtained by imposing a dimension of the culture

much smaller than the characteristic diameter of the neuron’s dendritic tree (typically
around 300 μm). Unidimensional cultures were initially introduced by Feinerman et al.
[36] by chemically con�ning neurons in a narrow band of about 200 μm wide, as shown
in Fig. 1d. An alternative approach that we use consists in a pierced mold (conceptually
similar to the one shown in Fig. 1f) with cavities of similar shape and dimensions of the
ones reported by Feinerman and coworkers. In our experiments we leave both excitation
and inhibition active.
Spontaneous activity in these lines (Fig. 2a) is characterized by pulses of activity

(bursts) that initiate in speci�c areas of the line and propagate through it. An example
of a passing front in our experiments is shown in Fig. 2b. The velocity of a propagating
pulse is determined by measuring the difference in the �ring times of consecutive regions
along the line (Figs. 2b–d). For this particular realization we considered 35 ROIs, each
including approximately 50 neurons. With an acquisition speed of 100 frames/s we can
precisely identify the differences in activation times of the different regions (Fig. 2c), and
by plotting the position of each ROI along the line as a function of the onset times of
�ring we can determine with good precision the velocity of the front, which is typically
around � 70 mm/s (Fig. 2d).
Our experiments and, especially, the ones by Feinerman et al. [36, 37] also show that

activity initiates in localized zones along the line, termed burst initiation zones [38],
whose origin and properties are still source of much debate. On the other hand, the front
itself propagates at a constant velocity, sequentially activating the neurons in their path.
This is somehow expected since axons grow parallel to the line and therefore neurons
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FIGURE 2. Experiments in 1D networks. (a) Spontaneous activity recorded through �uorescence
imaging. Fluorescence peaks are bursting episodes, each of them corresponding to the generation and
propagation of an activity front. (b) Advance of a propagating front that crosses the �eld of view from
right to left at� 70mm/s. Color coding is proportional to �uorescence amplitude. The bottom panel shows
an image of the �eld of view depicting the �rst and last regions of interest (ROIs). In total, 35 ROIs are
positioned along the line. (c) Detail of the �uorescence signal as the front crosses the �rst and last ROIs.
The sharp increase in �uorescence signal marks the onset time of neuronal activation. (d) Horizontal
position of the ROIs as a function of the their onset times, with the linear �t providing the velocity of the
front. Fluorescence amplitude is shown normalized respect to the baseline F0, with ΔF = F−F0.

easily connect to their neighbors, forming a chain–like network that extends with equal
probability towards both ends of the line.
Detailed investigations on initiation and front propagation mechanisms in these lines

show that the velocity of the activity front predominantly depends on the connectivity
properties of the network [37, 41]. This includes the balance between excitatory and
inhibitory neurons [37, 38] and the topological features of the network itself [41].
For instance, networks with both excitation and inhibition provide velocities around
60 mm/s, which almost doubles when inhibition is blocked. The additional treatment
of the neuronal culture with pharmacological agents that stimulate the formation of
connections, such as BDNF or NT3, increase the velocity of the front an additional
20−30% [41].
The existence of localized burst initiation zones is ascribed to both a stronger connec-

tivity and recurrent network activity at the vicinity of the initiation zone [38]. These and
other investigations also identi�ed two characteristic velocities, a slow one associated to
the recruitment process (pulse generation), and a fast one that corresponds to the actual
propagation of the front. These results beautifully evidence that the initiation and propa-
gation of spontaneous activity depends on a subtle interplay between neuronal dynamics
and connectivity, a problem of intense study in 1D networks [38, 42, 43] that is also
being explored in 2D systems.
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Two–dimensional cultures

The investigation of the initiation and propagation of spontaneous activity in 2D
networks is more dif�cult since one has to access large areas, and with both high
temporal and spatial resolution. However, a general feature of standard 2D cultures is
that their general dynamic behavior is also characterized by bursts of activity, where
neurons in the network �re collectively, almost at unison, in a short time window
(Fig. 3a). By standard cultures we refer to those characterized by a homogeneous
distribution of neurons in a substrate, as in Fig. 1a. For these cultures, we found dif�cult
the identi�cation of burst initiation areas and the properties of the propagating front,
although preliminary results provide propagation speeds in the range 100−150 mm/s.
To start investigating the in�uence of connectivity in the dynamic behavior of 2D

cultures, we consider 2D patterned cultures that slightly differ from the homogeneous
case by allowing a higher aggregations between neurons. The culture is prepared by
depositing patches of the adhesive protein poly–l–lysine over a glass substrate. The
preparation is combined with a PDMS pierced mold containing circular cavities 3 mm
wide, so that the entire culture exactly �ts in the �eld of view of the camera. This
is advantageous since we monitor the activity of the entire network population. The
patterned culture that �nally results is formed by small assemblies of neurons connected
to one another, leading to a network architecture that combines short range connections
within assemblies with long range connections across the culture.
In the experiments we leave both excitation and inhibition active. A detail of the

patterned network, together with the raster plot of network activity for a single burst, is
shown in Fig. 3b. The raster plot is ordered by time of neuronal activation for clarity. A
�uorescence image of the entire culture is provided in Fig. 3c, where the bright patches
are small aggregates of neurons containing � 20−40 cells.
A �rst analysis of the activity pro�les reveals diverse phenomenologies that are not

observed in the standard, homogeneous neuronal culture. First, from the raster plot
it is clear that the velocity of the front is slower and �uctuates strongly during its
evolution. Second, as shown in the sequence of Fig. 3d, the front advances in a non–
uniform fashion, suggesting that local inhomogeneities in connectivity may determine
the properties of the front. And third, we observe that activity preferentially initiates in
speci�c spots at the edge of the culture, similarly to the burst initiation zones observed
in the 1D system.
For the front shown in Fig. 3d we calculated its velocity by measuring the average

advance of the front in its normal direction, and obtained 12 mm/s with a variability of
more than 50% depending on the region of the culture. Interestingly, the shape of the
front and its velocity also varied from burst to burst.
These experiments highlight the rich repertoire of dynamic patterns that neuronal

cultures can display. The experiments also open interesting questions to be addressed
in the future, such as the importance of local �uctuations in front propagation, the role
of inhibition, or at what extend the distribution and size of the cell assemblies is crucial.
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the network. Bright spots are �ring neurons. (c) Fluorescence image of the entire patterned culture, formed
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PDMS circular cavity 3 mm in diameter (black outline). (d) Evolution of a spontaneously generated front
in the patterned culture. Each contour shows the order of neuronal activation within a given time frame.
The front is rich in structure, and with a propagation velocity in the range 5− 12 mm/s.

DISCUSSION

Our studies in both 1D and 2D patterned cultures exemplify how a relatively simple ex-
perimental concept can help understanding the interplay activity–connectivity in living
neuronal networks.
One of the limitations of the experiments is the use of calcium imaging for monitoring

activity. Its relatively poor temporal resolution hinders single neuronal spiking events
and makes dif�cult the characterization of fast network events prior burst initiation.
The continuous development of new calcium indicators, particularly those genetically
encoded, brings better capabilities for precise detection of neuronal activity. However,
superior time resolution is still a major drawback in calcium imaging studies. Hence,
several investigations are addressing the problem of spontaneous activity throughMEAs
for their high temporal resolution. Those studies proved highly valuable. For the problem
of burst initiation, for instance, some works identi�ed a subset of neurons termed leaders
that were always the �rst to ignite, and that induced the �ring of the entire neuronal
population. It was also observed that activity in this subset increased exponentially in
a short time window prior to the burst [44]. The authors hypothesized that such a fast
recruitment required the leader neurons to be present all over the network, possibly
forming a subnetwork of highly connected neurons [45, 46].
The existence of leader neurons is still an open issue. Given the poor density of record-

ing sites in some experiments, it is dif�cult to precisely establish sequences of neuronal
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activation. Recent experiments in burst initiation mechanisms could not identify leader
neurons [14], and there is a strong debate on the possibility that they may be a ‘side ef-
fect’ of avalanching mechanisms or other complex dynamical processes during activity
recruitment and burst build–up. Another possibility is that, since connectivity in cultures
increases with neuronal density [15], the strong �uctuations in the spatial distribution of
neurons may give rise to highly connected regions that are foci of activity. Hence, given
the poor spatial resolution of MEAs, it may occur that leader neurons actually corre-
spond to regions with distinct topological properties that favor initiation, rather than a
special kind of cells.
To advance in the comprehension of initiation mechanisms, and to fully use the poten-

tial of patterned cultures, an important aspect that needs attention is the characterization
of the structure of the network, i.e. its layout of connections. For the 1D experiments
reported in the literature [38, 39] the authors used green �uorescence protein (GFP) la-
beling to identify connections and extract statistical information on neuronal processes.
In combination with the rich theoretical studies of pulse propagation in 1D networks
[43, 47] the authors built realistic simulations and models that were later compared and
�t to experimental data. Such a successful interplay between experiments and model-
ing is still lacking in 2D patterned cultures. However, new technological developments
oriented towards connectivity visualization and identi�cation, or the improvement in
connectivity reconstruction algorithms [48], are gradually providing more data and re-
sources for modeling. In this sense, statistical physics is providing indirect yet powerful
methods to extract information on neuronal connectivity, for instance with the combina-
tion of experiments with percolation and network theory tools [15, 49, 50, 51].
Network theory has boosted in the last years both our understanding and description

of living neuronal networks. The development and characterization of patterned cultures
may serve as a unique platform to validate network theory concepts and develop new
ideas. Indeed, the possibility that these cultures offer to dictate network architecture and
monitor the subsequent dynamics is enormously attractive for the complex networks
community, and at a well controlled, accessible mesoscopic scale.
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Abstract. Neurons in the brain are wired into a synaptic network that spans multiple scales, from
local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain
function require the dynamic control of inter-circuit interactions on time-scales faster than synap-
tic changes. In particular, strength and direction of causal influences between neural populations
(described by the so-called directed functional connectivity) must be reconfigurable even when the
underlying structural connectivity is fixed. Such directed functional influences can be quantified re-
sorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy.
The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a
changing natural environment. But how can manifold functional networks stem “on demand” from
an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal syn-
chronous activity underlies the control of brain functional connectivity. Based on simulated and real
recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network mod-
els of interacting brain areas, we have found that “function follows dynamics”, rather than structure.
Different dynamic states of a same structural network, characterized by different synchronization
properties, are indeed associated to different functional digraphs (functional multiplicity). We also
highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that
whenever different structural topologies lead to similar dynamical states, than the associated func-
tional connectivities are also very similar (structural degeneracy).

Keywords: connectivity; functional connectivity; causality; oscillations and synchrony; neural
dynamics; neuronal cultures; neuroimaging.
PACS: 87.10.-e, 87.18.Sn, 87.19.L, 87.19.le, 87.19.lf, 87.19.lj, 87.19.lh, 87.19.lm, 87.19.lo

INTRODUCTION

Flexible transmission of information is a core feature of biological systems. For instance,
the firing activity of neurons conveys information about the external world or internal
brain states. Arguably, the correct timing of the exchanged signals is crucial for a correct
relay of information through complex networks. A natural device to achieve such tempo-
ral coordination might be self-organized synchronization. Oscillatory synchronization,
in particular, has been observed in interaction networks arising in very diverse domains.
In particular, consistent experimental evidence as been cumulated for the role played
in perception and cognition by oscillatory coherence in neural circuits at multiple scales
[1, 2]. Notably, according to the “communication-through-coherence” hypothesis [3], in-
formation exchange between two neuronal populations is enhanced when the oscillations
of their coherent activity is suitably phase-locked with a suitable phase-relation. There-
fore the efficiency and the directionality of information transmission between neuronal
populations is affected by changes in their synchronization pattern, as also advocated
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by modeling studies [4, 5]. Furthermore synchronization in networks of spiking neurons
can arise in many forms, ranging from sparsely synchronized periodic oscillations [6], to
low-dimensional chaotic rhythms [7, 8] to temporally-irregular avalanche-like bursting
[9].

The circuits of the brain must enact a sweeping amount of functions. How can a flexi-
ble control of local computations or global “brain states” be achieved despite the fact that
anatomic interconnections are essentially fixed on fast timescales relevant for perception
or behavior? In systems neuroscience, a distinction is made between structural and di-
rected functional connectivities [10]. Structural connectivity describes actual synaptic
connections. On the other hand, directed functional connectivity is estimated from time-
series of simultaneous neural recordings using causal analysis [11], to quantify, beyond
correlation, directed influences between brain areas.

Here, we revisit recent theoretical and modeling work [5, 12] showing that the relation
between structural and functional connectivity in neural circuits is far from being trivial.
Indeed, if structural connectivity constrains at least partially the kinds of dynamics that a
given neural circuit can display, nevertheless it does not constrain them fully. As a result,
multiple functional connectivities, associated to different dynamical states, can stem out
of a system with a given structural connectivity, a phenomenon that we call functional
multiplicity. In parallel, a same specific functional connectivity can be generated by very
different structural circuits displaying strongly similar dynamics, a phenomenon that we
refer to as structural degeneracy.

To highlight these two phenomena, we simulate large networks of spiking neurons
representing systems at different scales, i.e. synchronously bursting cultures of dissoci-
ated neurons [12] and mesoscopic motifs involving brain areas undergoing a coherent
oscillatory activity [5]. For both these systems, directed functional connectivity is esti-
mated from synthetic activity time-series, allowing to establish a tight correspondence
between ground-truth dynamics (usually unknown in the case of causal analyses of ex-
perimental recordings) and emergent functional connectivity for a wide spectrum of
considered network topologies.

STATE-DEPENDENT TRANSFER ENTROPY

Throughout this contribution, we will characterize directed functional interactions in
terms of Transfer Entropy [13], an information-theoretic implementation of the Granger
Causality concept [14, 15]. Following the original idea of Clive Granger, causal analysis
intends to go beyond correlation analysis, by quantifying under a strict operational
definition how forecasting of the evolution of a given time-series is improved by he
consideration of a time-series of the activity of a potential cause.

Let us consider a pair of continuous time-series, describing the dynamics of two
different neural circuit elements, like e.g. LFPs or EEGS from different brain areas in a
meso- or macroscale neural circuit, or optical recordings of single neuron activity in a
micro-scale circuit.

Let denote these two time-series as ΛX(t) and ΛY (t) and let quantize them into B
discrete levels �1, . . . , �B (equally sized for simplicity). The continuous-valued time-
series are thus converted into strings of symbols Λ̃X(t) and Λ̃Y (t) from a small alphabet
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[16].
Two transition probability matrices, (PXY,Y (τ))i jk = P[Λ̃Y (t) = �i|Λ̃Y (t − τ) =

� j, Λ̃X(t−τ) = �k] and (PY,Y (τ))i j = P[Λ̃Y (t) = �i|Λ̃Y (t−τ) = � j], where the lag τ is an

arbitrary temporal scale on which causal interactions are probed, are then sampled as
normalized multi-dimensional histograms over very long symbolic sequences.

Then, following [13], the causal influence TEXY (τ) of circuit element X on circuit
element Y is defined as the Transfer Entropy:

TEXY (τ) =∑PXY,Y (τ) log2

PXY,Y (τ)
PY,Y (τ)

(1)

where the sum runs over all the three indices i, j and k of the transition matrices.
This quantity represents the Kullback-Leibler divergence [17] between the transition

matrices PXY,Y (τ) and PY,Y (τ), analogous to a distance between probability distributions.
Therefore, TEXY (τ) will vanish if and only if PXY,Y (τ) and PY,Y (τ) coincide, i.e. if the
transition probabilities between different activity values of circuit element Y do not
depend on past activity values of circuit element X . Conversely, this quantity will be
strictly positive if these two transition matrices differ, i.e. if the past activity values of
circuit element X affect the evolution of the activity in circuit element Y .

Such expression for Transfer Entropy can straightforwardly be generalized to higher
Markov order descriptions by conditioning transition probabilities over longer vectors
of past activity values, e.g. by considering, for order p = 2, (PXY,Y (τ, p = 2))i j1 j2k1k2 =

P[Λ̃Y (t) = �i|Λ̃Y (t− τ) = � j1 , Λ̃Y (t−2τ) = � j2 , Λ̃X(t− τ) = �k1 , Λ̃X(t−2τ) = �k2 , ] and

(PY,Y (τ, p = 2))i j1 j2 = P[Λ̃Y (t) = �i|Λ̃Y (t− τ) = � j1 , Λ̃Y (t−2τ) = � j2 ].

More importantly, to analyze directed functional interactions in different dynamical

states separately, a further state conditioning can be introduced. Let�ST a vector describ-
ing the history of the entire system (i.e. not only the two considered circuit elements X
andY but the whole neural circuit to which they belong) over a specified time-window T .

We define then an arbitrary set of constraintsK that�ST must satisfy as a state selection
filter. Then we will define:

TEXY,K (τ) = ∑
�ST satisfiesK

PXY,Y (τ) log2

PXY,Y (τ)
PY,Y (τ)

(2)

where the sampling is restricted only to (possibly disconnected) sections of the time-
series Λ̃X(t) and Λ̃Y (t) corresponding to time-intervals during which the collective

system state�ST satisfies the set of filtering constraintsK .
Although the definition is very general, we will consider in the following two simple

type of filters, one based on the average activity of the system within a considered time-
window and another one based on phase relations to be fulfilled between different system
components.
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FIGURE 1. Bursting neuronal cultures in vivo and in silico. A: a frame of a calcium imaging movie
of the dynamics of a real culture is compared with the raster plot of a simulated network of integrate-and
fire neurons. B: examples of real (left) and synthetic (right) time-series of average calcium fluorescence.
Highly synchronous network bursts are manifested by fluorescence peaks, in both experiment and simu-
lations. For details of simulations see [12].

FUNCTIONAL INTERACTIONS IN BURSTING CULTURES

Analysis of neuronal cultures in vitro is emerging as a versatile paradigm [18] in the
quest for uncovering neuronal connectivity [19] and its interplay with dynamics. Using
calcium imaging techniques, the activity of order 102–103 cells in in vitro can be
simultaneously monitored, even if with a time-resolution of few tenths of a ms, i.e.
slower than the cell’s firing by an order of magnitude. We have introduced in [12]
an algorithm for the reconstruction of the connectivity of cultured networks based on
calcium fluorescence time-series. Our method is based on Transfer Entropy (TE)[13],
an information-theory based generalization of Granger Causality [11]. An important
advantage of our approach is its model-free nature, not assuming specific models of
neuronal activity or network connectivity and not being constrained to linear interactions
between nodes.

To benchmark our reconstruction algorithm we have introduced an in silico model of
in vitro cultures, designed to reproduce the occurrence of temporally irregular switch-
ing between states of weak-rate asynchronous activity and states of highly synchronous
activity, commonly denoted as “network bursts” [19]. All the details, including sim-
ulation parameters, can be found in [12]. Here we briefly mention that we simulated
the spontaneous spiking dynamics of networks of excitatory integrate-and-fire neurons,
matching typical experimental conditions. Network bursts occur in our model thanks
to the introduction of limited neurotransmitter resources [20]. Realistic bursting rates
and distributions could be obtained for very diverse structural topologies, notably with
arbitrary clustering levels [12]. Synthetic calcium fluorescence time series were then
produced based on this spiking dynamics. Figure 1 shows a comparison between real

67



and simulated calcium fluorescence signals. Network bursts are evident in both real and
synthetic traces.

We extract then directed functional connectivity based on time-series xn and yn of
(high-passed) simulated calcium fluorescence, evaluating a state-dependent TE for every
pair of nodes X and Y :

TE∗
Y→X(g̃) =∑P(xn+1,xn,yn+1,yn | g̃∗ < gn+1 < g̃∗) ·

log
P(xn+1|xn,yn+1,yn | g̃∗ < gn+1 < g̃∗)

P(xn+1 |xn, g̃∗ < gn+1 < g̃∗)
(3)

Comparing Eq. (3) with the general formulation of state-dependent TE given by equation
(1), we observe that state selection filtering is performing through inspection and con-
straining of a variable gn given by fluorescence averaged over the entire network. Data-
points are sampled for the evaluation of TE between two network nodes only when the
average network fluorescence falls within a specific range with lower and upper bounds
given respectively by g̃∗ and g̃∗. Such conditioning on mean fluorescence corresponds to
a crude way of restricting the analysis to a specific dynamic regime. For instance, asyn-
chronous inter-burst periods or synchronous bursting epochs are associated to different
mean fluorescence ranges (Fig. 2A).

Another modification with respect to the basic definition, of technical rather than
conceptual importance, is instantaneous feedback, i.e. the appearance of yn+1 in Eq.
(3), accounting for possible causal interactions faster than the poor sampling resolution
of the used calcium imaging technique.

Functional multiplicity in bursting cultures

Functional networks associated to different dynamical regimes are obtained by in-
cluding into the network all the edges whose generalized TE score is above a certain
threshold specified a priori. For synthetic data the overlap between the reconstructed
functional network and the known ground-truth structural connectivity can be evaluated
for different choices of the threshold, and results of this comparison can be summarized
by receiver-operating-characteristic (ROC) curves, for different dynamical regimes. A
shown in Fig. 2B, functional topologies in inter-burst and in bursting regimes are very
different and can be quite different from structural topology.

When considering very low fluorescence level, what we see is essentially noise (Fig-
ure 2B, regime I). Correspondingly, links are entered into the reconstructed functional
network practically at random, as indicated by a diagonal ROC curve. We consider then
intermediate fluorescence levels, associated to an activity significantly above baseline,
but not yet elevated as in fully developed bursts. In this inter-bursts regime (Fig. 2B,
regime II), the retrieved functional network is strongly correlated with the underlying
structure, since detected causality reflect primarily the direct influence of pre-synaptic
neurons on post-synaptic targets. When bursts are fully developed (Fig. 2B, regime III),
the network is a critically excitable state, where the firing of a single neuron can trig-
ger an avalanche of firing extending even to neurons not structurally connected to it. In
this regime, therefore the retrieved functional network reflects communities of tightly
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FIGURE 2. Functional multiplicity in simulated cultures. A: the distribution of mean fluorescence
levels gn presents an initial gaussian rise, followed by a transition region and then by a (initially power-
law) tail. B: directed functional connectivity networks retrieved in different dynamical regimes by Transfer
Entropy. Also shown are ROC curves for network reconstruction from different dynamical regimes,
describing quality of overlap between functional networks and the underlying structural connectivity.
A vertical line denotes the position on the ROC curve corresponding to the depicted networks. The
considered regimes are: I. Noise-dominated weak rate regime. II. Inter-bursts regime with intermediate
firing rate. III. Fully developed bursts regime. See [12] for details.

synchronous firing, rather than structural topology. The ROC curve indicates thus a
poorer quality structural reconstruction, even if the localization and the extension of
synchronous communities continue to be shaped, roughly, by structure (as denoted by a
better-than-random ROC curve).

The existence of such different topologies of functional interactions stemming out of
different dynamical ranges of a same structural network provides a perfect example of
the notion of functional multiplicity, previously defined in the introduction.

Structural degeneracy in bursting cultures

To address the problem of the structural-to-functional connectivity inter-relations un-
der a different angle, we construct bursting neuronal cultures model with very different
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CC = 0.1               CC ~ 0.7 CC = 0.3               CC ~ 0.7 CC = 0.7               CC ~ 0.7 s

FIGURE 3. Structural degeneracy in simulated cultures. A: Examples of spike raster plots for three
structural networks with different clustering coefficients (respectively 0.1, 0.3 and 0.5, from left to
right), showing that their underlying spiking dynamics are similar. B: Histograms of the inter-burst
intervals (IBIs), with the vertical lines indicating the mean of each distribution. C: panels below the IBI
distributions illustrate graphically the amount of clustering in the actual structural network (black frame
and text) and in the functional network reconstructed from fluorescence range 3 (bursting regime) as given
by Fig. 2 (blue frame and text). To very different degrees of structural clustering correspond equivalent
elevated levels of functional clustering, due to the common bursting statistics. Figure adapted from [12].

structural topologies. Figure 3 illustrates the dynamic behavior of three networks, de-
signed to have different clustering coefficients but the same total number of links. The
synaptic coupling between neurons was adjusted in each network using an automated
procedure to obtain bursting activities with comparable bursting rates (see [12] for de-
tails on the procedure and on the models). The simulated spiking dynamics is shown in
the raster plots of Fig. 3A. These three networks display indeed very similar bursting
dynamics, not only in terms of the mean bursting rate, but also in terms of the entire
inter-burst interval (IBIs) distribution, shown in Fig. 3B.

Based on these bursting dynamics, we extracted the functional connectivity of the
three differently-clustered structural networks, associated to the dynamics range III
defined by Fig. 2, i.e. the fully-developed burst regime. The extracted bursting-regime
functional networks had always an elevated clustering level, close to 0.7. This contrasted
with the actual structural clusterings, varying in a broad range between 0.1 and 0.5 (see
Fig. 3C).

We stress that our procedure for the automatic generation of networks with similar
bursting dynamics was not guaranteed to converge for such a wide range of clustering
coefficients. Thus, the illustrative simulations of Fig. 3 provide genuine evidence that
the relation between network dynamics and network structural clustering is not trivially
“one-to-one”. In this sense, Fig. 3 provides a typical example of the phenomenon
denoted as structural degeneracy in the introduction, i.e. many structures can map to
a same function.

70



FIGURE 4. State-dependency of functional connectivity in simple motifs of interacting populations.
Shown here are dynamical states and resulting directed functional connectivites of a motif of N = 2
brain areas structurally connected in a symmetric way. A–C: simulated “LFPs” and spike trains of the
two populations for three different strengths of the symmetric inter-areal coupling, leading to more or
less regular phase-locked states. D–E: Transfer entropies for the two possible directions of functional
interaction, associated to the dynamic states in panels A–C. A grey band indicates threshold for statistical
significancy of a causal interaction. G: graphic depiction of the functional interactions between the two
areas, as captured by Transfer Entropy, in the states that can then be described of effective entrainment
(A), leaky effective entrainment (B) and mutual entrainment (C). A multiplier factor indicate multistability
between motifs with same topology but different direction. Figure adapted from [5].

FUNCTIONAL INTERACTIONS IN OSCILLATING MOTIFS

Moving then to a larger scale, we simulate structural motifs involving a small number
of coupled brain areas. A local area is modeled as a random network of thousands of
excitatory and inhibitory spiking neurons. In addition to diluted inhibition and excitation
within each area, long-range excitation between areas is also introduced. Details of the
model are given in [5], but parameters are selected in such a way that isolated areas
undergo a collective oscillation at a frequency of ∼ 40− 60 Hz. When connected into
a motif, with identical probability of long-range connections in all directions, these
locally-generated oscillations engage into phase-locked states. For increasing coupling
strengths, these synchronous oscillations can become chaotic leading to perturbation of
precise phase-locking. Note that despite the regularity of collective activity, as tracked
for instance by average membrane potential (as a proxy for “Local Field Potential”, or
“LFP”), individual neurons continue to fire very irregularly (see Fig. 3A–C). In such
sparsely synchronized states, individual spike trains can be very entropic, i.e. convey
potentially large amount of information, even when the ongoing oscillation is periodic.
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In a broad range of conditions (notably, when local inhibition is strong [7]), popu-
lations lock in out-of-phase configurations, in which some areas lead in phase over the
others. The symmetry of such phase-locked states is weaker than the structural motif full
symmetry. Due to this spontaneous symmetry breaking, anisotropy of functional inter-
actions can then emerge, as revealed by ordinary Transfer Entropy [13] between “LFP”
time-series (cfr. Fig. 3D–F) or mutual information between spike trains (cfr. [5]).

The existence of such phase-locked stable states provide a natural way to define the
state selection filtersK to be used in evaluating Eq. (1). TE within a specific state can
be computed by sampling only over epochs in which the inter-areal phase shift fluctuates
in close vicinity to one of the possible stable phase-lockings.

TE analyses can be summarized in graphical form by drawing the possible “func-
tional motifs” that a given structural motif can generate. In Fig. 3G arrows of increas-
ing thickness indicate statistically significant causal interactions of increasing strength.
Thus, the net information transfer over a N = 2 fully symmetric structural topology can
be unidirectional (Fig. 3A and D) or bidirectional anisotropic (Fig. 3B and E) or bal-
anced (Fig. 3C and F), depending on the coupling strength. Furthermore, multistability
between motifs with different dominant directionality exists whenever the symmetry of
the functional motif is broken, in such a way that rewiring of directed functional con-
nectivity can be achieved just through suitable transient perturbations to the ongoing
oscillations [5].

FUNCTION FROM STRUCTURE?

The architect Louis Sullivan first popularized a tag line stating that “form follows func-
tion”. The two examples just reviewed certainly disclose that “function doesn’t follow
structure (trivially)”: functional connectivity can for instance display a clustered com-
munity structure (Fig. 2) or be strongly anisotropic (Fig. 4) even when structural connec-
tivity is homogeneous or simmetric. Furthermore, very different structural connectivities
can give rise t very similar functional connectivities (Fig. 3). Thus, these examples rather
showed that “function follows dynamics", since the properties of the dynamical states
supported by a given structure determine the resulting functional connectivities.

Still and all, functional connectivity patterns of whole-brain activity are known to be
strongly determined by structure [21]. Note that, in our examples, structure was fixed
a priori, but, in nature (or in the dish) networks are shaped by spontaneous growth and
eventually, on longer time-scales, evolution. Which is then the optimization goal that
self-organized design tries to achieve? We don’t know the answer, but if, as sometimes
speculated [22], brain structural topology had developed such to lead to rich repertoires
of possible dynamics, it might well be that Louis Sullivan’s motto applies as well to the
description of living neural circuits at multiple scales, even if only through an indirect
detour involving nonlinear dynamics. As a matter of fact, for evolution or development,
the problem of engineering a circuit with a given function, could be nothing else than the
design of a structural connectivity acting as an emergent “functional collectivity” [23]
with suitable properties.
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Abstract. Measuring directed interactions in the brain in terms of information flow is a promising
approach, mathematically treatable and amenable to encompass several methods. Here we present
a formal expansion of the transfer entropy to put in evidence irreducible sets of variables which
provide information for the future state of each assigned target. Multiplets characterized by a large
contribution to the expansion are associated to informational circuits present in the system, with
an informational character (synergetic or redundant) which can be inferred from the sign of the
contribution.
Keywords: mutual Information; transfer entropy; Granger causality.
PACS: 05.45.Tp, 87.19.L-

INTRODUCTION

The inference of couplings between dynamical subsystems, from data, is a topic of gen-
eral interest. Transfer entropy [1], which is related to the concept of Granger causality
[2], has been proposed to distinguish effectively driving and responding elements and
to detect asymmetry in the interaction of subsystems. By appropriate conditioning of
transition probabilities this quantity has been shown to be superior to the standard time
delayed mutual information, which fails to distinguish information that is actually ex-
changed from shared information due to common history and input signals [3, 4]. On
the other hand, Granger formalized the notion that, if the prediction of one time series
could be improved by incorporating the knowledge of past values of a second one, then
the latter is said to have a causal influence on the former. Initially developed for econo-
metric applications, Granger causality has gained popularity also in neuroscience (see,
e.g., [5, 6, 7, 8, 9]). A discussion about the practical estimation of information theoretic
indexes for signals of limited length can be found in [10]. Transfer entropy and Granger
causality are equivalent in the case of Gaussian stochastic variables [11]: they measure
the information flow between variables [12]. Recently it has been shown that the pres-
ence of redundant variables influences the estimate of the information flow from data,
and that maximization of the total causality is connected to the detection of groups of
redundant variables [13].
In recent years, information theoretic treatment of groups of correlated degrees of

freedom have been used to reveal their functional roles as memory structures or those
capable of processing information [14]. Information theory suggests quantities that re-
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veal if a group of variables is mutually redundant or synergetic [15, 16]. Most approaches
for the identification of functional relations among nodes of a complex networks rely on
the statistics of motifs, subgraphs of k nodes that appear more abundantly than expected
in randomized networks with the same number of nodes and degree of connectivity
[17, 18].
An interesting approach to identify functional subgraphs in complex networks, relying

on an exact expansion of the mutual information with a group of variables, has been
presented in [19]. In this work we generalize these results to show a formal expansion of
the transfer entropy which puts in evidence irreducible sets of variables which provide
information for the future state of the target. Multiplets of variables characterized by an
high value, unjustifiable by chance, will be associated to informational circuits present
in the system. Additionally, in applications where linear models are sufficient to explain
the phenomenology, we propose to use the exact formula for the conditioned mutual
information among Gaussian variables so as to get a computationally efficient approach.
An approximate procedure is also developed, to find informational circuits of variables
starting from few variables of the multiplet by means of a greedy search. We illustrate
the application of the proposed expansion to a toy model and two real EEG data sets.
The paper is organized as follows. In the next section we describe the expansion and

motivate our approach. In section III we report the applications of the approach and
describe our greedy search algorithm. In section IV we draw our conclusions.

EXPANSION

We start describing the work in [19]. Given a stochastic variable X and a family of
stochastic variables {Yk}nk=1, the following expansion for the mutual information, anal-
ogous to a Taylor series, has been derived there:

S (X |{Y})−S(X) =−I (X ;{Y}) =
∑i

ΔS(X)
ΔYi +∑i> j

Δ2S(X)
ΔYiΔYj + · · ·+ ΔnS(X)

ΔYi···ΔYn ,
(1)

where the variational operators are defined as

ΔS(X)
ΔYi

= S (X |Yi)−S(X) =−I (X ;Yi) , (2)

Δ2S(X)
ΔYiΔYj

=−
ΔI (X ;Yi)

ΔYj
= I (X ;Yi)− I (X ;Yi|Yj), (3)

Δ3S(X)
ΔYiΔYjΔYk

= I (X ;Yi|Yk)− I (X ;Yi|Yj,Yk)− I (X ;Yi)+ I (X ;Yi|Yj), (4)

and so on.
Now, let us consider n+ 1 time series {xα(t)}α=0,...,n. The lagged state vectors are

denoted
Yα(t) = (xα(t−m), . . . ,xα(t−1)) ,

75



m being the window length.
Firstly we may use the expansion (1) to model the statistical dependencies among the

x variables at equal times. We take x0 as the target time series, and the first terms of the
expansion are

W 0
i =−I (x0;xi) (5)

for the first order;
Z0i j = I (x0;xi)− I

(
x0;xi|x j

)
(6)

for the second order; and so on. We note that

Z0i j =−I
(
x0;xi;x j

)
,

where I
(
x0;xi;x j

)
is the interaction information, a well known information measure

for sets of three variables [20]; it expresses the amount of information (redundancy or
synergy) bound up in a set of variables, beyond that which is present in any subset of
those variables. Unlike the mutual information, the interaction information can be either
positive or negative. Common-cause structures lead to negative interaction information
. As a typical example of positive interaction information one may consider the three
variables of the following system: the output of an XOR gate with two independent ran-
dom inputs (however some difficulties may arise in the interpretation of the interaction
information, see [21]). It follows that positive (negative) Z0i j corresponds to redundancy
(synergy) among the three variables x0, xi and x j.
In order to go beyond equal time correlations, here we propose to consider the flow

of information from multiplets of variables to a given target. Accordingly, we consider

S (x0|{Yk}nk=1)−S(x0) =−I (x0;{Yk}nk=1) , (7)

which measures to what extent all the remaining variables contribute to specifying the
future state of x0. This quantity can be expanded according to (1):

S
(
x0|{Yk}nk=1

)
−S(x0) =

∑i
ΔS(x0)

ΔYi +∑i> j
Δ2S(x0)
ΔYiΔYj + · · ·+

ΔnS(x0)
ΔYi···ΔYn .

(8)

A drawback of the expansion (7) is that it does not remove shared information due to
common history and input signals; therefore we choose to condition it on the past of x0,
i.e. Y0. To this aim we introduce the conditioning operator CY0 :

CY0S(X) = S(X |Y0),

and observe that CY0 and the variational operators (2) commute. It follows that we can
condition the expansion (8) term by term, thus obtaining

S
(
x0|{Yk}nk=1,Y0

)
−S(x0|Y0) =−I

(
x0;{Y}nk=1|Y0

)
=

∑i
ΔS(x0|Y0)

ΔYi +∑i> j
Δ2S(x0|Y0)

ΔYiΔYj + · · ·+
ΔnS(x0|Y0)
ΔYi···ΔYn .

(9)

The first order terms in the expansion are given by:

A0i =
ΔS(x0|Y0)

ΔYi
=−I (x0;Yi|Y0) , (10)
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and coincide with the bivariate transfer entropies i→ 0 (times -1). The second order
terms are

B0i j = I (x0;Yi|Y0)− I
(
x0;Yi|Yj,Y0

)
, (11)

and may be seen as a generalization of the interaction information I ; hence a positive
(negative) B0i j corresponds to a redundant (synergetic) flow of information {i, j} → 0.
The typical examples of synergy and redundancy, in the present framework of network
analysis, are the same as in the static case, plus a delay for the flow of information
towards the target. The third order terms are

C0i jk = I
(
x0;Yi|Yj,Y0

)
+ I (x0;Yi|Yk,Y0)

−I (x0;Yi|Y0)− I
(
x0;Yi|Yj,Yk,Y0

)
,

(12)

and so on.
The generic term in the expansion (9),

Ωk =
ΔkS(x0|Y0)
ΔYi · · ·ΔYk

, (13)

is symmetrical under permutations of the Yi and, remarkably, statistical independence
among any of the Yi results in vanishing contribution to that order. Therefore each
nonvanishing accounts for an irreducible set of variables providing information for the
specification of the target: the search for for informational multiplets is thus equivalent
to search for terms (13) which are significantly different from zero. Another property
of (9) is that the sign of each term is connected to the informational character of the
corresponding set of variables, see [19]).
For practical applications, a reliable estimate of conditional mutual information from

data should be used. Non parametric methods are recommendable when nonlinear ef-
fects are relevant. However, a conspicuous amount of phenomenology in brain can be
explained by linear models: therefore, for the sake of computational load, In this work
we adopt the assumption of Gaussianity and use the exact expression that holds in this
case [11], which reads as follows. Given multivariate Gaussian random variables X ,W
and Z, the conditioned mutual information is

I (X ;W |Z) =
1
2
ln

|Σ(X |Z)|
|Σ(X |W ⊕Z)|

, (14)

where | · | denotes the determinant, and the partial covariance matrix is defined

Σ(X |Z) = Σ(X)−Σ(X ,Z)Σ(Z)−1Σ(X ,Z)�, (15)

in terms of the covariance matrix Σ(X) and the cross covariance matrix Σ(X ,Z); the
definition of Σ(X |W ⊕Z) is analogous.
The statistical significance of (13) can be assessed by observing that it is the sum of

terms like (14) which, under the null hypothesis I (X ;W |Z) = 0, have a χ2 distribution.
Alternatively, statistical testing may be done using surrogate data obtained by random
temporal shuffling of the target vector x0; the latter strategy is the one we use in this
work.
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Greedy search of multiplets

Given a target variable, the time required for the exhaustive search of all the subsets
of variables, with a statistically significant information flow (13), is exponential in the
size of the system. It follows that the exact search for large multiplets is computationally
unfeasible, hence we adopt the following approximate strategy. We start from a pair of
variables with non-vanishing second order term B w.r.t. the given target. We consider
these two variables as a seed, and aggregate other variables to them so as to construct
a multiplet. The third variable of the subset is selected among the remaining ones as
those that, jointly with the previously chosen variable, maximize the modulus |C| of
the corresponding third order term. Then, one keeps adding the rest of the variables
by iterating this procedure. Calling Zk−1 the selected set of k - 1 variables, the set Zk
is obtained adding, to Zk−1, the variable, among the remaining ones, with the greatest
modulus of Ωk. These iterations stop when Ωk, corresponding to Zk, is not significantly
different from zero (the Bonferroni correction for multiple comparisons is to be applied
at each iteration); Zk−1 is then recognized as the multiplet originated by the initial pair
of variables chosen as the seed.
We apply this strategy to the following toy model

x0(t) = a η(t−1)+σξ0(t),
xα(t) = bα η(t)+σ1ξα(t), α = 1, . . . ,m
xβ (t) = σ2ξβ (t), β = m+1, . . . ,m+M

(16)

where ξ and η are i.i.d. unit variance Gaussian variables. In this model the target x0
is influenced by the process η; variables xα , α = 1, . . . ,m, are a mixture of η and noise
ξ , whilst the remaining M variables are pure noise. Estimates of Ωk are based on time
series, generated from (16) and 1000 samples long. The results are displayed in Fig 5.
Firstly we consider the case m= 20 andM = 0, with all the twenty variables driving the
target with equal couplings bα ; in Fig. 5-A we depict the term Ωk corresponding to the
k-th iteration of the greedy search. We note that Ωk has alternating sign and its modulus
decreases with k. In Fig. 5-B we consider another situation, withm= 10 andM= 10, the
ten non-zero couplings bα being non-uniform. Ωk still shows alternating sign, and Ωk
vanishes for k > 9; hence the multiplet of ten variables is correctly identified. The order
of selection is related to the strength of the coupling: variables with stronger coupling
are selected first.

APPLICATIONS

Electroencephalographic recordings

In this subsection we show the application of the proposed expansion, truncated at the
second order. To this aim we turn to real electroencephalogram (EEG) data, the window
length m being fixed by cross validation. Firstly we consider recordings obtained at rest
from 10 healthy subjects. During the experiment, which lasted for 15 min, the subjects
were instructed to relax and keep their eyes closed. To avoid drowsiness, every minute
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the subjects were asked to open their eyes for 5 s. EEGwas measured with a standard 10-
20 system consisting of 19 channels [26]. Data were analyzed using the linked mastoids
reference, and are available from [27].
For each subject we consider several epochs of 4 seconds in which the subjects kept

their eyes closed. For each epoch we compute the second order terms at equal times Z0i j
and the lagged ones B0i j; then we average the results over epochs. In order to visualize
these results, for each target electrode we plot a on a topographic scalp map the pairs
of electrodes which are redundant or synergetic with respect to it. Both quantities are
distributed with a clear pattern across the scalp. Interactions at equal times are one
order of magnitude higher than the lagged interactions, and are dominated by the effect
of spatial proximity, see Fig. 1. On the other hand, B0i j show a richer dynamics, such
as interhemispheric communications and predominance redundancy to and from the
occipital channels, see Fig. 2, reflecting the prominence of the occipital rhythms when
the subjects rest with their eyes closed.
As another example we consider intracranial EEG recordings from a patient with

drug-resistant epilepsy and which has thus been implanted with an array of 8×8 cortical
electrodes and two depth electrodes with six contacts. The data are available at [29] and
described in [28]. For each seizure data are recorded from the preictal period, the 10
seconds preceding the clinical onset of the seizure, and the ictal period, 10 seconds from
the clinical onset of the seizure. We analyze data corresponding to eight seizures and
average the corresponding results.
For each electrode we compute the lagged influences B0i j, obtaining for each electrode

the pair of other electrodes with redundant or synergetic contribution to its future. The
patient has a putative epileptic focus in a deep hippocampal region, with the seizure that
then spreads to the cortical areas. In Fig. 3 we report the values of coefficients B taking
as the target a cortical electrode located on the putative cortical focus: we report the
values of B0i j corresponding to all the couple of the electrodes, as well as their sum over
electrode j. It is clear how the redundancy increases during the seizure. On the other
hand, for sensors from 70 to 76, corresponding to a depth electrode, the redundancy is
higher in the preictal period, reflecting the fact that the seizure is already active in its
primary focus even if not yet clinically observable. The values of B corresponding to
this electrode are reported in Fig. 4.
In Fig. 6 we consider again the EEG data from healthy subjects with closed eyes [27],

and apply the greedy search taking C3 as the target and {C4,C6} as the seed. We find
a subset of 9 variables influencing the target. The fact that the sign of Ωk is alternating,
as in the previous model, suggests that the channels in this set correspond to a single
source which is responsible for the inter-hemispheric communication towards the target
electrode C3. In Fig. 7 we take O1 as the target and {F3,C5} as the seed. A subset of 11
variables is found which describes the information flow from the frontal to the occipital
cortex.
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3
3

FIGURE 1. The instantaneous components Z0i j for two target electrodes, C3 on the left and O1 on the
right. The target electrode is in white, and for each of the other electrodes i on the map, the value of Z0i j is
displayed for the other electrodes.

4 4

FIGURE 2. The lagged components B0i j for two target electrodes, C3 on the left and O1 on the right.
The target electrode is in white, and for each of the other electrodes i on the map, the value of B0i j is
displayed for the other electrodes.

Functional Magnetic Resonance Imaging data

We used two resting state datasets from a public repository 1. Data were acquired by
using of single-shot gradient echo planar imaging (EPI) sequence (repetition time [TR]:
2000ms and 1400ms; echo time: 30ms; slices: 33; thickness: 3mm; gap: 0.6mm; field
of view: 200× 200mm2 ; in-plane resolution: 64× 64; flip angle: 90◦). Preprocessing
of resting-state imagesl was performed using the Statistical Parametric Mapping soft-
ware (SPM8, http://www.fil.ion.ucl.ac.uk/spm), including slice-timing corrected relative
to middle axial slice for the temporal difference in acquisition among different slices,
realigned with the corresponding 3-D structure image, head motion correction(for all
subjects, the translational or rotational parameters of a data set did not exceed ±1mm or
±1◦), spatial normalization into a standard stereotaxic space, parameters from normal-
izing 3-D structure images to the Montreal Neurological Institute T1 template in SPM8
were written to fMRI images then resampled to 3-mm isotropic voxels. The functional
images were segmented into 90 regions of interest (ROIs) using automated anatomical
labeling (AAL) template [22]. For each subject, the representative time series of each
ROI was obtained by averaging the fMRI time series across all voxels in the ROI. Sev-

1 htt p : //www.nitrc.org/pro jects/ f con_1000/
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FIGURE 3. The lagged second order terms B0i j for a cortical electrode (in white) right before and during
the clinical onset of a seizure, and the sum over the second electrode of the pair in the lower right panel.

pre

20 40 60

20

40

60
−0.2

0

0.2
seiz

20 40 60

20

40

60
−0.2

0

0.2

seiz−pre

20 40 60

20

40

60
−0.2

0

0.2
seiz

−2
0
2
4
6
8
10

FIGURE 4. The lagged second order terms B0i j for a depth electrode (in white) right before and during
the clinical onset of a seizure, and the sum over the second electrode of the pair in the lower right panel.

eral procedures were used to remove possible spurious variances from the data through
linear regression. These were 1) six head motion parameters obtained in the realigning
step, 2) signal from a region in cerebrospinal fluid, 3) signal from a region centered
in the white matter. 4) global signal averaged over the whole brain. The hemodynamic
response function was deconvolved from the BOLD time series.
We start reporting in Fig. 8 the histograms from the first three order terms, computed

exactly, confronted with the results obtained by reshuffling the time series. We can
observe, in the graph of the third order, that redundant and synergetic contributions seem
to have different probability distributions.
Coming to the greedy decomposition, a convenient way to visualize the results is
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FIGURE 6. Informative contributions to the target electrode C3. Left: information contribute from the
resulting multiplet when time series from a given electrode are added to the existing multiplet, starting
from the pair (C4,C6) which is the one which shares the most of information on the future of the target
time series. Channels P4, F4, F8, P6, O2, Pz and Cz are recognized to belong to the same multiplet as
C4 and C6, whilst including O2 leads to a Ωk which is not significantly different from zero. Right: the
absolute value of this contributions plotted on a scalp map.

to count, for a given target, how many times another variable appears in redundant of
synergetic multiplets. In Fig. 9 we report these findings for the left precuneus, which has
been previously reported as a sink hub (mostly receiving information from other brain
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multiplet, for the remaining variablesΩk is not significantly different from zero. Right: the absolute value
of this contributions plotted on a scalp map.
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FIGURE 8. Distribution of the first three order terms in the decomposition of the transfer entropy the
resting state fMRI. The results are confronted with those obtained reshuffling the time series. Left: first
order; Center: second order; Right: third order.

regions)[24]. From the figure is evident the balance between functional segregation and
integration in the brain.

FIGURE 9. Most redundant regions for left precuneus. The size of the regions is proportional to the
number of times that the region is present in a redundant multiplet. The color corresponds to each of the
six subsystems of the resting brain (Brown: Medial Temporal, Light Blue: Subcortical, Green: Occipital,
Dark Blue: Frontal, Purple: Temporal, Red: Parietal-(Pre)motor.
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Abstract. This is a short review of recent studies in our group on how weak signals may ef�ciently
propagate in a system with noise-induced excitation-inhibition competition which adapts to the
activity at short-time scales and thus induces excitable conditions. Our numerical results on simple
mathematical models should hold for many complex networks in nature, including some brain
cortical areas. In particular, they serve us here to interpret available psycho–technical data.
Keywords: complex neural networks; adaptive synapses; stochastic multiresonance; excitable
brains.
PACS: 05.40.-a, 87.10.Mn, 87.10.Rt, 87.18.Sn, 87.18.Tt, 87.85.D-, 89.75.-k

INTRODUCTION

Transmission in natural media is sometimes observed to be spontaneously optimized by
the system itself, so that weak signals are able to go through without damping while
overcoming an apparently predominant noisy environment. Analysis of the relevant sit-
uations have in the past associated this outstanding feature of nature with various in-
teresting phenomenologies (see, for instance, [1]-[7] and references therein), including
enhancement of dynamic range, stochastic resonance, coherence among noise and sig-
nal, nonequilibrium phase transitions, etc.
The actual perspective after three decades of effort suggests that such assorted phe-

nomenology always seems originated in the same basic mechanism, namely, kind of
excitability which is in practice due to competition between opposing, say, excita-
tory/inhibitory tendencies. Such a competition concerns, for example, the biophysical
processes driving dynamics of actual synapses in the nervous systems. This signi�cantly
in�uences the transmission of information which, encoded in spike trains or in waves of
action potentials generated in a given neuron reaches other neurons. As a matter of fact,
the postsynaptic response to incoming stimuli has been demonstrated to be an activity–
dependent process in such a way that, for instance, may be enhanced and/or depressed
at short time scales depending on the stimuli frequency [8, 9, 10].
We here review some of our recent effort, and also present some new material on this

topic as communicated in the 12th Granada Seminar. We �rst focus on the in�uence of
different possible basic hypothesis on the transmission of weak signals by using simple,
familiar partial–differential–equation models [11, 12]. The information thus collected
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is then applied to study transmission in complex networks [13], which is relevant to
many �elds of science [14, 15] including neuroscience [16, 17]. The result is a detailed
description of the microscopic mechanisms that seem to originate, and the relevant
phenomenology that has been reported to accompany lack of dissipation and resonances
during the propagation of signals through diverse excitable media. We report qualitative
agreement of our main model with available experimental data.

A FEED-FORWARD MODEL

A simple perceptron type of model will �rst serve us to correlate different basic hypoth-
esis with emergent behavior. Let us assume a unit, which one may interpret as one of
the neurons in a network, acted on by a set of other N units or neurons, as illustrated in
Fig. 1A. The relation is via complex links, channels or synapses which induce excitabil-
ity. Speci�cally, following [18], for instance, we assume that any link, i = 1, . . . ,N, has
ri random components —to be interpreted as neurotransmitter emitting vacuoles, for
example— and that each is activated with probability u and stays silent afterwards for
a time interval τ, this being a random variable with exponential distribution pt (τ) of
mean τrec at time t. The activation of i at time ti generates a current, Ii(t), that evolves
according to

dIi(t)
dt

=−
Ii(t)
τin

+
ri
∑
�=1

Ji,� δ (t− ti), (1)

where τin characterizes the transmission duration, and Ji,� is the change in component �
if this is active which occurs with probability u [1− pt (τ)] (Ji,� is zero otherwise). The
variations with i of this change as well as those of ri may be assumed, for simplicity, to be
Gaussian distributed with mean and standard deviation (J,ΔJ) and (r,Δr) , respectively.
The total current is then IN(t) = ∑i Ii(t), and the voltage in response to an input signal
A(t)may be written as dV/dt = F (V, IN,A) , i.e., a dynamics that depends on the nature
of each unit which is determined by function F. A familiar choice is the integrate–
and–�re (IF) model with refractory period τrefrac in which F is linear with V ([19];
see also, for instance, [20]). However, this means a �xed �ring threshold θ , which is a
poor description for most purposes [21, 22]. Therefore, one may alternatively assume
that units are of the FitzHugh–Nagumo (FHN) type [23, 24, 25]. It follows, which may
be more realistic [26], that the threshold unit adapts to the input current. The resulting
dynamics is

dV (t)
ε dt

=V (t) [V (t)−a] [1−V (t)]−W (t)+
ρ

ε τm
[A(t)+ IN(t)] , (2)

where ρ is a resistance to transform current into voltage, andW (t) is a slow variable, ac-
counting for the refractory time of the unit, which satis�es dW (t)/dt = bV (t)− cW(t).
The (presumed weak) signal may be chosen as A(t) ≡ A0 cos(2π fsignalt) but other
choices, including Poissonian trends have been used in our studies [27]. A situation
of interest is one in which all the, say, presynaptic neurons are in a steady state in which
they �re independently, uncorrelated from each other with certain mean frequency fnoise.
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FIGURE 1. (A) Feed-forward, perceptron setting in which N units (full circles) transmit noisy, gener-
ally uncorrelated activity to a single unit (empty circle) which simultaneously receives a weak structured
signal A(t) . (B) Time variation of the input signal (top) and response series at low (a), medium (b) and
high (c) levels of noisy, for static links and IF neurons. (C) For the same case, the input-output correlation
versus fnoise indicating the corresponding ranges of noise as in the previous graph. (D) The same for
dynamic links and FHN neurons as one varies τrec. Other details are given in the main text and in [27].

The result is a noisy IN with a dif�cult dependence on fnoise. The question is then how
A(t) of frequency fsignal can go through as one modi�es fnoise.
A convenient measure of this is the input-output correlation function:

C ( fnoise) =
1
Δt

∫ t0+Δt

t0
m(t)A(t), (3)

for small Δt, where m(t) is the �ring rate —mean value of activity; see next section—
of the, say, postsynaptic neuron. Figures 1B and 1C illustrate the behavior of the system
when links are static, namely, u = 1 and τrec = 0, in which case pt (τ) transforms into
a delta function and Ji,� is constantly nonzero. The �rst of these �gures shows typical
outputs for the voltage at the postsynaptic neuron as one modi�es the �ring frequency of
the presynaptic population, fnoise. When this is very small, as in (a), the generated current
IN on the postsynaptic neuron can only induce sub-threshold behavior which is weakly
correlated if at all with A(t). Increasing fnoise increases both IN and its �uctuations so
that a condition is reached in which the postsynaptic neuron �res so frequently, as in
(c), which obscures A(t). However, there is an intermediate value of fnoise, as in (b),
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FIGURE 2. Schematic form of the input-output correlation function in transmission experiments versus
the level of ambient noise. The �rst row is for static links while the second one concerns links with
short-time adaptation to the system activity. The three columns correspond to different neuron models as
indicated. See details in the main text.

at which the neuron �res strongly correlated with A(t), that is, several action potentials
are emitted each time A(t) is at a maximum. This interesting behavior, often known as
stochastic resonance, is clearly revealed by the peak of the functionC( fnoise) in Fig. 1C.
The situation is even more interesting when the links have an active dynamic behavior
and neurons are of the FHN type as described above. This is illustrated in Fig. 1D
showing, for a range of τrec values, that two maxima of the correlation then occur so that
the transmission is optimized for two ranges of rather well separated noise frequencies.
The same occurs if, in addition to synaptic depression as in these examples, we assume
facilitation [12]. The precise location of the high and low frequency peaks depends on
the level of depression and facilitation which is adopted at the links. Interesting enough,
this indicates one how to get a better design of devices for the controlling of signals, for
instance.
A systematic study of emergent behavior using variations of our model above reveals

the situation illustrated in Fig. 2. A summary is that, under rather general conditions a
weak signal may successfully compete with noise and show stochastic resonance—as in
the cases in Fig. 2 corresponding to the three graphs in the upper row and to the center
one in the bottom row— while transmission through several different levels of noise
requires some special conditions. That is, it is not suf�cient to have complex dynamic
links but the relevant units need also have adaptive thresholds as, for example, in the
FHN neuron model.
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A COMPLEX NETWORK

Amain question is wether this behavior, namely, undamped transmission of weak signals
in some cases, which in the above abstract model is due to kind of local excitability,
may spontaneously ensue from cooperation in complex attractor networks. To explore
this issue, let us consider next a networked set of binary units, say, s = {si} , where si
at node i is assigned either 0 or 1. The links or synapses i↔ j = 1, ...,N between units
are of intensity or weight given by ω i j(t) = ωi jx j(t). Here, xi(t) ∈ [0,1] is a dynamic
variable to be determined and ωi j = [Np(1− p)]−1 ∑μ(ξ

μ
i − p)(ξ μ

j − p) is the maximum
of conductance (ωii is de�ned to be 0). This choice somewhat modi�es the familiar
Hebbian prescription [32]; it still involves a set of patterns, e.g., ξ μ =

{
ξ μ
i = 0,1

}
with μ = 1, . . . ,P, as if previously stored in the links, but we are speci�cally concerned
here with random patterns having a given value for the symmetry parameter of the set,
p≡

〈
ξ μ
i
〉
i,μ .

The resulting network [13], which can sensibly metaphor a brain cortical area, evolves
with time as a parallel, cellular automaton, namely, by stochastic changes of the whole
set s = {si} at each time according to probabilities:

Pi{si (t+1) = σ}=
1
2
+

(
σ −

1
2

)
tanh

[
Ii(t)T−1] , ∀i, (4)

where σ = 1 or 0, and T is the temperature of the underlaying bath which controls the
stochasticity of dynamics. Here, Ii(t) = 2 [hi (t)−θi+A(t)] stands for the total input on
each unit, hi (t) = ∑ j ω i j s j (t) is the net current from others on unit i, θi are thresholds
for �ring, and A(t) is the (weak) external signal; for simplicity, these are taken as
θi = 1

2 ∑ j ω i j and A(t)= A0 cos(2π f t) . A simple choice to determine the weights ω i j(t)
consists in assuming that xi(t) changes with time according to the map [33]:

xi(t+1) = xi(t)+
1− xi(t)

α
−βxi(t)si(t). (5)

This depicts a sawtooth–shaped time change, with α and β measuring the teeth width
and depth, respectively, which describes a competition of effects in the channels weights
associated to their “fatigue”. That is, the link of intensity ωi jx j is debilitated as β is
increased, while decreasing α makes x to recover its maximum value more rapidly. The
channel weight effectively remains constant in practice if such a recovery becomes very
fast, so that one sometimes speaks of “α = 0” as the limit of static synapses which
characterizes the standard Ising and Hop�eld cases [34, 32]. The motivation for the
ansatz (5) are differential equations —such as the ones we developed in the previous
section— trying to account for the fact that electrical stimulation due to local and even
spatially extended activity may induce short–term plasticity leading to depression and
sometimes also facilitation of the channel transmission [8, 35]. As a simpler minded
alternative to (5), one may assume that xi(t) changes so rapidly with time that its action
may be described in the relevant time scale by means of the stationary distribution

p(xi) = ζ (s)δ (xi−Φ)+ [1−ζ (s)]δ (xi−1). (6)
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That is, with probability ζ (s), which will in general depend on the network activity
—in practice, it happens not to be essential wether the model considers either local or
global activity here—, the weights are changed by a factor Φ but remain unchanged
otherwise. Depending on the value of Φ, this rule may simulate nodes excitability or
potentiation or fatigue of the connections as a function of the degree of order in the
system. The standard, Hop�eld–Hebb model then corresponds to Φ = 1. A convenient
choice here happens to be ζ (s) = (1+P/N)−1∑μ (mμ)2 de�ned in terms of the overlap
mμ = [Np(1− p)]−1 ∑i(ξ

μ
i − p)si between the system and each of the stored patterns,

μ.
The detailed study of the model using either (5) or (6) shows no essential differences

for A(t) = 0 ∀t [36]. A main result in the speci�c case (6) is that, tuning properly param-
eter values, it exhibits familiar equilibrium phases, namely, a disordered high-T phase
—corresponding to the paramagnetic phase in condensed matter— in which (the sta-
tionary values of) all the overlaps are practically zero, a low-T phase with conventional
order —corresponding to ferromagnetism— in which the global activity converges with
time towards one of the attractors

{
ξ μ
i
}

, so that it is often taken as a model example
of associative memory, and a —say, spin-glass— phase in which convergence is to-
wards a mixture of stored patterns. In addition, and most interesting, the system may
be tuned to exhibit nonequilibrium phases [34]. Namely, (i) one in which there is a
rapid and rather irregular roaming among the attractors —thus closely mimicking, for
example, long-time structural changes and oscillations that have been associated with
reaction–diffusion phenomena in physics and chemistry, as well as ef�cient, say, states
of attention that are of interest in neuroscience—, (ii) one which is mainly character-
ized by oscillations between one of the stored patterns and its negative or corresponding
antipattern, and (iii) one with quite irregular, apparently chaotic roaming randomly in-
terrupted by pattern–antipattern oscillations [36]. The case (5) induces similar though
relatively simpler behavior, e.g., the most involved behavior (iii) does not seem to fully
develop in this case.
The relevant order in this system may be described by monitoring the �ring rate, ex-

plicitly de�ned as m(t) =N−1 ∑i si(t), which is in fact sometimes recorded in laboratory
experiments. Though hardly experimentally accessible, also interesting to illustrate in
detail the system behavior is the overlap of the actual state with each pattern μ , mμ(t) as
de�ned above. Furthermore, we are also interested in the input-output correlation which
is de�ned now as

Cf = lim
Δt→∞

1
Δt

∫ t0+Δt

t0
m(t)ei f tdt, (7)

i.e., the Fourier coef�cient at frequency f of the output �ring rate. The relevant correla-
tion, to be denoted C (T ) in the following, is signal dependent, e.g., we de�ne it in the
cosinus case as the value ofC ( f ,T )≡

∣∣Cf
∣∣2 /A2

0 computed at the frequency of the input
signal. Some main results of our study are summarized in Fig. 3 [37].
This con�rms occurrence of stochastic resonance in complex networks, and it allows

one to associate main features of the phenomenon to details of the system, namely,
variations of the network link weights which induce some essential excitability. The
simplest situation of a single resonance peak, as in Fig. 3A, is for attractor networks with
�xed connection weights. The peak in this case occurs at a relatively large level of noise
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FIGURE 3. The input-output correlation C (T ) for the complex network model with a single stored
pattern having assymetry parameter p. (A) The case with static links and p = 1

2 . (B) Same but with links
affected by synaptic depression. Increasing parameter α (different curves) the resonance peak moves
towards lower noise levels. A plateau suggests tendency to a new resonance at low T. (C) Links here are
depressed with α = 80.Varying p (different curves) allows for varios resonances. (D) Recent data from an
experiment concerning eye blinks in the presence of auditory noise are compared here with our prediction
for α = 80 and p= 0.45. See main text and [37] for details.

(corresponding in this model to the underlying bath temperature), around the familiar
second-order transition between memory and disordered phases. The potential barrier
separating local minima is not too high in this case, and the noise helps the weak signal in
overcoming it thus driving the system activity and producing a maximum of correlation.
This is not very realistic, however; networks are generally complex in the sense that
connection weights are not homogeneous nor constant with time, often adapting to
the activity, in such a way that functional connections have in fact abnormal, often
power-law distributions [14]-[17]. Allowing for such situation, as we did above with
rather general, still expected realistic activity-dependent links, the interesting behavior
illustrated in Figs. 3B and 3C, which includes the so-called stochastic multi-resonance
phenomena emerges. For instance, Fig. 3B shows how synaptic depression induces a
change of the resonance peak toward lover values of the noise as well as the emergence
of a plateau of relatively high activity-signal correlation at an even lower level of noise.
Interesting enough, this announces the possibility of having further resonances, which
is con�rmed when our model is implemented with another realistic feature, namely,
when the set of patterns which determines the mean values of the connection weights
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are assumed to be asymmetric, as is certainly always expected to be the case in nature
(where the symmetry p= 1

2 is quite dif�cult in practice). Such asymmetry together with
short-term depression of connections induce oscillations of m(t) at low noise levels as
in a �rst-order phase transition resulting in correlation with the signal near the transition
point. Even a third peak appears in the plateau for a high degree of asymmetry, e.g.,
p = 1

4 in our numerical experiments, as may correspond to many actual situations.
Note that simplicity dictated our illustrations to be concerned with just a single stored
pattern, but we also checked that the relevant phenomenology remains when increasing
the number of patterns and using other types of signals.
Unfortunately, even though the transmission of signals in dif�cult conditions which

we are interested in here bears, both theoretically and from a practical point of view a
great interest, and one may think of various related experiments which do not seem to
be specially involved, the fact is that there is no much data to contrast with our theory.
An exception is a psycho-physical simple experiment on eye blink re�ex in the presence
of auditory noise [38]. This shows resonance and, as Fig. 3D shows, we are able to �t
that data to our theory by transforming the level of auditory noise in dB into our noise
parameter T using a nonlinear relationship; we refer to [13] for details.

CONCLUSION

We have brie�y reviewed some recent results concerning phenomena, including stochas-
tic resonance associated with the transmission of signals competing with noise. Our
study involves two types of models, namely, partial differential equations and complex
networks, and focus on the effects of assuming time-varying connections which depend
on the current activity and transform the system into an excitable one. Though the net-
work model in “A Complex Network” section may appear to be rather different from
the simpler one in “A Feed-Forward Model” section, so that they may seem to induce
resonances by different basic mechanisms, this is not so; for instance, the concern on
the pattern asymmetry in the former in�uences the �ring threshold θi, and therefore the
network excitability as it was also the case in the latter. The result in both cases is in-
triguing emergent behavior that shows varied multi-resonances that may easily be tuned
by changing the models parameters. In addition to a well-de�ned theoretical reference,
our study thus opens a way to many applications. We also present a �rst contact with
experimental data. No doubt new related experiments would be very useful at this mo-
ment.
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Abstract. We review the mechanism of stochastic amplification of fluctuations in the context of fast
cortical oscillations observed during up-states both in vitro and in vivo. For this purpose, we employ
minimalistic models based on short-time synaptic depression with or without synaptic facilitation
and compare results with empirical observations. The phenomenon of stochastic amplification of
fluctuations is shown to be relevant and robust against different regulatory mechanisms and model
specificities. In particular, by introducing synaptic facilitation as a possible manner to dynamically
tune the synaptic efficacy, we show that, beyond resonancy details, the mechanism responsible for
stochastic amplification is robust and persists along a wide range in the synaptic parameters space.
In passing, we explain why a similar stochastic amplification cannot possibly be observed in cortical
down-states.

Keywords: brain oscillations; Up and Down states; fluctuations; noise induced phenomena; collec-
tive behaviour.
PACS: 87.10.Mn, 87.18.Tt, 87.19.L-, 87.19.lc, 87.19.lm, 87.19.ln

INTRODUCTION

Deciphering the diverse patterns of global activity recorded in the brain and associat-
ing them with behavioral states are major challenges in Neuroscience [1, 2, 3]. High-
frequency neural activity in the β and γ ranges (10 : 100 Hz) has been related to a
plethora of cognitive tasks such as working memory [4], selective attention [5], or re-
sponse to sensory cues [6]; abnormal fast oscillations have been implicated in seizures
and pathologies [7]. On the other hand, slow deltawaves (0.5 : 2 Hz) become preponder-
ant during the deepest stages of sleep, under anesthesia or even during quiet wakefulness
[8, 9, 10] and might play an important role in neural plasticity and in the consolidation
of new memories [11].

Remarkably, neural activity can be spontaneously generated at the cortical-network
level even in the absence of external stimulation. For instance, slow δ waves have been
observed both in vivo and in slice preparations under different experimental protocols
[12, 13, 14, 15] in the form of up-and-down states in which a large fraction of neurons
alternate between two different stable membrane-potential states: the down-state –with
a high degree of hyper-polarization and very low activity– and the depolarized up-state,
with high synaptic and spiking activity[16, 9]. The coherent alternation between such
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two, up and down states gives rise to low frequency δ waves [17] with exciting possible
implications [18].

Two interesting empirical observations that we would like to clarify are the following:

• high-frequency oscillations have been observed to occur within the active (up)
intervals of slow oscillations but not in down states [19, 20, 21]. In particular, the
associated up-state power spectra develop a non-trivial peak at some frequency
in the β band, between 20 and 30Hz, together with a substantial increase in the
spectral power all along the β/γ range [22].

• while global network measurements reveal robust oscillations in the β/γ range
in the up-state, individual membrane potentials or synaptic events detected at the
intracellular level do not show any trace of oscillations in this range of frequencies.

This suggests, first that oscillations are a collective phenomenon emerging at the net-
work level, and second, that there is no global synchronization locking the rhythms of
individual neurons to the systemic one.

Trying to shed light on these issues –and following two recent publications by Wallace
et al. [23] and ourselves [24]– we employ minimalistic models able to generate up
and down states. As we shall illustrate by working with simple models with short-time
synaptic plasticity, the mechanism of stochastic amplification of fluctuations explains in
a parsimonious and elegant way all the above-mentioned phenomenology.

STOCHASTIC AMPLIFICATION OF FLUCTUATIONS IN A
SIMPLISTIC MODEL FOR UP-AND-DOWN STATES

Minimalistic models for neural dynamics are those in the seminal works of Wilson
and Cowan [25] and Amari [26]. These represent the activity of the system through
a global (or “mean-field”) variable –the population-averaged firing rate– and assume a
deterministic evolution for it. Models for network bistability require of some regulatory
mechanism such as synaptic depression [27, 28] or a balanced combination of excitatory
and inhibitory neurons [29, 30, 31, 32, 33], providing for a negative feedback loop and
thus allowing for network self-regulation. These can be easily implemented in simple
deterministic models as the above-mentioned ones, allowing for a description of up and
down states as corresponding to fixed points of high and low firing-rate, respectively.

Spontaneous transitions between these two deterministic states (i.e. fixed points of
the dynamics) can be mimicked by switching-on some stochasticity, able to induce
transitions between them. A simple instance of this is the work of Holcman and Tsodyks
[27], who introduced a noise source into a simple dynamical model for neural with
activity-dependent synaptic plasticity [34]: the noiseless version of the model presents
bistability while the noisy version exhibits up-and-down states (see also [35]).

The model ofMarkram and Tsodyks [36, 34] is described by the mean voltage po-
tential, v, and the variable x, which measures the level of available synaptic resources
(e.g. neurotransmitters). A dynamical equation for x allows us to model short-time
synaptic depression (STSD). The mean voltage grows owing to both external and inter-
nal inputs and decreases owing to leakage processes; synaptic resources are consumed
in the process of generating internal outputs and spontaneously recover to a target max-
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FIGURE 1. Average potential and synaptic utility in computer simulations of the model of Markram
and Tsodyks; the system exhibits up and down transitions. In this simulation, noise variances are σv = 2.2
mV/

√
τ , σx = 0, and time-step 10−4 s

imum value, fixed here to x= 1:

v̇ = gv(v,x) =
1

τ
(vr− v+ωux f (v)) (1)

ẋ = gx(v,x) =
1− x
τr

−ux f (v), (2)

where τ and τr are the characteristic times of voltage-leakage and synaptic-recovery,
respectively, vr is the resting potential, ω the amplitude of internal inputs, u the release
probability of the neurotransmitters, and –finally– the firing rate function, f (v), is
assumed to be of the form f (v) = α(v−T ) if v ≥ T , where T is a threshold value, and
f (v) = 0 otherwise. Physiologically plausible parameters values are given by τ = 0.05
s, τr = 0.8 s, vr =−70 mV, ω = 12.6 mV/Hz, u= 0.5, T = 2.0 mV, and α = 1.0 Hz/mV.
For the chosen parameters, there are two stable fixed points (as well as a saddle-point
between them). One of them corresponds to a sustained up-state v∗ = vr+12.7865 and
x∗ = 0.18817, and the other to a down-state v∗ = vr and x∗ = 1 (see Fig. 1). The system
experiments a Hopf-bifurcation when decreasing ω , appearing a stable limit cycle with
sustained oscillations [27, 37]. This set of equations is deterministic; as in [27], we add
noise to have into account some possible stochastic sources (such as irregular external
inputs, finite size, or irregular and limited connectivity to name but a few). For simplicity,
we add uncorrelated Gaussian white noises ηv(t), ηx(t) with respective variances σv, σx,
but the forthcoming results do not depend crucially on this choice.

To analyze fluctuations around either of the fixed points, we define δv = v− v∗ and
δx= x− x∗, and linearize around any of the fixed points:

δ̇v = avvδv+avxδx+ηv(t)
δ̇x = axvδv+axxδx+ηx(t), (3)

where azz′ =
∂gz
∂ z′ (v

∗,x∗) (z and z′ standing for either v or x) are the elements of the
Jacobian matrix A evaluated either at the up or the down state. A standard lineal stability
analysis of A for the used parameters reveals that the down-state is a node (two real
negative eigenvalues) while the up-state is a focus (two complex eigenvalues with
negative real part). Defining z̃(ω) = F [z(t)] as the Fourier transform of either δv(t)
and δx(t), it is straightforward to compute their power spectrum as Pz(ω) = 〈|z̃(ω)|2〉,
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FIGURE 2. Holcman-Tsodyks’ model, left: Power spectrum of fluctuations in up- and down-states for
average membrane potential v. The main plots show the power-spectra in lineal scale: a marked peak
appears for the up-state (green curves) near ≈ 1.5 Hz. Instead, there is no track of similar peaks for
down states (blue curves). Observe the excellent agreement between simulation results (noisy curves) and
analytical results, Eq. (4) (black dashed lines). Red curve represents the power spectrum for the up-state
when synaptic facilitation is incorporated to the model. The peak moves slightly to a lower frequency, and
spectrum becomes sharper. The inset represents double-logarithmic plots of the same quantities as in the
main plots; in all cases there is a tail w−2 revealing the presence of fluctuations at many different scales.
All spectra have been generated with σ2

z = 0.01z∗/τ , and normalized to unit area. Right: deterministic
trajectories for the model without facilitation using different initial conditions. The up-state is a focus
(complex eigenvalues), while the down-state is a node (real eigenvalues).

which takes the usual form:

Pz(ω) =
αz+σ2

z ω2

[Ω2−ω2]
2
+Γ2ω2

(4)

where αz = a2zz′σ
2
z′ + a

2
z′z′σ

2
z and σ2

z = 〈η2
z 〉; while Ω2 = det(A) and Γ = Tr(A) do not

depend on the noise amplitude. The resulting Pv(ω) is represented in Fig. 2. Observe
that in the limit of small noise amplitude, both spectra exhibit a maximum nearby

ω =
√
Ω2−Γ2/2 (where the denominator of Eq. (4) has a minimum) assuming that

the solution of the previous equation exists. Observe the presence of a non-trivial peak
for the up-state spectrum, indicating the existence of noise-induced quasi-cycles. This
effect, called stochastic amplification of fluctuations, has been recently applied in the
context of population oscillations in Ecology[38] and other fields such as Epidemiology
[39]. It requires the presence of a focus (more specifically, complex eigenvalues with
Im[λ ] > Re[λ ]) in the deterministic dynamics plus some additional source of stochas-
ticity. In a nutshell, the gist of the mechanism is as follows: the system tries to relax
to the fixed point, but noise “kicks” it away, amplifying some frequencies which are
closely related (but not identical) to that of the deterministic damped oscillations. On
the other hand, if the system decays towards a deterministic node (i.e. with real eigen-
values), no frequencies are amplified whatsoever (see Fig. 2). This is what happens in
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the down-state, where the crossed coupling terms vanish when f (v) = 0; accordingly,
the derivative of the denominator in Eq. (4) w2 = Ω2−Γ2/2 = −(a2vv+a

2
xx) < 0 does

not vanish for any real value, resulting in the absence of a non-trivial peak in the power-
spectrum.

As a second step, we can check the robustness of the mechanism of Stochastic Ampli-
fication in the model with synaptic plasticity when we introduce short-term synaptic fa-
cilitation. Following Tsodyks and Markram[36], we write a new equation for the release
probability of available neurotransmitters, u = u(t) which was taken to be a constant
above. Without activity, it recovers to its baselineU0 with time constant τ f , while in the
presence of activity it increases proportionally to (1−u).

u̇=
U0−u
τ f

+U0(1−u) f (v). (5)

Fixing U0 = 0.05 and τ f = 1.5 s, we find that the stable fixed point corresponding to
the up-state shifts to v∗ = vr+ 12.5921,x∗ = 0.2005,u∗ = 0.4708. On the other hand,
the down-state remains at v∗ = vr,x∗ = 1,u∗ =U0. Computing the power spectrum for
each variable we can generalize Eq. 4 to the case with an arbitrary number of coupled
equations, obtaining

Pz(ω) =
[Adj(A− iω1)〈�η�η t〉Adj(At+ iω1)]zz

det(A2+ω21)
(6)

where Adj stands for the adjoint matrix (transpose of the cofactors). In the limit of
small noise amplitude, we find a peak at the frequency that minimizes the denominator
det(A2+ω21). Again, a non-trivial peak appears in the spectra only for the up state (at
1.4 Hz), while the distribution becomes sharper even if its structure remains essentially
unchanged (see red curve in Fig. 2). Therefore, the mechanism of stochastic amplifica-
tion of fluctuations described above is robust to the inclusion of synaptic facilitation.

DISCUSSION AND CONCLUSIONS

We have presented a very simple model, including synaptic plasticity as a key ingredient,
able to reproduce up and down states. The dynamics is given by two coupled mean-field
equations representing the mean activity of the population and the level of synaptic
depression (or resources). While the deterministic system presents two attractors, i.e.
bi-stability, up and down transitions appear when noise is added to the system.

First, we analyzed the fluctuations around each fixed point by analyzing the power
spectrum of fluctuations for each variable. Its structure, or, more precisely, the existence
of a peak, depends essentially on the trajectories near the deterministic attractor. If spiral
trajectories are present (i.e. focus fixed point) noise may amplify some frequencies in a
resonant way, resulting in a pronounced peak in the power spectrum. This can occur in
the up-state, where the variables are strongly coupled because of the feedback-loop be-
tween excitation and depression. We have verified that the mechanism is robust against
the incorporation of synaptic facilitation to the model. Similarly, the same framework
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explains why (owing to the effective decoupling of equations) a similar resulting fre-
quency cannot be observe in down states (in accordance with experiments).

These results are in perfect agreement with experimental results (e.g. [22]). However,
in order to improve the result for the characteristic frequency a obtain a result closer
to empirical values, more detailed models are required. This path has been followed
in [24] where –by considering a simple network-version of the model above in which
the role of individual neurons can be explicitly followed– we have shown that the
peak frequency shifts towards empirically observed values and, more remarkably– that
individual neurons follow a rhythm much faster than the emerging collective one, to
which they do not lock [22, 24, 23], in excellent agreement with observations.

Summing up, a simple deterministic model able to reproduce up and down states,
does also include non-trivial oscillations within the up state but not in the down state
when some noise source is switched on. The mechanism of stochastic amplification of
fluctuations can explain the structure of the power spectra and other highly non-trivial
features of cortical oscillations in a simple, elegant and parsimonious way.
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Learning pattern recognition and decision
making in the insect brain

R. Huerta

BioCircuits Institute, University of California San Diego, La Jolla 92032, USA.

Abstract. We revise the current model of learning pattern recognition in the Mushroom Bodies of
the insects using current experimental knowledge about the location of learning, olfactory coding
and connectivity. We show that it is possible to have an efficient pattern recognition device based
on the architecture of the Mushroom Bodies, sparse code, mutual inhibition and Hebbian leaning
only in the connections from the Kenyon cells to the output neurons. We also show that despite the
conventional wisdom that believes that artificial neural networks are the bioinspired model of the
brain, the Mushroom Bodies actually resemble very closely Support Vector Machines (SVMs). The
derived SVM learning rules are situated in the Mushroom Bodies, are nearly identical to standard
Hebbian rules, and require inhibition in the output. A very particular prediction of the model is
that random elimination of the Kenyon cells in the Mushroom Bodies do not impair the ability to
recognize odorants previously learned.

Keywords: pattern recognition; decision making; learning; memory formation.
PACS: 87.85.dq, 87.85.Ng, 87.55.de, 87.55.kh, 87.57.nm, 87.64.Aa, 87.85.D-

INTRODUCTION

The process of deciding what action to take based on the current and future expected
external/internal state is typically called decision making [1, 2, 3, 4, 5]. There are two key
critical information processing components ubiquitous in the decision making process:
i) the prediction of one’s action on the environment, i.e., regression, and ii) a pattern
recognition problem to discriminate situations, i.e., classification. Both tasks require
models to substantiate the action of decision making, and the processes and mechanisms
by which those models are learned reveal plausible mechanistic explanations of learning
in the brain [6, 7, 8].

In this paper we want to elaborate on the decision making mechanisms that require
learning using the most primitive form of all sensory modalities: chemical sensing.
This is the sensory modality that coexisted with all forms of life on earth, from the
living bacterias to the human brain and remains puzzling and enigmatic despite being so
primordial. The insect brain is our choice to understand the underpinnings of learning
because they rely on the olfactory modality and they are simpler than the mammalian
counterparts. Moreover, the main brain areas dealing with olfactory processing are fairly
well known due to the simplicity of the structural organization [9, 10, 11, 12, 13, 14, 15,
16], the nature of the neural coding [17, 18, 19, 20, 21, 22, 23, 24, 25, 26], the advent
of the genetic manipulation techniques that isolate brain areas during the formation of
memories [27, 28, 29, 30], and the extensive odor conditioning experiments that shed
light into the dynamics of learning during discrimination tasks [31, 32, 33, 34, 35, 6].

The main areas where we will concentrate our efforts to understand learning are the
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FIGURE 1. Recordings using an artificial sensor array [43, 48, 49, 50, 44] during carbon monoxide
presence for 180 seconds in a wind tunnel under turbulent flow.

mushroom bodies [36, 37, 38, 5]. These are responsible for memory formation [36].
There are two additional layers of critical importance for odor processing just in front of
the mushroom bodies which are the antennas and the antennal Lobes, but, although
memory traces are present [39, 40, 41, 42], their primary function might be signal
processing, feature extraction or information filtering [41]. Each of those processing
layers are very different in their anatomical and physiological properties. Therefore,
since our goal is to understand the mechanisms of learning, we first direct our efforts
to the memory formation in the mushroom bodies (MBs) before understanding what
specific aspects of the antennal lobe (AL) and the antenna are important.

THE STRUCTURAL ORGANIZATION OF THE INSECT BRAIN

The nature of the olfactory stimulus is stochastic due to the unreliable information
carrier. The wind transports gases by turbulent flows that induces complex filaments of
gas (see sensor responses in Fig. 1 in [43, 44, 45] and also recordings using a ionization
detector in [46, 47]). The nature of the olfactory information differs very markedly from
other sensory modalities like vision or audition. The information is intermittent and
unreliable, yet evolution has provided to these primitive nervous systems the ability to
extract all the necessary information for survival. The brain modules involved in pattern
recognition in olfaction are the antennas, the antennal lobes (ALs) and the mushroom
bodies (MBs).
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Early code

The sensors in the antenna are called the olfactory receptor cells. They are also
present in mammals [51] and we still do not have the sensor technology capable of
reaching their reaction times, selectivity and stability [48, 49, 50]. Each type of olfactory
receptor cell in the antenna connects to a specific glomerulus in the AL [52, 53, 54].
Thus, a chemosensory map of receptor activity in the antenna is represented in the
AL. This genetically encoded architecture induces a stimulus-dependent spatial code
in the glomeruli [55, 56, 57, 23, 58]. Moreover, the spatial code is maintained across
individuals of the same species [59] as would be expected given the genetic structure.
In principle this peripheral olfactory structure already seems to be able to discriminate
among odors at this early stage. However, the ability to discriminate depends on the
number of possible odors, their concentrations, and the complexity in the presence of
mixtures [25].

Temporal dynamics in the Antennal Lobe

The antennal lobe receives the input from the olfactory receptor cells that deliver the
information into particular sets of glomeruli. The neural network in the AL is made
of projection neurons (PNs), which are excitatory, and lateral neurons (LNs), which
are mostly inhibitory. The PNs and the LNs connect to each other via the glomeruli.
The glomeruli structure induces a bipartite graph of connections that contrasts to the
standard directed Bernoulli-induced graphs typically used in AL models [60, 61, 62, 63,
64, 65] with a few exceptions [66]. Moreover, the connections via the glomeruli may be
complicated enough because they can be presynaptic [67, 68].

The odor stimuli processed by insects are not constant in time because insects move
and the odor plumes flow through the air. The coding mechanism of the AL has to deal
with this because the insect needs to detect the odor class, the source and the distance to
the odor [16, 69] (see Fig. 2). Since the early works of [70, 71, 72] many experiments
have demonstrated the presence of spatio-temporal patterns in the first relay station of
the olfactory system of invertebrates and vertebrates [73, 74, 75, 76, 77, 22, 78, 79, 80].
This dynamics results from the interplay of excitatory and inhibitory neurons [74, 81,
82]. There is some debate about the function of temporal coding in behavior, because
individuals react faster solving discrimination task than the structure of the temporal
code indicates [83, 84, 85]. However there is evidence that by blocking inhibition in the
AL insects lack the ability to discriminate between similar odors [33, 74]. And, second,
the distance to the source of the odorant is encoded in the intermittentcy of the turbulent
flow [43, 44, 45, 46, 47]. The further away from the source the sensors are, the slower
the peak frequency of the recordings becomes. Thus, these two facts point out at the
need for temporal code to solve pattern recognition (what gas) and regression estimation
(how far and where). In fact, these two different functions may use separate pathways in
the insect brain [69].
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FIGURE 2. Anatomy of the honey-bee brain (courtesy of Robert Brandt, Paul Szyszka, and Giovanni
Galizia). The antennal lobe is circled in dashed yellow and the MB is circled in red. The projection neurons
(in green) send direct synapses to the Kenyon cells (KCs) in the calyx which is part of the MB.

The Formation of Memories in the Mushroom Bodies

Gain control. It is known that increasing odor concentrations recruit increasing
numbers of glomeruli [86] and the activity of the projection neurons within the AL
[87, 88, 89]. From the behavioral point of view, increasing the synapses of the local in-
hibitory neurons makes gases repulsive and to change the number of excitatory synapses
makes odorants attractive [90]. This study shows how important the tight equilibrium of
the excitatory and inhibitory network is in the AL. A simple transduction of the PN activ-
ity into the MB would increase the number of active KCs as well. However, mean firing
rates of the PNs that send the output to the MBs have constant firing rates regardless
of the gas concentration [91] and recordings of the PNs in the MBs show concentra-
tion independence[92]1. Moreover, the drosophila shows that calcium activity is also
independent of odor concentration in the KC neurons [30]. Therefore, the activity of
the Kenyon cells KCs (see Fig. 2) appears to be heavily regulated and has been shown
to generate sparse activity in Honeybees and Locust [94, 95, 96], which is consistent
with the overwhelming predictions of associate memory and pattern recognition mod-
els [97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107].

1 Despite there is evidence of gain control at least at the MB level, we still are missing good controls
for the concentration of the gases delivered in the antenna [93]. For example, for 1-Hexanol dilution on
mineral oil over 1% the concentration of the gas in the air saturates at 200-400 particle per millions.
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Learning. Most importantly, the MBs undergo significant synaptic changes [108,
109] and it is known for quite a long time that play a key role in learning odor con-
ditioning [110, 111, 112, 113, 27, 114, 115, 116]. This situates the MBs as the center
of learning in the insects. A notion that has been promoted by Martin Heisenberg all
along [36].

Inhibition. Another important factor to be able to organize learning and in particular
pattern recognition in the Mushroom Bodies is inhibition or more specifically lateral
inhibition in the output layer. The notion of lateral inhibition to improve information
output has been around for a while [117]. Without lateral inhibition in the output it is
not possible to organize competition to have neurons responding for a particular set of
stimulus [118, 104]. In fact, it has been shown that there is strong lateral inhibition
in the β -lobes in the MBs in [119] which is consistent with standing theoretical
models [117, 120, 118, 104, 121].

Temporal code. We have argued that to estimate the distance to the source, temporal
processing is required due to the turbulent transport of the gas (see Fig. 1). Further
analysis of the data in [95] shows that at the early stages of the processing, right after
the stimulus induces a reaction in the insect brain, the MBs can have better ability
to discriminate. At later stages, the receptive fields or sensitivity of the MBs become
broader [122]. Perhaps at this level slow lateral excitation between the KCs may better
encode temporal information of the plume [123]. This implies that the discrimination
and recognition of the gas may happen quickly, but the gas concentration estimation
requires temporal integration over long time scales as shown in gas source localization
using artificial sensor arrays [43, 48, 49, 50, 44].

THE COMPUTATIONAL ORGANIZATION OF THE INSECT
BRAIN

In the previous section we tried to succinctly summarize some of the most relevant facts
that are needed to build a pattern recognition device in olfaction. These are not by any
means all of them and are not necessarily fully consistent with each other, but despite
their differences there is more coherence than dissonance with the elements required to
have an efficient pattern recognition device. In Fig. 3 we depict the basic model that we
use to analyze the computational properties of the MBs.

The simplest model. If we want to understand first the role that the connectivity of the
insect brain plays in pattern recognition problems, one has to chose the simplest possible
model that complies with the integration properties of neurons. The basic concept is
that whenever there is sufficient synaptic input arriving into a neuron, it is going to
fire, respond, or transmit information to another group of neurons. A classic model of a
neuron that is still successfully used today is the McCullough-Pitts neuron [124]. It is
remarkable that it is still used despite being 70 years old and it is used to get estimates
of the degree and strength of connections of network architectures to be implemented in
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more realistic models2. The McCullough-Pitts (MP) neuron is expressed as

y j =Θ
(NAL

∑
i=1

c jixi−θKC

)
j = 1,2, ...,NKC. (1)

x is the state vector of the AL neurons (see Fig. 3). It has dimension NAL, where NAL

is the number of AL neurons. The components of the vector x = [x1,x2, ...,xNAL
] are

0’s and 1’s. y is the state vector for the KC layer or Calyx; it is NKC dimensional.
The ci j are the components of the connectivity matrix which is NAL×NKC in size; its
elements are also 0’s and 1’s. θKC is an integer number that gives the firing threshold
in a KC. The Heaviside function Θ(·) is unity when its argument is positive and zero
when its argument is negative. This model can be generalized by replacing the Heaviside
function by a nonlinear increasing function and can also be recast in the format of
an ordinary differential equation to obtain the a Grossberg-type [126, 127] or Wilson-
Cowan models [128].

Advantages and challenges. The MP model is adequate to answer limits in perfor-
mance of pattern recognition devices for fast operation which is sufficient to account for
the fast reliable code observed in the AL [129, 83, 84, 85]. It is also very useful to es-
tablish the equivalence with classical pattern recognition devices like the support vector
machines (SVMs) [130, 131, 132, 133, 134]. However, it fails at comprehending the role
of time in the brain [135, 136, 137, 138, 139] and thus by itself cannot easily solve the
regression or distance-to-source estimation problem. Even if the system can recognize
efficiently objects, it has to be controlled and regulated within the circuit itself and from
other brain areas. This is a challenging problem that we do not address in this paper and
requires models with a proper description of the time scales in the brain.

Information Conservation in the Mushroom Bodies

Hypothesis. The main hypothesis is that the Mushroom Bodies are a large screen
where one can discriminate objects much more easily. The theoretical basis for discrim-
ination on a large screen to discriminate more easily was already proposed by Thomas
Cover [140] and later within the framework of support vector machines [141]. In addi-
tion, sparse code is a very useful component to achieving a powerful pattern recognition
device as observed in the MBs and as already mentioned the theoretical support for
sparse code is extensive [97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107].

Sparse code. The evidence of sparse code in the Calyx is found in the locust [95, 96]
and the honeybee [94, 95]. The prevailing theoretical idea to make the code stable over
time from the AL to the MB is using forward inhibition [142, 106, 96]. In what follows
we will assume that neural circuits are placed in an stable sparse mode.

The AL-MB circuit as an injective function. As we are not addressing the temporal
aspects of the system for now, the input for our classification system is an early sin-

2 See for example the transition from a MP model in [104] to a realistic spiking model in [106] and the
model of learning in [125] that resembles closely the model in [105].
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FIGURE 3. The equivalent model of the MBs. We denote by x as the AL code. y is the code on the
Calyx or the KC neurons, that sometimes we will refer to y = Φ(y) in the context of SVMs, and z is the
output of the MBs. Note that all the output neurons inhibit each other with a factor μ .

gle snapshot of information when the antenna hits the plume. The hypothesis for the
nonlinear transformation from the AL to the MB is then that every such snapshot or
codeword in the AL has a unique corresponding codeword in the MB: The nonlinear
transformation needs to be an injective function at least in a statistical sense. In [143]
it was proposed to select the parameter values that allow constructing such an injective
function from the AL to the KC layer with very high probability.

To determine the statistical degree of injectivity of the connectivity between the AL
and KC, we first calculate the probability of having identical outputs given different
inputs for a given connectivity matrix: P(y= y′ |x �= x′,C), where C is one of the possible
connectivity matrices (see [143] for details) and the notation x �= x′ is {(x,x′) : x �= x′}.
We want this probability, which we call the probability of confusion, to be as small as
possible, on the average over all inputs and over all connectivity matrices.

We write this average as P(confusion) =
〈〈P(y = y′ |x �= x′,C)〉x�=x′

〉
C, where 〈·〉x �=x′

is the average over all non-identical input pairs (x,x′), and 〈·〉C is the average over all
connectivity matrices C. This gives us a measure of injectivity, the opposite of confusion,
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as

I = 1−P(confusion), (2)

The closer I is to 1, the better is our statistically injective transformation from the states
x of the AL to the states y of the KCs.

There are two parameters of the model that can be adjusted using the measure of
injectivity. One is the probability pC of having a connection between a given neuron
in the AL and a given KC. The second is the firing threshold θKC of the KCs. Fixed
parameters in the model are the probability pAL of having an active neuron in the AL
layer, the number NAL of input neurons, and the number NKC of KCs. pC and θKC can
be estimated using the following inequality

I ≤ 1−{pKC
2 +(1− pKC)

2 +2σ2}NKC , (3)

where pKC is the firing probability of a single neuron in the KC layer. It can be calculated
for inputs and connection matrices generated by a Bernoulli process with probabilities
pAL and pC as

pKC =
NAL

∑
i=θKC

(
NAL

i

)
(pAL pC)

i(1− pAL pC)
NAL−i. (4)

where the summatory starts at the the threshold level at which the neurons can fire.
This probability has variance (σ2) for all the prior probabilities of the inputs x and
connectivity matrices. This type of connectivity can be very unstable for perturbations
of activity in the input[144]. As can be seen in Fig. 4 where small variations of the
probability of activation of AL neurons can lead to a very sharp change in the MBs [145].
This unstability makes necessary to have gain control mechanisms to regulate the sparse
activity as proposed in [142, 106, 96, 146] via forward inhibition or by synaptic plasticity
[147]. The regulation of sparseness via plasticity from the AL to the MB is an unlikely
mechanism to generate sparseness because it actually reduces the information content
on the KCs [148].

The formula for the probability of confusion can be intuitively understood if we
assume that the activity of every KC is statistically independent from the activity of
the others. If so, the probability of confusion in one output neuron is the sum of the
probability of having a one for two inputs plus the probability of having a zero for
both: p2

KC +(1− pKC)
2. Thus, the probability of confusions in all NKC output neurons

is (p2
KC +(1− pKC)

2)NKC in the approximation of independent inputs. This bound on I
should be close to unity for any set of parameter values we choose. The inequality for
the measure of injectivity becomes an equality for sparse connectivity matrices.

Information preservation versus discrimination and stability. If one takes realistic
physiological values [143] one can summarize the expression of confusion just in terms
of nKC � NKC, which is the total number of simultaneously active neurons of the KC
layer, as follows:

P(x = x′) ∝ e−2·nKC . (5)

which means that ideally to improve injectivity, the system should be placed as far
as it can from sparse code reaching the maximum at nKC = NKC/2. However, first,
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FIGURE 4. Probability of activation of the KC neurons as a function of the probability of the activation
off the AL neurons. NA = 1000, pC = 0.15 and θKC = 10.

the expression of injectivity in Eq. (3) saturates very rapidly, and, second, in terms of
classification performance or memory storage one wants the opposite [97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107]. And in terms of stability as shown in Fig. 4 using
realistic parameter values it is difficult to place the MB activity in moderate levels of
activity between 10 and 50 percent for all possible inputs and for all the concentration
levels (see [145] for details). In fact, a 5% variation in activity in the AL can switch
the KCs from sparse activity to having almost all neurons responding to the input. This
instability in the statistics of the input is not a desirable property of a pattern recognition
device.

Learning Pattern Recognition in the Mushroom Bodies

Rationale. The evidence of learning odor conditioning in the MBs has mounted over
the years. Although there has been plasticity shown in the AL network [41], the role
played there is data tuning or preprocessing for the pattern recognition device, which
is the MB. As we will show the MBs can be shown to be nearly equivalent to Support
Vector Machines (SVM) [130] not only in terms of architecture but also in terms of
learning. The data tuning or preprocessing in the dynamical system which is the AL can
be shown to improve the performance of the pattern recognition device [44]. How this
can be carried out in biologically plausible manner remains a mystery.

Beyond olfaction. Despite our main effort has been on olfaction, models of learning
in the MBs have increased recently due to the multimodal nature of the MBs [149]. For
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example, Wu and Gao’s model of decision making of the visual information has the the
center of the decision making in the MBs too [8]. The MBs not only have olfactory
information but also contextual information, making the MB an integrative center that
takes about 35% of the neurons in the insect brain [150].

The model. In [104, 105] we propose a basic model of learning in the MBs which is
based on the MP neurons where the key component is to have the output neurons of the
MB inhibiting each other (see Fig. 3) as

zl = Θ
(NKC

∑
j=1

wl j · y j−μ
NO

∑
k=1

NKC

∑
j=1

wk j · y j

)
, l = 1, . . . ,NO. (6)

Here, the label O denotes the MB Lobes and μ denotes the level of inhibition between the
output neurons. The output vector z of the MB lobes has dimension NO . The NKC×NO

connectivity matrix are subjected to Hebbian learning [151] but implemented in a
stochastic form. Synaptic changes do not occur in a deterministic manner [152, 153].
Axons are believed to make additional connections to dendrites of other neurons in a
stochastic manner, suggesting that the formation or removal of synapses to strengthen
or weaken a connection between two neurons is best described as a stochastic process
[154, 153].

Output coding and classification decision. We do not know where the final decision
or odor classification is taking place in the insect. It is even possible that we will never
know because the neural layers from the periphery to the motor action are connected
by feedback loops. This intricate connections make difficult to isolate areas of the brain
during the realization of particular functions. What we can argue from the theoretical
point of view is that the decision of what type of gas is presented outside in the antenna
can take place in the output neurons of the MBs, z, with a high odor recognition
performance. This performance is much higher than any other location of the layers
involved in olfactory processing.

Inhibition in the output. We hypothesized that mutual inhibition exists in the MB
lobes and, in joint action with ‘Hebbian’ learning is able to organize a non-overlapping
response of the decision neurons [104]. Recently this hypothesis was verified in [119]
showing that the inhibition in the output neurons is fairly strong, and in [108] where
plasticity was found from the KC neurons into the output ones.

Reinforcement Signal. One important aspect of learning in the insect brain is that
it is not fully supervised. The reward signal is delivered to many areas of the brain as
good (octopamine3), r = +1, or bad (dopamine), r = −1. The Mushroom Bodies are
innervated by huge neurons that receive direct input from the gustatory areas [155].
They play a critical role in the formation of memories [5] and the can remain activated
for long periods of time releasing octopamine into not only the MBs but also the ALs
and other areas of the brain. In addition, the delay between the presence of the stimulus
and the reward has an impact[156] in learning memories. The learning rules that one can
use to have the system learn to discriminate are not unique [105]. For example one can

3 Note that in the mammalian brain is just the opposite.
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FIGURE 5. (LEFT) Accuracy in the classification of the MNIST handwritten digits for different sizes
of the MB. (RIGHT) Success rate as function of random elimination of KCs.

use rules similar to [157] that are contained in the following expression:

Δwi j ∝ yi r(US)z j withP(US,yi,z j), (7)

where the changes of the synaptic connections between the KCs and the output neurons
depend on the activity of both layers and the reward signal r(US) with some probability
P(US,yi,z j) that depends on the state of the MB and the nature of the unconditional
stimulus, or reward signal. US denotes what behavioral experimentalists call uncondi-
tional stimulus that is our reward signal. Note that in [105] the values of P(US,yi,z j)
have a significant impact in the performance of the classifier.

Impact of MB size on accuracy and Robustness. The brain’s ability to learn better is
thought to be positively correlated with larger brains [158]. Larger brains consume more
energy but memorize better and can survive in more complex environments. In [105]
we investigated the models given by Eqs. (1,6) and apply them to the MB to solve a very
well-known problem in pattern recognition: the MNIST dataset. The MNIST dataset
is made of 60,000 handwritten digits for training the model and 10,000 for test [159].
Despite the digits are not obviously gases. The representation of the information in the
MB is multimodal [149], so we can analyze the ability to recognize better by exploring
larger brain sizes and provide a direct comparison with pattern recognition methods
in machine learning. The main results are shown in Fig. 5 where we can show that the
ability to have better accuracy in the recognition of digits with increasing brain sizes. The
other interesting results of that investigation is the robustness of the MBs to damage or
elimination of the KCs. On the right panel of Fig. 5 we can see that one has to eliminate
above 99% of the KC neurons to observe a serious impairment of the performance in
pattern recognition. This is another prediction. If the insect has learned and been trained
previously, damage of the Calyx will not degrade its performance.
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EQUIVALENCE BETWEEN THE MUSHROOM BODIES AND
SUPPORT VECTOR MACHINES

Using the inhibitory SVM formalism proposed in [134], the synaptic input arriving into
an output neuron, ẑk, can be expressed as

ẑk(x) =∑
j

wk jΦ j(x)−μ∑
l
∑

j
wl jΦ j(x) =∑

j
wk jyk−μ∑

l
∑

j
wl jy j, (8)

where Φ j(x) is the nonlinear function that projects the AL code x into the KC neurons
or y. The response of this neuron is a threshold function on ẑk. For the purposes of the
SVM what matters is the value of the synaptic input, ẑk, so we will concentrate on its
analysis. To make the notation more compact let us write

ẑk(x) = ẑk(y) = 〈wk,y〉−μ∑
l
〈wl,y〉.

Note that to make ẑk(x) = ẑk(y) implies that during learning in the SVM there will not
be learning from the projections of the AL to the MB.

For the sake of simplicity we consider that the SVM will classify a binary problem.
A particular stimulus, x, has a label r = +1 for positive label and r = −1 for negative
label. Now since both the SVM and the honeybee learn by examples let us say that there
are a total of N stimulus/examples, yi, with their corresponding labels, ri =+1,−1 with
i = 1, . . . ,N. The idea is that to have the classifier working properly then ri ẑk(yi)≥ 0 for
all the examples. However, a key concept in SVMs is that the SVM output needs to be
above some margin such that ri ẑk(yi) ≥ 1. The margin value of 1 is standard although
we can chose any value one likes. The most important thing to understand is that the
examples belonging to different classes are sufficiently separated from each other. The
next important aspect of SVMs is the loss function which is expressed as

min
wk

L = min
wk

(1

2
||wk||2 +C

N

∑
i=1

max
{

0,1− ri〈wk,yi〉
})

. (9)

The first term is called the regularization term, which is an upper bound to the gener-
alization error [132], the second term corresponds to the measure of classification error
using the hinge loss function. The hinge loss is not the most plausible error function be-
cause it is known that most of the population are risk averse and, second, the honeybees
give more importance to strong odor concentrations than lower ones [160]. The impli-
cations of these two empirical observations should lead to interesting consequences that
are left for further work, but the intensity of learning could be manipulated by making
a a variable margin as ri ẑk(yi) ≥ ρ(c) with c the gas concentration, and the hinge loss
function could be replaced by another one with different weights for r =+1 and −1.

Following the concept of neural inhibition developed in [134], we can now write a
multiclass setting for all the output neurons as

min
w1,...,wO

(
1

2

O

∑
i=1

〈wi,wi〉+C
N

∑
j=1

max
{

0,1− r j〈wi,y j〉−μ
O

∑
k=1

〈wk,y j〉
})

, (10)
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where O is the number of output neurons that compete with each other and the scalar
value of the inhibition is optimal for μ = 1/O [134].

For the sake of simplicity and without loss of generality, we solve for O = 2. So we
can write the loss function as

min
w1,w2

(
1

2
〈w1,w1〉+ 1

2
〈w2,w2〉

+C
N

∑
j=1

max
{

0,1− r j
1

2
〈(w1−w2),y j〉

}
+ C

N

∑
j=1

max
{

0,1− r j
1

2
〈(w2−w1),y j〉

})
.

(11)

As already mentioned synaptic changes do not occur in a deterministic manner [152,
153, 154]. To solve the problem (9) one may chose a gradient of the primal as in
[161, 162, 163]. The gradient in this case is

∂E
∂wk

∣∣∣
yi
=

{
wk− C

2 riyi if riẑk(yi)≤ 1,
wk otherwise,

(12)

with k taking values 1 and 2. So the regularization term induces a continuous process
of synaptic removal that it is well known to improve the generalization ability of the
pattern recognition device. This is an important message in the sense that too much
memory allows learning all of the data samples used for training but then fails on a new
set of examples or stimulations. So a healthy level of memory removal boosts the ability
to induce an abstract model. The second term of the gradient indicates that when the
example is properly classified above some margin there is nothing to be done. On the
other hand, if the stimulus is not properly classified then the synaptic changes have to
be modified according to Δwk j ∝ y jri. In other words, the activity levels of the KCs and
the sign is determined by the reward signal. The main differences respect to the learning
rule in Eq. (7) is that when the stimulus is properly classified above a margin no further
changes are required in the connections.

CONCLUSION AND DISCUSSION

The honeybee has no more than a million neurons [150, 164]. 35% of those are in the
MBs, which is the main location of learning in the insect brain. Another 20% of those
are olfactory sensors, which gives a significant weight on the olfactory modality. Then,
in between the olfactory receptor cells and the MBs, the AL just constitutes a 2% of the
insect brain. This is the area where the information of the antenna is heavily compressed
and then relayed into the MB with a significant reduction in the activity levels. Why is
the AL is so important despite being son small compared to other brain areas? What is
it doing with the signal: extracting dynamical features, normalizing the activity levels,
decorrelating in time different stimulus? We do not know yet but our argument is that
to provide an answer to these questions we first need to understand how the MBs work
during learning and execution. Once we know, then we can determine aspects of the
AL processing that improve the performance in pattern recognition and eventually in
decision making.

113



Evolution and engineers. It is remarkable that when one asks engineers what prob-
lems need to be solved in pattern recognition of gases, they propose feature extraction
methods to interpret the spatio-temporal signal form the sensors and a classifier and re-
gressor to discriminate between gases and to estimate the concentrations [165, 166, 167].
The bioinspiration is not present in these arguments but yet the insect olfactory system
appears to be doing just that. Preprocessing the olfactory receptor signals to extract a
sparse code that will be passed to a classifier that resembles a support vector machine.
In addition computational models even using this seemingly small number of neurons
(a million) are extremely demanding in regular computers. Fortunately we also have
alternative simulation methods based on graphics processing units (GPUs). GPUs now
allow 10 to 100 fold speed-ups in simulations [168, 169] which makes the simulation of
insect brains in full size and real time a possibility, removing the biases of scaled-down
simplified models.

The MBs as SVMs. It is also remarkable that in contrast to the mainstream mindset
that considers Artificial Neural Networks (ANN) as biologically inspired, the reality
is that the paradigmatic back-propagation algorithm has yet to be found in the brain.
Support Vector Machines, on the other hand, that have become the gold standard of
pattern recognition due to its simplicity and nice properties during convex optimization,
are actually biologically plausible, fit perfectly in the general scheme of the insect brain,
and explains plasticity as a gradient of a loss function proposed by Vapnik [132]. An
expert in statistical learning theory that probably thinks that insects are annoying living
things rather than a fascinating puzzle of learning.

Role of Models in Neuroscience. Computational neuroscientists put incredible ef-
forts in building computational realistic models to bridge the gap between theory and
neural systems4. In the process of building these models they manage to reproduce a
large variety of experimental observations that later are often rendered with diminished
value due to the lack of predictive power, complexity of the systems and the models
themselves. Our approach has been: first to understand the function, which is odor dis-
crimination, pattern recognition and regression; second, to identify the neural architec-
ture that solves the problem; and, third, understand the neural code if data is available.
Then, taking that knowledge as constraints, we solve a pattern recognition problem and
determine what minimal and simple additional key ingredients are needed to complete
the task. We predicted for example strong inhibition in the output of the MB and Heb-
bian learning from the KCs to the output as it was later found. Another prediction derived
from this type of model is robustness. As we can see in Fig. 5 the MB model can sustain
heavy damage on the KCs without impairing the ability to classify incoming odors. Ob-
viously, if the Calyx is heavily damaged the ability to learn deteriorates, but the recall
power of previously stored memories is retained.

About time and Hebbian reversal. The question of how to use time effectively to
better solve classification problems is still puzzling. Even though we know that training
dynamical systems together with SVMs can improve performance of the classifiers, the
plasticity rules are fairly unrealistic from the biological point of view. Moreover, we

4 An inspection of ModelDB database illustrates this very clearly http://senselab.med.yale.
edu/modeldb/ListByModelName.asp?c=19&lin=-1
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still do not know whether Hebbian plasticity can actually be reversed in the presence
of dopamine or octopamine [170, 157], but from the model and pattern recognition
perspective the reversal of Hebbian learning needs to to be present to correct those
synapses that are providing the wrong output. So a reversal of the spike timing dependent
plasticity rule has to be somehow present when reinforcement signal like dopamine or
octopamine is activated.
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Tools, flies and what to do next
A. Gomez-Marin
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Abstract. In these brief notes addressed to students and researchers, recent advances of modern
neurobiology are discussed in the light of some of its challenges. I use fly larval chemotaxis as a
platform to debate about how much we are able to do with the available tools as opposed to how
little we actually understand what it means to decide.
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PACS: 87.19.L-, 87.19.lu, 87.19.lt, 87.19.lu, 87.19.Ic, 89.20.-a, 87.85.-d, 01.70.+w, 01.75.+m

Chemotaxis is a paradigm to study decision making. Orienting in a chemical environ-
ment requires a repertoire of computational abilities to transform sensory information
into motor action. In the fruit fly larva, odor-search behavior represents an active sam-
pling process more elaborated than the biased random walks of bacteria and worms, and
analogous to sniffing in rats and humans [1, 2, 3, 4, 5]. The Drosophila larva is capa-
ble of purposeful rich behaviors under the control of a nervous system whose general
anatomical layout is similar to, but yet far simpler than, that of vertebrates. The larval
brain consists of two hemispheres, each composed of approximately 1000 neurons, com-
pared to millions in mice and billions in humans. Its olfactory system is composed of two
bilaterally symmetrical nostrils, called dorsal organs, each hosting 21 olfactory sensory
neurons [6]. Olfaction in the fruit fly larva represents a trade-off between numerical sim-
plicity and behavioral complexity. Bilateral sensory input is not a necessary condition
for chemotaxis behavior [7], suggesting that temporal computations in such a miniature
brain can direct robust, efficient and adaptive orientation behaviors. Computer-vision
tracking systems allow to measure animal posture and movement in an automated fash-
ion and at high resolution [8]. By mapping the stimulus landscape to the position of the
olfactory organs, the sensory dynamics while crawling towards an attractive odor source
can then be inferred. Such accurate sensory-motor data provides a quantitative basis to
examine the algorithms that determine whether a maggot will decide to turn left or right.
The study of the mechanisms underlying active sensing during orientation maneuvers

represents an experimentally tractable entry point into the general problem of sensory
perception and motor control [9]. Together with chemotaxis, it has been applied in
other modalities such as phototaxis and thermotaxis [1, 10, 11]. Making use of the
detailed knowledge about larval anatomical and physiological properties, there is great
promise that testing extraordinary large collections of transgenic lines in behavioral
screens will identify sparse neural substrates or critical neurons mediating the observed
behaviors. Furthermore, electrophysiological recordings [12] and functional imaging via
genetically encoded calcium indicators [13] represent invaluable measurements of the
neural activity responsible for such computations and behavioral decisions. Incidentally,
functional imaging in behaving animals is just starting to be realized [14, 15]. Transgenic
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and transparent, the larva is an optimal system in which the recent advent of optogenetic
tools can be applied, allowing causal links to be established. By ectopically expressing
light-activated ion channels in specific neurons, neural activity can be manipulated
at single spike level without use of invasive methods [16]. Maximizing control and
maintaining realism, engineers have built virtual reality arenas where real-time tracking
and closed-loop stimulation gives us the opportunity to scrutinize, at an unprecedented
level, animal behavior and decision making [17]. These exquisite cutting-edge tools have
triggered a renaissance in genetic model organisms such as worms, flies, fish and mice.
But, what does it mean, to decide? This simple question seems to be either trivial

or extremely difficult to answer. Thoughts, actions, feelings, and nearly everything we
believe we are have a neural basis. As the tools to study the nervous system become more
and more sophisticated, we in fact approach more elusive, slippery, and controversial
topics. Concepts that in the past were circumscribed to pure speculative reasoning and
excluded from serious empirical research, now for the first time, may be amenable to
incisive scientific inquiry. What is consciousness? What are its neural correlates [18]?
If some animals are conscious, why are others not? How could unconscious matter give
rise to a conscious mind? Is it a difference of kind or degree? Is freewill an illusion
[19]? An oxymoron from the start? Perhaps reformulated as a biological trait, can it be
empirically revisited by modern neuroscience [20, 21]? Regardless whether I am free
or not, who am I? What are the neurobiological basis of agency, volition, and the self
[22, 23]? Can objective experiments be attributed to subjective experiences [24, 25]?
The answers to many of these questions require an evolutionary and developmental

perspective [26]. Why did animals evolve brains? The brain is one of the most complex
and remarkable information processing systems in nature. Still, it may have evolved,
not only to sense or process information, but primarily to generate actions and control
movement [27]. What is behavior, then? In the same way that action potentials define the
principal language for neural activity [28], is there an analogous universal descriptor for
behavior? Is behavior fundamentally continuous or discrete? For instance, what is the
degree of arbitrariness when classifying a larval trajectory segment as a turn or a run?
Are responses and actions qualitatively different? Brought to the extreme, is creativity
in essence a complex reflex? Animals exhibit a set of responses that are definitely hard-
wired, still behavior is variable between and within individuals. Same same but different,
should we not be looking beyond the mean for discovering the origins of phenotypic
variability? How is spontaneity generated [29]? Can stereotypical behavior emerge from
the dynamics of behavior itself [30]? Is the input-output view able to explain how
animals act, rather than react to the world [31]? Living organisms are obviously capable
of generating novel actions, never performed before. Is that choice or noise?
Are we machines or like machines [32]? The difference being subtle, the conse-

quences of confusing an analogy with its literal meaning can be bewildering, if not dan-
gerous. If worms and flies are complex and intricate organic hardware, what about mice
and men? Why would a machine then be unable to feel love, pain or guilt [33, 34]? May
your next generation iPhone need a lawyer to defend its rights? Indeed, some working
hypotheses are nowadays operating as scientific dogmas [35]. Regarding model organ-
isms, to what extent is that which we learn from a fly in the lab is informative about
humans? Is animal behavior in laboratories representative of that in the wild? And is
it wise to concentrate 99% of the research on 1% of the species? Coming back to bio-
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logical complexity, what is life [36]? A necessary process out of pure chance [37]? Is
life’s most inner secret really a curly thread of DNA [38]? Are the enduring mysteries
of the mind hiding within a complex circuit? According to the circuit doctrine, my con-
nectome should be who I am. But, what is a 1 to 1 scale map useful for? The whole
may be understandable, not despite the fact that we do not have all the details of every
single part, but precisely because of that [39]. In order to make sense of so much data,
powerful frameworks such as information theory or the theory of critical phenomena are
good candidates to comprise the essential and direct further experiments [40, 41, 42].
That depends on whether we are looking for exceptions or searching for principles [43].
In these times of crisis, we should ask ourselves who decides where funding goes and

under what criteria [44]. What is our return to taxpayers and is economic growth the
only acceptable metric to evaluate scientific impact in terms of benefits for society [45]?
Since lobbying has become a common and desperate practice, we could simultaneously
explore other avenues like open science. How do we reconcile competitiveness with
cooperativity [46]? In a world where resources are finite, is the emphasis on certain es-
tablished lines of research leaving small and creative projects under starvation? Budgets
reflect choices. Have we been asking certain questions simply because we are techni-
cally capable and to appease others? Many tools that until very recently were a luxury,
have become a necessity per se. Is the Homo sapiens involving into Homo habilis? Con-
cerning interdisciplinary science, are we literate, or at least interested, in the problems
of other research areas? What are the implications of decision making experiments on
medicine or law [47]? True multidisciplinary approaches have been reasonably success-
ful. However, integration of philosophical, sociological, ethical and historical considera-
tions is still lacking and seems daunting or of little value to many scientists. Possibilities
for progress are far from being exhausted. How many interfaces are we ready to accept
[48]? Are we willing to apply the scientific method to science itself?
What to do next? The above questions are not meant to be rhetorical or pop-

philosophy entertainments. They try to reflect the imbalance between how successful
we are in terms of what we can do versus how little we actually know. In my opinion,
many of these questions are not asked because they end up being consequential. The
reality that neuroscience paints appears to be in serious conflict with the actual beliefs
of the very same neuroscientists who spearhead it. And that incoherency is extensive to
other areas of science and society. I believe we should be educated to be critical, rather
than trained to be complacent. I also believe we can become creative individuals, be-
yond mere productive human resources [49]. In the face of the present situation, young
researchers need the courage to freely and fearlessly explore the very many exciting
paths neuroscience has to offer. As we step into the unknown [50], let us not accept
what is unproven, nor deny what is yet to be disproven.
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Abstract. In this study, we proposed a simple but physiologically plausible network model that can
reproduce both the sinusoidal electrical wave propagation and the spontaneous zero-lag synchro-
nization experimentally observed in the cat spinal cord. Our model enhances the hypothesis of the
coexistence of two alternative assemblies in the cat spinal cord.
Keywords: spinal cord network; sinusoidal wave propagation; zero-lag synchronization.

INTRODUCTION

A sinusoidal electrical wave propagation called sinusoidal cord dorsum potentials
(CDPs), that travels rostrocaudally along the cat spinal cord during �ctive scratching,
was experimentally observed by Cuellar et al. [1]. Pérez et al. [2] suggested a the-
oretical model to account for the wave propagation and its possible fairules. These
authors showed that the activity of the central pattern generator (CPG) and its followers
represent the sinusoidal CDPs.
The spontaneous electrical activity of a neuronal assembly in the dorsal horn was

observed in the lumbar spinal cord of cats. Such a characteristic electrical potential was
de�ned with the term of negative CDPs. In a study of Mark and Gasteiger [3], it was
suggested that these nCDPs were generated by internal effect of spinal cord mechanisms.
Recent studies performed by Manjarrez et al. [4, 5] showed that the large amplitude of
nCDPs, that was found in the dorsal grey matter by Gasteiger and Ichikawa [6], is caused
by the synchronous activation of an assembly of dorsal horn neurons. Furthermore, the
nCDPs lasted for 40–60 ms and had characteristic low frequency components (3–20
Hz), so it was assumed that the highly synchronous activity of the dorsal horn neural
assembly induced these nCDPs. Interestingly, Cuellar et al. [1] observed that the nCDPs
were superimposed over the sinusoidal electrical wave propagation and not correlated
with any phase of the wave propagation. These facts allowed us to hypothesize the
coexistence of two alternative assemblies in the cat spinal cord. However, there is no
model accounting for this spontaneous activity.
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In this study, we modeled a spinal cord network reproducing both the wave propaga-
tion and the zero-lag synchronization and uni�ed their theories in the cat spinal cord.

MATERIALS, METHODS AND RESULTS

In order to reproduce two experimentally observed interesting phenomena, that are both
the sinusoidal electrical wave propagation and the spontaneous zero-lag synchroniza-
tion, we constructed a spinal cord network as depicted in Fig. 1A. Our network model
consisted of twelve CPGs of which the set from third to tenth covered the segments
L4–S1 of the spinal cord. These CPGs were connected by excitatory synapses with their
neighbors in both upward and downward directions. The connectivity of assemblies in a
CPG was the same as in Ref. [2] (See Ref. [2] for details of CPG). In a CPG, both excita-
tory and inhibitory interneuronal assemblies included twenty neurons. Half of these neu-
rons were bursting and the others were spiking in the excitatory assemblies, while there
were only bursting neurons in the inhibitory assemblies. Within an excitatory assembly,
neurons were randomly connected with each other with 95% of connection probability
but there were no connections within an inhibitory assembly. We allowed the neurons
between the connected assemblies in a CPG to have synaptic connections with 90%
connection probability. The CPGs arranged along the cat spinal cord interacted via exci-
tatory connections with excitatory assemblies and there were two types of connections:
feedforward and recurrent connections. Only bursting neurons were permitted to have
feedforward connections and the connections projected to the bursting neurons in the
next forward CPG. In contrast to the feedforward connections, recurrent connections
were restricted to laying only between spiking neurons. The recurrent connections were
able to project in both forward and backward directions until the third nearest neighbors.
Introducing these two types of connections makes it possible to embed two alternative
assemblies, however, the spiking and the bursting neurons were locally interacted with
each other in excitatory assemblies. The connection probability of neurons between the
CPGs was set to 85%. Our model had locally dense connectivity but kept globally sparse
connectivity.
To simulate the neuronal activity, we used a square-bursting version of the Morris-

Lecar neuron model [7] whose activity is given by

C
dv
dt
= I−gCam∞(v)(v−VCa)−gKw(v−VK)

−gLm∞(v)(v−VL)−gKCaz(y)(v−VK)− Isyn, (1)
dw
dt
= φτ(v)(w∞(v)−w), (2)

dy
dt
= ε(−μgCam∞(v)(v−VCa)− y), (3)

where v, w, and y describe the membrane potential, the slow recovery variable, and the
calcium concentration. The variable C represents the membrane capacitance per unit of
area. In this conductance-based neuron model, four ionic current is taken into account:
the calcium, potassium, leakage and calcium-dependent potassium channels whose
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FIGURE 1. Spontaneous zero-lag and propagating synchronization in cat spinal cord. (A) Schematic
of our proposal of a spinal cord network. Twelve CPGs were assumed to be arranged along the cat spinal
cord. The excitatory assemblies of third, sixth, and tenth CPGs in the PF layer projected to the extensor
and the �exor populations. (B) The mean potential of the excitatory populations in the RG layer from the
third to tenth CPGs. (C) Power spectra of (B) in the zero-lag synchronization period. (D) The in�uence of
distances on the correlation between intersegments in the zero-lag synchronization term. The mean cross-
correlation of the mean potentials between pairs of CPGs are plotted. The mean values were calculated
from all possible pairs. The vertical bars stand for the standard deviation.

corresponding conductances are gCa, gK, gL, and gKCa. When introducing calcium-
dependent potassium channel makes the model reproduces the bursting behavior. The
parameters μ and ε control the dynamics of this channel. The parameter μ represents the
ratio between the surface area of the neuron and the calcium volume, and the parameter
ε is the product of the calcium degradation rate and the ratio of free to total calcium. The
nonlinear functions governing the dynamics of the ionic current in Eqs. (1)–(3) have the
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following forms:

m∞(v) =
1
2

(
1+ tanh

(
v+V1
V2

))
, (4)

w∞(v) =
1
2

(
1+ tanh

(
v−W1
W2

))
, (5)

τ(v) = cosh
(
v−W1
2W2

)
(6)

z(y) =
y

1+ y
. (7)

The parameters V1, V2, W1, and W2 are constant values, and φ determines the relative
time scale of the slow recovery variable to the membrane potential.
The synaptic current to each neuron is described as

Isyn =
∑
i
gsyni ri(v−Es), (8)

where gsyni is the synaptic conductance and Es is the synaptic reversal potential [8]. The
variable ri represents the fraction of bound receptors whose kinetics are described by

ri =
⎧⎪⎨⎪⎩1− e

−αt t ≤ ton,

(1− e−αton)e−β(t−ton) t > ton,
(9)

where α and β are the time constant determining the rise and decay of the fraction, and
ton represents the time to reach the peak value of the fraction of bound receptors. All
parameters in Eqs. (1)–(9) are concluded in Tab. 1.
All the neurons in the network were always stimulated by weak noisy excitatory input

following a Poisson distribution with the mean �ring rate of 10 Hz, inducing that spiking
neurons to �re asynchronously between 1 and 2 Hz in the absence of connections.
Afterwards, the bias current of bursting neurons from the forward third CPG was slightly
increased by 0.8 μA/cm2 to evoke the incoming input during the �ctive scratching as
show in Fig. 1B.
Before the increase of the bias current, peaks of the mean potentials simultaneously

appear, indicating that the activity of neuronal assemblies were highly synchronous
between intersegments. Similar to the experimental data [4, 9, 5], however the mean
potentials �uctuate and the zero-lag synchronization is irregular, therefore, the lack of
the synchronization of some CPGs can be observed as well. After the bias increase, the
proposed network began to exhibit propagation of electrical waves along the cat spinal
cord. Our model qualitatively reproduced two characteristic phenomena experimentally
observed in the cat spinal cord.
Manjarrez et al. [4] showed that the electrical potential during the zero-lag synchro-

nization had the characteristic frequency components. In their power spectrum analysis,
the largest peak was located below 10 Hz and there were some peaks until 20 Hz. Our
spectrum analysis of the mean potential during the zero-lag synchronization captures
these properties in [4] as shown in Fig. 1C.
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TABLE 1. Parameters of neuron (left) and synapse (right) models.

Parameters Bursting neurons Spiking neurons

C 5 μF/cm2 20 μF/cm2

gCa 4 μS/cm2 4 μS/cm2

gK 8 μS/cm2 8 μS/cm2

gL 2 μS/cm2 2 μS/cm2

gKCa 0.25 μS/cm2 0 μS/cm2

VCa 120 mV 120 mV
VK −84 mV −84 mV
VL −60±0.01 mV −60±0.01 mV
V1 1.2 mV 1.2 mV
V2 18 mV 18 mV
W1 12 mV 12 mV
W2 17.4 mV 17.4 mV
φ 0.92 s−1 1/15 s−1
ε 0.0175 s−1 0 s−1
μ 0.0149 – 0.015 s−1 0 s−1
I 43 μA/cm2 39.7 – 39.9 μA/cm2

Parameters

α 0.33 ms−1
β 0.2 ms−1
ton 1 ms
gbur→ex 0.1 μS/cm2

gspk→ex 0.01 μS/cm2

gbur→inh 0.12 μS/cm2

gspk→inh 0.01 μS/cm2

ginh→ex 0.025 – 0.05 μS/cm2

grec 0.11 μS/cm2

gff 0.1 μS/cm2

gnoise 0.1 μS/cm2

Es 0, −80 mV

A sequential analysis of Manjarrez et al. [5] found that nearby neuron pairs had higher
correlated activities and the correlation decreased as distance increased. Our correlation
analysis in Fig. 1D shows the consistent results with the experimental data in Ref. [5].

CONCLUSION

In this study, we modeled not only the propagation of traveling electrical waves but also
the spontaneous zero-lag synchronization experimentally observed in the cat spinal cord.
From the model we observed both phenomena, and our model reproduced many proper-
ties of experimental data during the zero-lag synchronization. Our results enhanced the
hypothesis of the coexistence of two alternative neuronal assemblies in the cat spinal
cord, that were suggested in previous studies. Our two phenomena reproducible model
still has room for improvement of its performance by introducing the bilateral monosy-
naptic re�ex reported by Manjarrez et al. [10], which is our future work.
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Modelling the anesthetized brain with ensembles
of neuronal and astrocytic oscillators

T. Hansard, A. C. Hale and A. Stefanovska

Department of Physics, Lancaster University, Lancaster, LA1 4YB.

Abstract. We propose a minimalistic model of the anesthetized brain in order to study the gener-
ation of rhythms observed in electroencephalograms (EEGs) recorded from anesthetized humans.
We propose that non-neuronal brain cells—astrocytes—play an important role in brain dynamics
and that oscillation-based models may provide a simple way to study such dynamics. The model
is capable of replicating the main features (i.e. slow and alpha oscillations) observed in EEGs. In
addition, this model suggests that astrocytes are integral to the generation of slow EEG (∼0.7 Hz)
rhythms. By including astrocytes in the model we take a first step towards investigating the interac-
tion of the brain and cardiovasular system which are primarily connected via astrocytes. The model
also illustrates that rich nonlinear dynamics can arise from basic oscillatory “building blocks” and
therefore complex systems may be modelled in an uncomplicated way.

Keywords: computational neuroscience; Kuramoto; synchronization; phase dynamics; EEG; anes-
thesia.
PACS: 87.18.Nq, 87.19.L-, 87.19.le, 87.19.lj, 87.19.lk, 87.19.lm, 87.19.ln, 05.45.Xt

KEEPING IT SIMPLE

Scientific study commonly begins with the simple aspects of a system and only when
these are well understood does one consider the necessity of additional details. As
such we propose that oscillatory membrane potential (MP) dynamics underlie neuronal
firing and investigate how such oscillations may produce the main features observed in
the electroencephalogram (EEG) recorded from anesthetized humans. We assume that
the MP is oscillating and that cellular interaction modifies these rhythms. Hence we
investigate how the dynamics of different neuronal and astrocytic groups interact and
how they are altered by environmental changes, as in anesthesia. We consider that action
potentials (APs) are just a response to above-threshold MPs, but oscillations underlie
activity at the scale of cells, cell clusters, brain regions and EEG recordings [1, 2]. Thus
the MP dynamics of each cell is represented in the model by a self-sustained phase
oscillator.
In addition we consider the role of astrocytes in brain dynamics. For every neuron in

the human brain there may be as many as 10 astrocytes [3] however astrocytes do not
extend distal processes or generate APs [3], therefore their role in generating the elec-
trical activity of the brain is often overlooked. Recent research is elevating this position
by showing that astrocytes possess many of the same neuroreceptors and neurotransmit-
ters as neurons; extend processes which envelop synapses by which neuronal commu-
nication is modulated; alter blood flow via processes which encircle blood vessels; and
control the delivery of energy substrates (primarily lactate) to neurons [3]. In addition
evidence suggests that astrocytes exhibit spontaneous infra-slow oscillations at around
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0.01 Hz [4, 5] and through the numerous neuron-astrocyte interaction routes available
it is likely that these oscillations impact on neuronal dynamics. Indeed, in vitro exper-
iments have shown that these spontaneous astrocytic rhythms evoke inward currents in
neurons which have the same time-scale as slow oscillations [4].

THE EFFECTS OF ANESTHESIA ON BRAIN RHYTHMS

The induction of unconsciousness by general anesthetics is associated with decreased
neuronal activity and hence a slowing of EEG dynamics [6, 7, 8, 9]. The awake state
is associated with predominant cortical oscillations at high-frequencies (i.e. >20 Hz),
while states of unconsciousness are associated with prominent slow rhythms (i.e. <20
Hz) for which power increases with depth of unconsciousness [6, 9]. Furthermore,
narrow-band alpha (∼10 Hz) activity [10, 8] and slow oscillations (∼0.5 Hz) [2] have
been reported during anesthesia.

AN OSCILLATION-BASED MODEL OF THE BRAIN

The model is explicitly based on oscillatory dynamics by utilizing the Kuramoto model
[11]. The phase velocity φ̇k is described as a function of natural frequency ωk and the
phase difference φ j−φk between the kth oscillator and all other N oscillators belonging
to the same ensemble:

φ̇k(t) = ωk+
A
N

N

∑
j=1

sin(φ j(t)−φk(t)) for k ∈ 1..N and φ j,k ∈ −π . . .π , (1)

where the strength of coupling between oscillators is given by A and the natural fre-
quency ωk is drawn from a normal distribution centred on a mean ω0. The phase velocity
φ̇k, which has units of radians/second, may be compared to frequency characteristics in
data by a conversion of units: φ̇k/2π = fk, where fk is measured in Hz.
Sheeba et al. have previously used the Kuramoto model (1) to model the rat brain

during anesthesia [12]. By including astrocytes we extend this work to model the anes-
thetized human brain. Different neuronal groups have been identified as exhibiting dif-
ferent intrinsic frequency dynamics [1, 9] and thus a given neuronal group may be rep-
resented by an ensemble of oscillators with a specified natural frequency distribution.
As shown in Fig. 1, the model consists of eight ensembles representing four astrocytic
groups (A1–A4), two cortical groups (C1 and C2), the thalamus (T) and the thalamic
reticular nucleus (R). Coupling is global within each ensemble and between connected
ensembles. The inhibitory action of thalamic reticular neurons on thalamic neurons is
approximated by an addition to the equation giving frequency dynamics of T:

χ =C
KR

NR
NR

∑
j=1
φ̇Rj , (2)
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where C is a negative constant and the subscripts R indicate variables of ensemble R.
Thus the mean frequency of R is deducted from the frequency of each oscillator in T
and hence by varyingC the degree of thalamic slowing may be altered.
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FIGURE 1. A schematic of the eight-ensemble brain model, comprising four astrocytic ensembles (A1–
A4) and four neuronal ensembles (C1, C2, T and R). Frequencies indicate mean values of the natural
frequency distribution for each ensemble.
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FIGURE 2. The frequency distribution averaged over time for one simulation showing that the model
can exhibit dynamics in the slow (0.1-1 Hz), theta (3-7 Hz) alpha (7-15 Hz) and beta (15-20 Hz) bands.

FIGURE 3. The time-frequency dynamics of the two cortical ensembles displaying distinct UP/DOWN
dynamics similar to the slow oscillation. Gradient bars show the number of oscillators (out of 500 per
ensemble) which express a given frequency at a given time.
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This minimalistic approach produces a model by which one may focus on inves-
tigating how the different oscillatory dynamics of each ensemble interact to produce
synchrony at different frequencies and thus generate the EEG. Simulations were per-
formed for a range of coupling strengths. Parameter values that gave dynamics corre-
sponding with EEG data and literature also corresponded with expectations (e.g. weak
inter-thalamic connections but strong corticothalamic and thalamocortical connections).
As shown in Figs. 2 and 3, the model exhibits the predominant characteristics of the
human EEG during anesthesia: slow oscillations (0.1-0.8 Hz) and pronounced narrow-
band alpha oscillations (7-15 Hz). Furthermore, the presence of slow oscillations in the
simulations (shown in Fig. 3) were a product of the interaction between astrocytic and
neuronal ensembles. Increasingly slow oscillations resulted from of simulating an in-
creased anesthetic depth, corresponding with experimental evidence [13].

SUMMARY

We present a model which illustrates that oscillations may be used to investigate the
generation of EEGs from microscopic dynamics. The model replicates dynamics seen in
EEGs recorded from anesthetized humans and simulation of increased anesthetic depth
by alteration of the coupling between astrocytic and neuronal oscillators enhances the
slow oscillation, thus implicating the astrocyte-neuron interaction in the generation of
this rhythm. The model facilitates future investigations of the way in which the brain
and cardiovascular system interact via astrocytes.
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Modeling state transition of hippocampal local
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Abstract. Here we propose a possible mathematical structure of the state transition of the hip-
pocampal local field potential (LFP) between theta rhythm and large irregular amplitude activity
(LIA) in terms of nonlinear dynamics. The basic idea is that the alternation of the state between
theta rhythm and LIA can be interpreted as a bifurcation of the attractor between a limit cycle and
chaotic dynamics. Tsuda et al. reported that a network composed of simple class 1 model neurons
connected with gap junctions shows both synchronous periodic behavior and asynchronous chaotic
behavior [1]. Here we model the network of hippocampal interneurons extending their model. The
network is composed of electrically coupled simple 2-dimensional neurons with natural resonant
frequency in the theta frequency. We incorporate a periodic external force representing the medial
septal afferent. The system converges on a limit cycle under this external force, but shows chaotic
dynamics without this external force. Furthermore, the external noise realized rapid alteration of the
state obeying the change of the amplitude of the septal input.
Keywords: chaos; gap junction; diffusion; hippocampus; local field potential.
PACS: 87.19.lj

The states of the hippocampal LFP are divided into mutually exclusive states. One of
them is the theta rhythm, which is a highly periodic pattern with frequency range around
4-12 Hz. The theta rhythm appears in attentive states described by the subjective terms
such as "voluntary," "preparatory," "exploring," or "orienting" [2]. Yet another state of
the hippocampal LFP is the large irregular amplitude activity (LIA), which occurs when
the animal’s behavior is characterized as immobility, sleeping, or grooming.
The medial septum-diagonal band of Broca (MS-DBB) is assumed to be the crucial

structure for the generation of the hippocampal theta rhythm. Lesion or inactivation of
MS-DBB abolishes the theta rhythm in the hippocampus. The periodic activity in the
theta range frequency in the MS-DBB precedes the theta rhythm in the hippocampus.
According to those observations, the MS-DBB is assumed to be playing the role of
pacemaker of the theta rhythm. On the other hand, considerable amount of studies show
that there are local rhythm generators in the hippocampus itself [3].
Recent studies show the existence and functional significance of gap junctions in the

hippocampus [6, 7, 8]. Theoretical studies also suggest that electrical coupling have
profound effects on the dynamics of the neural network. Tsuda et al showed that diffusive
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Hippocampus

interneurons

Medial septum

Iseptum(t)=a sin(ωt+φ0)+I

FIGURE 1. The schematic diagram of the network architecture. The main part of the model is the
network of interneurons coupled by gap junctions with each neighbors.

coupling realized by gap junctions between class 1 neurons induces chaotic dynamics
[1]. In this model, both periodic dynamics and chaotic dynamics are realized with a set
of fixed parameters, and these two states appear alternately. Katori et al showed that
alternations between synchronous and asynchronous oscillatory state can be realized
with gap junction-coupled simple conductance-based model neurons [4]. We proposed
[5] a network model of interneurons of the hippocampus using class 1 neurons mutually
coupled with electrical synapses, extending the model proposed by Tsuda et al.. We
incorporated the input from the MS-DBB as a periodic external current and showed that
the dynamics of the hippocampal inhibitory network is controlled by entrainment, which
is in accordance with experimental observations.
In the present study, we show that the incorporation of additional external noise

realizes rapid alteration obeying the change of external septal input. Figure 1 illustrates
the schematic diagram of the network architecture. The model of the network is given
by the following equations:

dxi
dt =−y−μx2i (xi−

3
2
)+ Ji+ Iseptum(t)+Dξ (t), (1)

dyi
dt =−y+μx2i , (2)

Iseptum(t) = a · sin(ωt+φ0)+ I, (3)

Ji =

⎧⎨
⎩
gGJ(x2− x1) (for i= 1),
gGJ(xi+1+ xi−1−2xi) (for i= 2, ...,N−1),
gGJ(xN−1− xN) (for i= N),

(4)

where xi is the membrane potential, and yi is the inactivating variable of the ith neuron,
Ji is the sum of the currents from neighboring neurons through the gap junctions, μ is
a parameter of the model, and the Iseptum(t) is the external input representing the septal
afferent, Dξ (t) is Gaussian white noise with zero mean and standard deviation of D.
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FIGURE 2. Bifurcation induced by changing the amplitude of periodic external force. The upper traces
show the time evolution of variable x of all the neurons in the model. The lower trace shows the external
force. The model behavior changes into synchronous state following the change of external force, as is
observed in the physiological brain. μ = 1.65,N = 30,gGJ = 0.8,D= 0.005,a= 0.02, I = 0.00385,ω =
0.1318.

Figure 2 shows the simulation result of the model, when the amplitude of the septal af-
ferent is changed as in the real brain. The system shows asynchronous chaotic dynamics
without the septal input. By increasing the amplitude of the septal afferent, the system
undergoes a bifurcation and converges on a limit cycle. When the amplitude of the septal
input decreases, the orbit escapes from the limit cycle rapidly because the small noise
perturbs the orbit slightly from the limit cycle.
We incorporated external noise to the model network of the hippocampal interneurons

with class 1 neuron models connected with the diffusive couplings and reproduced
the transition between synchronous state and asynchronous state. The weak diffusive
couplings between the oscillators induce instability on the all-synchronized periodic
orbit, but the periodic external force entrains the system and realizes a stable limit cycle.
The external noise realized rapid alteration of the state obeying the amplitude of the
external input. We suggest that this corresponds to the experimental observation that the
septal periodic afferent entrains hippocampus to the theta rhythm. With our model, the
transition of the state of hippocampal LFP can be naturally interpreted as a bifurcation
between a limit cycle and chaotic dynamics in terms of dynamical systems theory.
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an auditory model
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Abstract. In this work we develop an analytical approach for calculation of the all-order interspike
interval density (AOISID), show its connection with the autocorrelation function, and try to explain
the discovered resemblance of AOISID to the power spectrum of the same spike train.
Keywords: power spectrum; autocorrelation; inter-spike interval density.
PACS: 87.19.lc, 87.19.ll, 43.80.+p

INTRODUCTION

As it is well-known, the Fourier transformation allows imaging a signal as a sum of
sinusoidal components. In case of a spike train, it seems to be not consequent to consider
a sequence of sharp pulses as a sum of smooth sinusoids. Apparently, this is one of the
reasons why neurophysiologists use the histogram of interspike intervals, in particular,
all-order interspike interval density (AOISID), more often, then the power spectrum
density (PSD). The power spectrum of a short in time pulse inevitably contains high
frequency components, which do not have anything to do with interspike intervals. So,
the spectrum provides just the redundant information about a pulse shape, which does
not play a role in an inter-neuron communication. Actually, in the past, before the fast
Fourier transformation algorithm invention and its wide applications, the usual tool for
the signal analysis was a correlometer providing the autocorrelation function (ACF),
which is stated [1] to be directly connected with AOISID.
In the presented work we describe a quite unexpected connection between ACF and

PSD observed in the auditory systemmodels. The connection between ACF and AOISID
is also rigorously derived here.
The presented study has been motivated by the discovery of the resemblance of the

PSD at the output of a simple neural model [2] to the AOISID at the output of much more
complex model [1] of the same auditory system of mammals with similar parameters of
input signals (Fig. 1A). The problem of the analysis of this resemblance was that we
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FIGURE 1. Resemblance of PSD to AOISID: A) PSD from Ref. [3] vs. AOISID from Ref. [1]; B) PSD
and analytical AOISID from Eq. (2) for the same spike train.

had analytical expressions for the PSD of the simple model, but did not have ones for
the AOISID. As per the complex model, here we had only AOISID plots and a not clear
enough statement about the direct correspondence between AOISID and ACF.

MODEL DESCRIPTION

The mentioned PSD has been calculated for the model, which is described in details
in the paper [2]. It consists of three Leaky Integrate-and-Fire neurons, two of which
are the input (sensory) elements and are driven by sinusoidal signals, and the third
one is the output element receiving spikes from the sensory ones. Each neuron is also
influenced by white Gaussian noise. In the previous studies, the characteristics of an
output spike train of the model were analyzed at various combinations of input sinusoids’
frequencies Ω1,Ω2, namely, the combinations, which are typical for harmonious and
dissonant musical chords. It was shown [2, 3] that in a case of commensurable input
frequencies, the system may be described by the hidden Markov chain with the finite
number of states and the transition matrix {πi j}. At the moment of the output spike
generation, the system switches between the states. If the target ith state is known, then
the distribution ρ(i)(t) of a time interval until the next output spike is also known. In the
paper [3] the deriving procedure for the PSD formula is provided, given the matrix {πi j}
and the distributions ρ(i)(t).

AOISID AND ACF

In the paper [1], the following AOISID calculation procedure is proposed. First, all the
first-order interspike intervals (ISIs) are extracted from the set of a number of parallel
output spike trains. Then, the second-order ISIs are extracted, i.e., the sums of all pairs
of consequent intervals. These second-order ISIs are added to the same array as the first-
order ones. In the same way, the third-, fourth-, etc. order ISIs are collected in one place
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and then distributed into histogram bins. Despite the name of the characteristics, surely,
this is not the “All-order” ISI distribution, because the maximal order of a considered
ISI is always limited.
Let us consider some sequence of random intervals. The rigorous mathematical ap-

proach to the All-Order ISI Distribution requires understanding of the nature of the ran-
dom quantity, which is being distributed. It is not hard to make sure that in our case the
random quantity is the sum of random number N of random intervals t1, t2, t3, . . .:

τ = ∑N
n=1tn, (1)

where N ∈ {1,2,3, . . . ,Nmax} and tn ∈ (0,+∞). For example, defining Nmax = 2 and
using the formula of the total probability, one can obtain the probability density of τ
as Ψ2(t) = P(H1)ρ1(t)+P(H2)ρ2(t), where H1,H2 are the mutually exclusive events
of having one or two addends in the sum Eq. (1), respectively; P(H1),P(H2) are their
probabilities; ρ1(t) is the probability density of one interspike interval t1 to be in the
delta-neighbourhood of t; and ρ2(t) is the same probability density for the sum of
two consequent intervals t1+ t2. Assuming P(H1) = P(H2), what, at least, is not in
contradiction with the procedure of Ref. [1], we obtain Ψ2(t) = [ρ1(t)+ρ2(t)]/2. In
the general case, this formula allows inducing the following one:

ΨNmax(t) =
1
Nmax

Nmax
∑
n=1

ρn(t). (2)

Here, the probability density ρ2(t) is calculated as the integral:
∫ t
0 ρ(t1, t− t1)dt1, where

ρ(t1, t2) is the joint probability density for the consequent intervals t1 and t2. Analo-
gously, ρ3(t) =

∫ t
0 dt1

∫ t−t1
0 ρ(t1, t2, t− t1− t2)dt2, etc.

In order to find a connection with the autocorrelation function, one should refer to the
paper [4], where the following expression is proposed for ACF:

K(τ) = f 2
[
δ (τ)+∑∞

n=1Wtn(|τ|)−1/T
]
/T. (3)

Here, f and T are some constants; δ (t) is the Dirac delta-function; and the quantity
Wtn(|τ|) is just the same as ρn(τ) in the Eq. (2). Hence, one may assert the proportionality
between ACF and AOISID, but not the identity.

AOISID AND PSD

The problem of ρn(t) calculation in the Eq. (2) has been solved in the aforementioned
case (see “Model description”) with the same approach as in Refs. [3, 5], resulting
in the AOISID depicted in Fig. 1B. Obviously, there is a resemblance between the
top panel and bottom panel plots. Actually, generation of input frequencies’ multiples
(here Ω1/Ω2 = 5/4) in the power spectrum of the output signal of a nonlinear system
is a well-known phenomenon in physics. So, it is interesting to understand, why the
temporal characteristics Ψ(τ) behaves in the same manner with respect to the periods
T1,2 = 2π/Ω1,2? The other interesting question arises, if one remembers about the

140



direct connection between ACF and PSD through the Fourier transformation. Indeed,
is there any advantage in usage of a system with a signal having similar PSD and ACF?
However, first of all: is this similarity typical for the brain subsystems, or this is just the
negligible particular case? The theoretical research is in progress, and the experimental
contribution is welcome and will be much appreciated.
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Towards holographic “brain” memory based on
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Abstract. The holographic conceptual approach for cognitive processes in human brain is inves-
tigated by neuroscientists due to the ability of holography to describe sophisticated phenomena of
human perception and cognition. In this work we suggest a new mathematical description for Pri-
bram’s holographic or “holonomic” representation approach for the mind. Namely, we consider:
(i) randomization of information, and (ii) Walsh-Hadamard spectral representation of holograms,
rather than the well-known Fourier transform representation. The randomization reflects the belief
that perceptual processes are not direct, but depend on the perceiver’s expectations and previous
knowledge as well as the information available in the stimulus itself. The use of Fourier transform
and in our case Walsh-Hadamard transform reflects the possibility that each neuron or group of
neurons encode some information about the entire image rather than the whole information about a
part of the image. We demonstrate that the Walsh-Hadamard transform has benefits over the general
Fourier transform. The encoding is performed on randomized information that is then represented
by a set of spectral Wash-Hadamard coefficients that have holographic properties. Namely, any
portion of the set of coefficients defines a “blurry image” of the original data. The values of the co-
efficients of the Walsh-Hadamard transformation are distributed approximately normally when the
information is randomized, ensuring, with high probability, that growing sets of coefficients implies
a monotonic gain of information. Moreover the randomization of the original information yields
robust code that is able to cope with missing coefficients. The bridge between the randomization
and holographic encoding with the well-known holographic human brain assumption may bring an
interesting interpretation of the perception phenomena. In particular, holographic encoding fits the
mystery of the human memory encoding, where damage of portions leaves a blurred image and
memories. Finally, we give an example of a simple implementation of our approach using neural
networks.

Keywords: holographic memory; Walsh-Hadamard; brain; neural network.
PACS: 87.19.lv

HOLOGRAPHIC BRAIN

The Holographic brain theory by Karl H. Pribram [1, 2], suggests that the brain holds
memories in a Holographic manner. In a hologram, the data is not localized but dis-
tributed. Each part of the holographic recording film contains some information about
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William Frankel Center for Computer Sciences, Israel Science Foundation (grant number 428/11) and
Cabarnit Cyber Security MAGNET Consortium.
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the entire image. Thus, reconstruction by a small piece of the holographic recording film
results in a noisy version of the entire original image [3], as opposed to a classic pho-
tograph where holding a small piece of the film results in a sharp image of the specific
piece. In the brain, local damage in a small part of the cortex may result in “graceful
degradation” of memories rather than the complete loss of a specific memory. Experi-
ments demonstrating the fact that the data in the brain is not localized go back to the
1920’s where Karl S. Lashley was not able to completely abolish rats maze-habits by
removing parts of their brain. The degradation was the same without correlation to the
location of the lesion [4].

HOLOGRAPHIC MEMORY USING WALSH-HADAMARD
TRANSFORM

A Hadamard matrix is a n× n orthogonal matrix with entries in −1,1. The Walsh-
Hadamard matrix is a specific Hadamard matrix [5]. The Walsh-Hadamard transform
(the process of multiplication by a the Walsh-Hadamard matrix) is a holographic trans-
form in a sense that each coefficient (entry in the output vector) is a result of a simple
computation (additions and subtractions) that includes all the entries of the original input
vector (each entry in the matrix is either 1 or −1 and multiplying by the matrix is equiv-
alent to additions and substructions). Thus, each coefficient contains some information
about all the entries in the input vector. Moreover, each entry in the input vector has
the same weighted effect on each coefficient. Due to the fact that the Walsh-Hadamard
transform can be calculated with additions and subtractions only, it can be very easily
implemented by the simplest neural model whereas other holographic transforms such
as discrete fourier transform require more complicated neurons or a more complicated
network of simple neurons, for example, Velik [6] used linear threshold neurons. Fig-

ure 1 shows the Walsh-Hadamard transform on a {−1,1}8 vector. The output vector
is the result of multiplication of the input vector by the Hadamard matrix. The input
vector can be reconstructed from the output vector by multiplying the output vector by
the transposed matrix and dividing each value by 8. In case a coefficient is corrupted,
the resulting vector after reconstruction of the input vector from all the coefficients will
contain minor errors (small change in the value) in all the entries rather than major er-
rors (large change in the value) in part of the entries. This can be regarded as graceful
degradation or blurriness. This example works for an input vector with integer or real
values. For a binary input vector, there is no distinction between a minor and a major
error because the only possible error is a bit flip. In this case we define blurriness as
uniform distribution of the errors, namely, errors in the reconstructed input vector are
uniformly distributed over the entries.

The well ordered charactarisics of the Walsh-Hadamard matrix may, in some cases,
cause a pure distribution issue. A low entropy input vector in −1,1n will result in an
coefficients vector with poor coefficient distribution, namely, the coefficients vector
will contain a few relatively large coefficients and a lot of zeros. in this case, erasure
of one of the few large coefficient will result in a major change in the reconstructed
original vector. This may occur because a well ordered input vector will have a high
correlation with one of well ordered columns in the Walsh-Hadamard matrix, namely,
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FIGURE 1. Walsh-Hadamard transform on a {−1,1}8 vector.

the input vector will have a high amount of indices that have a common value with the
corresponding indices of a specific column. This will result in a large coefficient because
a large amount of multiplication result will be positive. Due to the orthogonality of the
columns in the Walsh-Hadamard matrix, the higher the correlation with one column
is, the multiplication with the other columns will be close to zero. Assuming that real
data has low entropy and noise has high entropy, we suggest normalizing a binary input
vector by xoring it with a random input vector. In case of an input vector in {−1,1}n
the normalization can be done by multiplying each entry by the corresponding entry in
a random vector in {−1,1}n. After reconstruction, the result will be xored or multiplied
again to receive the original vector. The randomization process is good for coefficient
erasure. this is not the case for errors such as bit flips where the weight of an error is
not connected to the original coefficient size, for example, in binary representation, a bit
flip may add or subtract 2k to the coefficient with probability that is not affected by the
coefficient’s original value.

The holographic model we suggest starts with xoring the original data with a random
binary vector (or multiplying by the entries of a vector in {−1,1}n) where the probability
of a bit value 0 or bit value 1 is 0.5. Many researches consider various types of sparse
coding of images projected to retina, which produce decorelated neurons firing signals
in cortex [7], thus we assume that some kind of randomization of the sensor information
(visual, in particular) of this type may occur in the brain. After the said normalization,
we apply Walsh-Hadamard transform on the xored vector and save the output vector in
memory. In order to reconstruct the original vector, we simply apply Walsh-Hadamard
transform again, divide every entry of the result by the original length of the output
vector, round the entries’ values to the closest binary or−1,1 value and xor (or multiply)
the result with the same random vector. The use of an erroneous coefficient fetched from
the memory results in blurred version of the original vector.

The redundancy of neurons in the brain’s memory is well-known [8]. One of the
benefits of redundancy in the brain may be the ability to correct errors. Death of neurons
may cause errors in stored memories. Thus, we suggest to incorporate an error correction
technique in the holographic memory, expanding the work of Dolev et al. [9] that
concentrated on erasure. The suggested technique corrects errors in the memory in a
“single step” manner. In case of an error, there is no need of finding the closest codeword
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before decoding, instead, the decoding procedure includes the correcting procedure. This
error correction is done by replacing the original n×n Walsh-Hadamard matrix H used
for the output vector calculation with a n×m,m > n rectangular Hadamard matrix [10],
error correcting Hadamard matrix Hec which is a matrix with entries in −1,1, all rows
of which are orthogonal to each other.

Figure 2 shows an example of the error correcting Walsh-Hadamard transform with

m= 32 on a {−1,1}8 vector. The output vector is the result of multiplication of the input
vector by the matrix. The input vector can be reconstructed from the output vector by
multiplying the output vector by the transposed matrix and dividing each value by 32.
The output is a vector of size m. This shows the redundancy because a vector of size
n is sufficient for reconstruction. The reconstruction is done by multiplying the saved
output vector with the transposed n×m matrix HT

ec, dividing the value of each entry in
the reconstructed vector by m and rounding the entries values to the closest integer for an
integer input vector. In case the input vector is in {−1,1}n, the division and rounding can
be replaced by setting the final value to 1, if the resulting value is greater than or equal
to 0, and −1, otherwise. In case there are less than m/2n errors for of an input vector in
{−1,1}n,n = 2k (as we prove in Theorem 1), the errors are automatically fixed. In case
there are m/2n errors or more for an input vector in {−1,1}n, the result will have the
same graceful degradation as before.

1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 1 
-1 1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 -1 1 1 
1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 
1 1 1 -1 -1 1 1 -1 -1 -1 1 1 1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 
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Output vector of coefficients 
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FIGURE 2. Error correcting Walsh-Hadamard transform with m = 32 on a {−1,1}8 vector.

Theorem 1 Let Hec be an error correcting Walsh-Hadamard matrix which is a n×m
Hadamard n = 2k,m > n. Hec can correctly reconstruct an input vector in {−1,1}n
given that there are up to m/2n−1 erroneous bits in the coefficients vector and that the
coefficient vector is represented by binary code.

Proof. When there is no error, the value of each coefficient can range between n and
−n (or between 0 and 2n). Thus each coefficient can be represented with log(2n) bits.
The maximal change that one bit can cause in a coefficient is adding or subtracting 2n by
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flipping the most significant bit. The reconstruction of each entry of the original vector
is done by a series of additions and subtractions that correspond to one of the columns
in HT

ec and setting the final value to 1 if the result is greater than 0 and −1 otherwise. In
case the result is 1 when there are no errors in the coefficient vector, the value can be
reconstructed correctly when the result is any number greater than 0. This means that if
the total sum of the errors is less than m, the value will be reconstructed correctly. In the
worst case , a change of size m can be caused by m/2n bits because each bit causes a 2n
error. The same proof also apply to the case where the reconstructed value is supposed
to be −1.

NEURAL IMPLEMENTATION

In order to show the feasibility of our brain coding model, we provide a neural imple-
mentation for the coding procedure. We use simple“McCulloch-Pitts” neurons [11] with
real neurons weights in order to show that the procedure is feasible even with very sim-
ple neurons. The randomization part is done by an array of randomly distributed signal
inverting units (neural units that output the opposite of their input value) and signal con-
serving units (neural units that output the same as their input value). For convenience,
we use in some parts signal conserving or inverting units that also change the input form
{0,1}n (firing and non-firing neurons) to be a vector in {−1,1}n (all firing neurons with
positive or negative post-synaptic weights). The error correcting Walsh-Hadamard trans-
form is performed by additions and subtractions of the randomized input in a manner
that fits the additions and subtractions done by multiplying the input by the n×(k ·n) er-
ror correcting Hadamard matrix. Through all the process subtractions are done by signal
inverting units. The coefficients vector is a vector of integers rather than binary units.
For convenience we represent the coefficients with a binary representation of neurons
(firing and non-firing) although other representations may also be considered without
changing the essence of the procedure.

Figure 3 shows the High level view of the entire procedure for an input in {0,1}8 and
m = 32. The first step is the normalization of the input vector done by connecting each
neuron to a signal conserving or signal inverting unit. The signal inverting unit used in
this part appears in the bottom of Fig. 4. This unit maintain the vector space (keeping
it in {0,1}n). In this case signal conserving is done by not using a signal inverting unit.
The second step is the error correcting Walsh-Hadamard with m = 32. The vector of 32
coefficients is built from 32, 5−neuron units. The use of 5 neurons for each coefficient
is due to the use of binary representation of numbers between−8 and 8. For convenience
we add 8 to each coefficient to get values between 0 and 16 which are represented by
5-firing/non-firing neurons. Figure 5 shows the calculation of the second coefficient.
The positive and negative weights are implemented by the signal conserving and signal
inverting units (the two top units in Fig. 4) respectfully. The addition of 8 is done by a
constantly firing neuron with a post-synaptic weight of 8.

In order to obtain binary representation, each neuron represents a bit. The upper neu-
ron represents the least significant bit and the lowest one represents the most significant
bit. The least significant bit neuron has a threshold 1, the next neuron has a threshold 2,
the next neuron has a threshold 4 etc. All the neurons receive the same inputs. The most

146



Input (0,1) 

Signal 
inversing 

Signal 
conserving 

Signal 
inversing 

Signal 
conserving 

Signal 
inversing 

Signal 
conserving 

Signal 
inversing 

Signal 
conserving 

0 

1 

2 

3 

4 

31 Constant 
fire 

Signal 
inversing 

Signal 
conserving 

Signal 
inversing 

Signal 
conserving 

Signal 
inversing 

Signal 
conserving 

Signal 
inversing 

Signal 
conserving 

1. Randomization 
2. Error correcting 
Walsh-Hadamard 3. Reconstruction 4. Remove 

randomization 

FIGURE 3. Neural implementation of the entire procedure.

significant bit (which in our case has a threshold 16) sends synapses of weight−16 to all
the less significant bit neurons. Thus if the most significant bit is on, the rest bits are off
because in our case 16 is the largest value that a coefficient can have. The neuron with
threshold 8 sends synapses of weight −8 to all neurons that represent less significant
bits. The neuron with threshold 4 sends synapses of weight −4 to all neurons that repre-
sent less significant bits and so on. Thus, the coding is done “recursively”, if the coded
number is 16, the neuron representing 16 fires and no other neuron fires. If the coded
number is less than 16 but greater than or equal to 8, the neuron representing 8 fires and
the less significant neurons code the rest of the number (following the subtraction of 8)
and so on.
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FIGURE 4. Signal inversing and conserving units.

The next step is the reconstruction of the normalized vector (Fig. 6 shows the recon-
struction of the second entry of the normalized vector) by multiplying the coefficient
vector by the transposed error correcting Walsh-Hadamard matrix HT

ec which is again
a combination of additions and subtractions. Addition of a binary represented number
is done by sending a synapse of weight 16 from the most significant bit neuron, then a
synapse of weight 8 from the next neuron etc’ while subtracting the 8 that was added for
convenience in the encoding step. Instead of dividing each value in the resulting vector
by 32 and rounding it to the closest integer, it is possible to set the value to 1 if the value

is greater than 0 and−1 otherwise, because the original vector was in {−1,1}8. In order
to do so, the resulting vector is represented by neurons with threshold 0.

CONCLUSIONS AND FUTURE PLANS

Holographic memory has some benefits over standard memory in cases of errors in
the saved data or availability to only parts of the data, in applications that prefer some
knowledge on the entire data over whole information on part of the data. The ability of
the brain to retrieve some information about memories after some cases of local damage
might be explained using such memory.

In this work we presented a simple modification to the Walsh-Hadamard transform
which allows storing data in an error correcting holographic manner. A neural imple-
mentation was also given. The implementation is given to show feasibility of such model
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FIGURE 5. Calculation of the second coefficient of the error correcting Walsh-Hadamard transform.

in the brain. The simple “McCulloch-Pitts” neuron model was used in order to show that
this type of memory can be built easily without the use of more complicated models. The
well ordered binary representation in the model was given as an example and does not
imply the belief that the brain holds information in this manner. Our implementation of
the normalization part requires a type of random vector of signal inverting and conserv-
ing units. This type of arrangement might be available in the brain from birth or after
some learning procedure that takes place in early stage of life.

In this paper we did not supply the actual memory saving part but only the data
manipulation that allows saving data in a holographic manner. Future research may
include adding the part in the implementation that will save the transformed data.
One of the options for this part is to use the Hopfield network [12]. In the current
implementation of the Holographic memory, the magnitude of the damage may change
according to the specific damaged bit. This property is not holographic because it means
that some bits are riskier than others. This can be improved by adding an error correction
method that protects significant bits more than it protects less significant bits. Testing
the applicability of the procedure to other fields such as communication is also part of
possible future research, for example sending some coefficients of the transformed data
when the communication is expensive in order to immediately convey information on
the entire data to the receiver.
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Abstract. We discuss the critical brain hypothesis and its relationship with intermittent renewal
processes displaying power-law decay in the distribution of waiting times between two consecutive
renewal events. In particular, studies on complex systems in a “critical” condition show that macro-
scopic variables, integrating the activities of many individual functional units, undergo fluctuations
with an intermittent serial structure characterized by avalanches with inverse-power-law (scale-free)
distribution densities of sizes and inter-event times. This condition, which is denoted as “fractal in-
termittency”, was found in the electroencephalograms of subjects observed during a resting state
wake condition. It remained unsolved whether fractal intermittency correlates with the stream of
consciousness or with a non-task-driven default mode activity, also present in non-conscious states,
like deep sleep. After reviewing a method of scaling analysis of intermittent systems based of event-
driven random walks, we show that during deep sleep fractal intermittency breaks down, and re-
establishes during REM (Rapid Eye Movement) sleep, with essentially the same anomalous scaling
of the pre-sleep wake condition. From the comparison of the pre-sleep wake, deep sleep and REM
conditions we argue that the scaling features of intermittent brain events are related to the level
of consciousness and, consequently, could be exploited as a possible indicator of consciousness in
clinical applications.

Keywords: critical brain; fractal intermittency; renewal point processes; diffusion scaling; con-
sciousness.
PACS: 05.40.-a, 87.10.-e, 89.75.Da, 87.19.le

INTRODUCTION

Information processing in the brain is driven by highly nonlinear interactions among
neurons, with a high tendency to generate collective behavior, self-organized structures
and clustering at several time and space scales. Clusters, or neural assemblies, that
emerge at some scale, interact with clusters formed at some other scales with a contin-
uous dynamical interactions among different scales. This is associated with a very rich
dynamics that is thought to be associated with the emergence of consciousness [1, 2].
This scale-to-scale interaction in brain dynamics is nowadays recognized to involve uni-
versal mechanisms and features of emergent complexity and critical phenomena [3, 4].
Avalanches, scale-free or self-similar behavior, long-range correlations and burstiness
are found, both experimentally and theoretically, in many complex systems and, in par-
ticular, in neuronal networks [5, 6, 7, 8, 9].
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The hypothesis of a critical brain is attracting the interest of the scientific community,
with particular attention to the emergence of consciousness. Many neurobiologically
plausible models of brain dynamics that are focused on explaining the emergence of
consciousness include typical features of critical systems. Among others, it is worth
citing the Global Workspace [10, 11], the Dynamic Core [11, 12] and the Operational
Architectonics theory [1, 2].

Criticality in the brain. The emergence of collective, self-organized behavior, as-
sociated with scale-free or power-law behavior and long-range correlations, is typically
observed in dynamical systems posed near a critical point. In critical phenomena [13]
and self-organized criticality [14, 15], the system typically moves towards a critical
point, corresponding to a phase transition from an uncorrelated to a correlated condition.
This transition is characterized by means of the critical value of a cooperation param-
eter driving the non-linear coupling among many individual units. The phase-transition
hypothesis for the brain dynamics was already discussed by Turing in his pioneering
work [16], where he conjectured that an intelligent system cannot “live” neither in a too
much correlated condition (order, super-critical), nor in a too chaotic one (disorder, sub-
critical). Consequently, brain is expected to operate in the intermediate region between
these two extremes, i.e., in a critical condition. This is confirmed by recent neurophysi-
ological literature (see, e.g., [17] or, more recently, [4, 18]). The robust behavior and the
great plasticity of the brain dynamics are argued to be strictly related with this critical
condition [19].

Many authors investigated the spatial and/or structural complexity of neuronal net-
work models, in vitro data and functional Magnetic Resonance Imaging (fMRI) of the
human brain and found features in agreement with criticality. In particular, the authors
of Refs. [5, 6, 7] found a scale-free distribution of avalanche (or cluster) sizes, which
is a signature of spatial and structural long-range correlations, in network models and
in vitro data. The authors of Refs. [3, 4] studied the functional connectivity of the brain
defined through the network of above-threshold cross-correlations derived from fMRI
data, which is again a structural property. They evaluated the degree distribution, being
the degree of a node the number of links of that node with other nodes, and found a scale-
free degree distribution similar to that of the Ising magnetization model at the critical
point, corresponding to a second-order phase transition in the magnetization field.

Intermittency in critical systems. The above cited studies about criticality in the
brain are focused on the spatial or structural complexity. A often overlooked property
is the temporal complexity, where the focus is on the time long-range correlations with
power-law decay (equivalent to 1/ f noise) and on time intermittency, which is defined
by the presence of crucial events in the complex/critical system.

The authors of Refs. [8, 20, 21] found that the fluctuations of a random field at the crit-
ical point, i.e., the “order parameter” averaging microscopic fluctuations, are described
in terms of a Type-I intermittent dynamical map similar to the well-known Manneville
map [22], which mimics turbulent bursting. This kind of dynamical systems is character-
ized by the presence of a marginally unstable point determining an alternation between
long time intervals with calm motion and short-time bursting events. These events, oc-
curring in the temporal evolution of the order parameter, are described by a serial fractal
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point process, i.e., a sequence of intermittent events that: (a) occur randomly in time
and (b) display a slow (power-law) decay in the distribution of inter-event or Waiting
Times (WTs). Notice that this point process has to be interpreted as a birth-death pro-
cess of cooperation, where the cooperation is here represented by the intermittent for-
mation and decay of neural assemblies in the brain dynamics. Type-I intermittency is
in agreement with a fast decay of memory in correspondence of event occurrences. In
the language of stochastic processes, this is described by a renewal point process [23],
which is defined by the condition of mutual statistical independence of the events and,
consequently, of the WTs. In other words, the macroscopic fluctuations of a critical sys-
tem are driven by a renewal point process, which is the mathematical tool used here to
describe intermittency and, in the case of a self-similar of fractal distribution of WTs,
fractal intermittency, The renewal condition is related to burstiness with fast memory
decay and it was found to characterize the intermittency features of several complex
systems, from blinking quantum dots [24, 25] to turbulence [26, 27, 28] and brain dy-
namics [9]. The renewal property seems to play a crucial role in the perturbation of
complex systems [29, 30, 31, 32, 33] and it is a fundamental assumption in the deriva-
tion of a new Fluctuation-Dissipation Theorem (FDT) based on renewal events [34, 35],
whose main prediction is that two complex systems have a maximum interaction when
they have similar complexities. The power-law relaxation foreseen by this new FDT was
also experimentally validated in the weak turbulence regime of a liquid crystal [36].
Regarding biological systems and, in particular, brain dynamics, we can roughly say
that the renewal condition allows to reduce the disorder of the system, as the entropy is
significantly increased only in correspondence of event occurrences, while a long mem-
ory characterizes the system’s evolution in between two events, being this related to the
observed long-range correlations. At the same time, the dynamics of events, associated
with metastable states, allows for a greater capability of adaptation to external stimuli
[2]. Thus, the renewal condition seems to be the only one that can deal, at the same time,
with the need of a slow disorder increase (long-range correlations) and a sufficiently
rapid adaptability to environmental stimuli (memory erasing events).

Intermittency and consciousness. The existence of crucial events in the brain is
well-established, as spontaneous neuronal activity exhibits relatively quiet periods in
alternation with chaotic or bursty periods. Such brain events can be extracted from
ElectroEncephaloGram (EEG) data with detection algorithms. Events are here defined
as abrupt transitions or Rapid Transition Processes (RTPs) [1, 37, 38]) to and from
metastable states, via multichannel EEGs [9]. On short time scales brain events typically
display a complex structure in terms of neuronal avalanches [39].

Exploiting the concept of RTP events, we investigated the temporal complexity of
brain dynamics in terms of intermittency features [9, 39]. We found that a serial re-
newal process of global integration exists in the human brain during a resting state wake
condition and that this renewal process has well-defined scaling exponents in both distri-
butions of avalanche sizes and inter-event times [9, 39]. These scaling exponents, being
a signature of Type-I fractal intermittency, confirm the critical brain hypothesis [19].
The scaling exponents were evaluated through the diffusion scaling of different random
walks driven by the RTP events (see details in the next section). This approach based
on diffusion scaling allowed to get a robust estimation of the intermittency exponent or
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complexity index μ , i.e., the exponent of the inverse power-law tail in the WT distribu-
tion: ψ(τ)∼ 1/τμ . It is worth noting that similar approaches, based on brain events and
point processes, have been recently applied, confirming the robust and universal critical
behavior of brain dynamics and neuronal networks [40, 41].

All the above findings lead to the idea that consciousness is related with the emergence
of criticality and fractal intermittency. However, this is just a hypothesis as it is not yet
clear if this renewal fractal process is uniquely associated with consciousness or with
a non-task-driven default mode activity [42], also present in non-conscious states like
deep sleep.

In this paper we clarify this point by evaluating the event-driven diffusion scaling of
EEG data collected from the observation of healthy human subjects during sleep. The
statistical analysis we use is essentially the same as in Ref. [9]. In “Data Description
and Methods of Analysis” section we describe the dataset and the methods of data
analysis. In particular, we will introduce the diffusion scaling method. In “Results
and Discussion” section we show our results and we discuss the hypothesis that the
emergence of intermittent events described by a (serial) renewal fractal process and of
anomalous diffusion is a signature of consciousness, while the lack of fractal features
and the emergence of normal diffusion could characterize non-conscious states.

DATA DESCRIPTION AND METHODS OF ANALYSIS

A normal night’s sleep consists of a few (from 4 to 6) cycles, each cycle consisting of
different phases, defined on the presence of different “waves”, or graphoelements, and
specific rhythms. After a pre-sleep wakefulness, the first cycle begins with a shallow
sleep called N1. As the sleep deepens, due to the diminished presence of various neu-
rotransmitters, sleep phases N2 and N3 (or Slow Wave Sleep, SWS) are visited one or
more times, till the Rapid Eye Movement (REM) phase (typically a dreaming phase) oc-
curs, that marks the end of the cycle. The phases N1, N2 and N3 (or SWS) are globally
referred to as Non-REM (NREM) phase. At variance with NREM phase, REM is char-
acterized by a high level of the acetilcholine (AC) neurotransmitter. At the end of the
first cycle, a second cycle begins, with or without N1 or wakefulness episodes (Wake-
fulness After Sleep Onset, WASO), with the presence of NREM sleep (AC again drops
to low values), again ending with a REM phases, and so on.

Data set. Our data set is composed of 29 whole-night high-density (128 channel,
4ms sampling time) EEG recordings. Subjects slept two nights with the same experi-
mental setup, namely after an adaptation night the second one was recorded. All subjects
signed informed consent according to local ethical committees. Through visual inspec-
tion of the polygraphic traces, namely a selection of few EEG channel plus miogram
(muscle tone intensity) and oculogram (eye movements) all recordings were segmented
into different cycles and phases. For the purpose of the present paper, however, we will
focus on global properties of sleep in the various phases and we will freely make re-
course to grand averages over the 29 whole-night recordings. Artifacts were semiauto-
matically removed, and only artifact-free segments of time duration longer than 3 min-
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utes were kept for the RTP detection. We use only segments of the first cycle, as signal
quality decreased in subsequent cycles.

Rapid Transition Processes. Herein, for each EEG channel, pass-band filtered be-
tween 0.3 and 40 Hz (Chebyshev II filter algorithm), RTPs are extracted as a “signif-
icant” selection of intersection between two different moving averages of the Hilbert
transform of the signal modulus. Moving averages have windows of 5 and 125 ms, re-
spectively. By significant we mean that we select only the points where the intersection
between the two curves is above a threshold angle. To do this we select a 125 ms window
surrounding the intersection and compute the sum of the modulus of the difference be-
tween the two curves. For each channel significant RTPs are those in the highest decile
(the ones higher than 90% are chosen). This method is inspired and similar to that in-
troduced in Ref. [37], but with slightly differences. We however proved in [43] that our
subsequent analysis is robust with respect to a variation of event definition.

We are here interested on global events, i.e., on the “simultaneous” occurrences of
RTP in different EEG channels. For each EEG recording, the sequence of coincidences,
or (concurrent) Multi-Channel RTPs (MC-RTPs), is obtained from single-channel RTPs
via the introduction of two thresholds: The first one, Δtc, defines the maximum time
distance for two single-channel RTPs (from different channels) to be considered con-
current; the second one, Nt , defines the minimum number of concurrent single-channel
RTPs required for a MC-RTPs to be recorded as a global event. Since events that have a
distance less than Δtc are considered to be simultaneous, Δtc must be small. We herein
use Δtc = 4ms, equal to the instrumental sampling time, and Nt = 5.

Event-driven random walks and diffusion scaling. The random walks driven by
renewal events [9, 28] are inspired to the Continuous Time Random Walk (CTRW) of
Montroll and co-workers [44, 45]. In CTRW it is allowed to have random time steps,
corresponding to a sequence of WTs from a renewal process. Here, the WT sequences
derived from the EEG recordings are used to define two different CTRWs driven by the
same RTP global events. Firstly, we introduce a discrete artificial signal ξ (t), i.e., a kind
of random discontinuous velocity that changes value only in correspondence of event
occurrences. In Figs. 1 and 2 a sketch of the two signals ξ (t) is reported. The times
t
0
, t

1
, t

2
, ... correspond to the occurrence of the events 0, 1, 2, ..., while τ

1
, τ

2
, ... are the

WTs, i.e., the time interval between the events 0 and 1, the events 1 and 2 and so on. In
particular, we have:

(a) Asymmetric Jump (AJ) rule:
the walker makes a positive jump (ξ (tn) = 1) in correspondence of each event
n, otherwise it stands (ξ (t) = 0). Then, ξ (t) is a sequence of pulses of constant
intensity.

(b) Symmetric Jump (SJ) rule:
as in the AJ rule, but the walker can make positive or negative jumps in correspon-
dence of an event: ξ (tn) = ±1. The sign ± is chosen with a coin tossing prescrip-
tion.
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FIGURE 1. The SJ walking rules for the “velocity signal” ξ (t).
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FIGURE 2. The AJ walking rules for the “velocity signal” ξ (t).

Then, from the artificial signal ξ (t) the diffusion variable of the CTRW is defined as
follows:

X(t) = X
0
+

j=t

∑
j=0

ξ ( j) Δt , (1)

being Δt the sampling time of the experimental time series.
The scaling properties of these random walks were extensively investigated in several

papers (see [9, 27, 28] for a brief review) by applying the analytical methods of CTRW.
Here we are interested in the scaling exponent H of the second moment

σ2(t) = 〈(X(t)−X
)2〉 ∼ t2H , (2)

where X is the mean value of X(t).
Analytical expressions of the scaling H as a function of the complexity index μ were

determined in the case of renewal WTs with inverse power-law tail: ψ(τ)∼ 1/τμ . These

1

0.5

0
1 2 3 μ

AJ

SJ

H

FIGURE 3. Diffusion scaling H vs. complexity index μ for SJ and AJ walking rules: AJ (continuous
line), SJ (dotted-dashed line).
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expressions H = H(μ) are reported in Fig. 3 and summarized in the following:

(AJ)

HAJ =

⎧⎪⎨⎪⎩
μ/2 ; 1 < μ < 2

2−μ/2 ; 2≤ μ < 3

1/2 ; μ ≥ 3

(3)

(SJ)

HSJ =

{
(μ−1)/2 ; 1 < μ < 2

1/2 ; μ ≥ 2
(4)

Both rules give a normal scaling H = 1/2 for μ ≥ 3, corresponding to normal (Gaussian)
diffusion. For the SJ rule this is true also in the range 2 < μ ≤ 3, while AJ rule is super-
diffusive (H > 1/2) in all the interval 1 < μ < 3. On the contrary, the SJ rule is sub-
diffusive (H < 1/2) for 1 < μ < 2. We note that, if the WTs comes from a Poisson
process, the value of H is again 1/2 and, in the long-time, we have a Gaussian diffusion.

The joint use of these walking rules can be used to evaluate the value of the μ by
inverting the expressions given in Eqs. (3-4). It can be seen from Fig. 3 that HAJ(μ) is
not an invertible function, as the same value of H corresponds to two distinct values of
μ , one smaller and the other greater than 2. When HSJ < 1/2 it results μ < 2 and both
rules, i.e., the associated values of μ derived from AJ and SJ rules, could be compared
to each other. On the contrary, for HSJ = 1/2, a value of μ cannot be derived from the SJ
rule, but we can assume μ > 2. For this reason, the SJ rule could be used to discriminate
between μ < 2 and μ > 2, overcoming the ambiguity of AJ rule.

Detrended Fluctuation Analysis. The diffusion scaling H of the two random walks
introduced above is estimated by means of Detrended Fluctuation Analysis (DFA) [46].
We briefly recall the main steps of this method:

• For a discrete time L = 4,5, ..., the time series of the diffusion process X(t) is
split into not-overlapping time windows of length L: [kL+1,kL+L]. The window
number is given by [M/L], i.e., the integer part of M/L, being M the total length of
the time series.

• For each time window [kL+ 1,kL+ L] (k = 0,1, ..., [M/L]), the local trend is
evaluated with a least-squares straight line fit: Xk,L(t) = ak,Lt + bk,L ; kL < t ≤
(k+1)L.

• The fluctuation is derived in the usual way: X̃k,L(t) =X(t)−Xk,L(t) =X(t)−ak,Lt−
bk,L ; kL < t ≤ (k+1)L.

• For a given time scale L, the mean-square deviation of the fluctuation is calculated
over every window:

F2(k,L) =
1

L

(k+1)L

∑
t=kL+1

X̃2
k,L(t) =

1

L

(k+1)L

∑
t=kL+1

(
X(t)−Xk,L(t)

)2
(5)
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• Finally, an average over the windows is performed:

F2(L) =
1

[M/L]

[M/L]

∑
k=0

F2(k,L) (6)

In the case of a self-similar process, it results: F(L) ∼ L
H

. Then, by defining z =
log(F(L)) and y= log(L), it is possible to apply a least-squares straight line fit:

z= Hy+C , (7)

where C is a constant.

Improvement of statistical accuracy in DFA. Given a time series of total length
L, the DFA evaluation is reliable up to about L/10 and this is due to the lack of statistics
in the long-time regime. However, we do not have only one time series, but several
independent time segments, each one separated from the others by at least one artifact
or phase shift in the original EEG recording. Several DFA curves can be obtained, one
for each time segment, and then averaged to get a mean DFA curve. In this way, we
are able to compute DFA up to a time given by the maximum among the values Li/10,
that is maxi(Li/10), where i runs over all time segments and Li is the total duration time
of the i-th time segment. Actually, the statistical accuracy remains stable up to a time
given by mini(Li/10) and then decreases for longer time scales. In fact, the number of
segments entering the average decreases very rapidly when approaching the time scale
maxi(Li/10).

We improved the statistical accuracy on longer time scales, without the risk of making
the running window explore segments that belong to different segments. Firstly, for each
sleep phase, we evaluated the minimal duration time: Lm = mini(Li); then, for each
segment, we computed the DFA up to time Lm; finally, we performed the average over
all the segments. Note that Lm is not only 10 times greater than mini(Li/10), but it is
also greater than maxi(Li/10). With this approach, a much better accuracy on long time
scales is obtained. In fact, even if the statistical accuracy is low for the segments with the
shortest duration times, the number of segments entering the average is greatly increased
in the time range between mini(Li/10) and Lm = mini(Li), as all segments always enter
in the average operation.

RESULTS AND DISCUSSION

Criticality has been found both in neuronal networks (models and in vitro, see Refs.
[5, 6, 7]) and human brain [3, 4] by investigating the spatial and structural complexity,
while temporal complexity, i.e., time intermittency, in brain EEG was investigated in
our previous papers (see Refs. [9, 39]). In particular, from the analysis of EEG data in
resting state (wakefulness) condition we found that the brain (RTP) events introduced
by the authors of Refs. [1, 37] are driven by an underlying renewal fractal point pro-
cess with well-defined scaling properties (fractal intermittency). As already said in
“Introduction” section, it is not clear if fractal intermittency is uniquely associated with
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consciousness or with a non-task-driven default mode activity [42], also present in non-
conscious states like deep (NREM) sleep. To clarify this point, let us summarize some
observations about consciousness:

1. the conscious brain is associated with an emerging “giant cluster” or Global
Workspace [10]) that co-exist with clusters of any size having scale-free size distri-
bution, in analogy with what happens in critical systems [6, 7];

2. Conscious scenes are unitary and occur serially: only one scene at a time takes
place [10];

3. consciousness is a sequence of metastable states (giant clusters), which reflect
rapidly adaptive selection mechanisms in perception and memory; in the conscious-
ness theory of Baars [10], the Global Workspace is an emerging serial process that,
in some way, selects only one scene at a time from an underlying set of parallel
scenes, and only this selected scene comes into consciousness;

4. In conscious states, there’s a competition among cooperative global integration
and autonomous fragmentation; the interplay of these two components constitutes
the metastable regime of brain dynamics and determines the complex intermittent
behavior in the EEG field [2, 12, 47].

5. the renewal fractal process derived from EEG data, which is defined by the se-
quence of renewal RTP events, is a particular serial process, as only a global
metastable state (giant cluster) at a time takes place and the short-time RTP events
mark the death of a metastable state and the birth of a new one [9, 39].

From the above observations, we are then lead to make the following assumption:
The renewal point process describing fractal intermittency, which is experimentally
defined in EEG data by the sequence of global RTP events with inverse power-law
distributed WTs, is a correlate of consciousness.
We validate this assumption by comparing different states of consciousness in healthy
subjects during sleep. In “Data Description and Methods of Analysis” section we have
already given a description of the dataset and of the methods used to analyze the EEG
data, which can be summarized as follows: (a) segmentation and artifact removal; (b)
RTP detection, global brain events (c) computation of event-driven random walks (SJ
and AJ) and estimation of second moment scaling H by applying DFA. The diffusion
scaling H of the SJ rule is definitively H = 0.5 for all time segments and subjects and,
then, also for the mean DFA. This is a signature that the complexity index μ is greater
than 2. In Fig. 4 we show the square root of the second moment σ(t) for the AJ rule,
averaged over all subjects and nights and over the time segments of sleep cycle I as
explained at the end of “Data description and Methods of Analysis” section. The second
moment scaling H switches from an anomalous diffusion scaling (H = 0.75) in the
case of (pre-sleep) wake and REM phases to a normal diffusion scaling (H = 0.5) in
deep (SWS) sleep. Inverting Eq. 3, this means that in wake and REM phases, which
are conscious states, we get an average value μ = 2.5, thus giving fractal intermittency
and long-range correlations, whereas in the deep (SWS) sleep phase we get μ > 3. We
recall that normal diffusion (H = 0.5) is also in agreement with a Poisson condition, i.e.,
with exponentially distributed WTs or, more realistically, with an exponential cut-off
emerging at relatively short WTs and, thus, with short-time correlations.
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FIGURE 4. Asymptotic time range in the DFA computed for AJ rule applied to different sleep phases
(cycle I). Continuous and dashed lines are a guide to the eye for the slopes H = 0.75 and H = 0.5,
respectively. In the inset we report the entire time range over which the DFA has been computed. Notice
that, in the short-time range, the DFA of the three phases (WAKE, REM and SWS) are essentially
superposed, all displaying normal diffusion.

The normal diffusion regime during SWS phase could be explained in terms of the
fragmentation of the Global Workspace into local, independent, functional units working
in parallel, which is a condition known to be associated with the lack of consciousness.
Notice that the fragmentation is related to the large number of Sleep Slow Oscillations
(SSOs) during SWS [48], which determine a reset of the neuronal activity by means of
a hyper-polarizing wave putting most neurons in a down-state, i.e., a state far from the
activation threshold of the membrane potential. This is also called “electrical silence”.
Finally, from a purely descriptive point of view, we can conclude that the result of Fig.
4 demonstrates that the scaling H, and the associated complexity index μ , could be
proposed as a reliable indicator of conscious states. The interpretation of these results
deserve further investigations that, however, will be the focus of future research work.
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Pure state consciousness and its local reduction
to neuronal space
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Abstract. The single neuronal state can be represented as a vector in a complex space, spanned
by an orthonormal basis of integer spike counts. In this model a scalar element of experience is
associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus pre-
sentations. Here the model is extended to composite neural systems that are tensor products of
single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space
is intended to capture the unity of consciousness. The density operator is introduced as its local
reduction to the single neuron level, from which the firing rate can again be derived as the objective
correlate of a subjective element. However, the relational structure of perceptual experience only
emerges when the non-local mental state is considered. A metric of phenomenal proximity between
neuronal elements of experience is proposed, based on the cross-correlation function of neurophys-
iology, but constrained by the association of theoretical extremes of correlation / anticorrelation in
inseparable 2-neuron states with identical and opponent elements respectively.

Keywords: binding; unity; emergence; neural synchrony; quantum mechanics.
PACS: 87.19.lj, 87.19.ll, 87.19.lm, 87.19.ls, 87.19.lt

INTRODUCTION

In a previous paper [1], an element of experience was introduced at the level of a single
neuron: a neuronal state, inaccessible to direct measurement, quantified experience as
a uni-dimensional ‘perception value’ proportional to that neuron’s instantaneous firing
rate. A mathematical formalism borrowed from quantum mechanics was used to model
the neural state as a vector in a complex vector space, spanned by an orthonormal basis
of integer ‘action potential’ states2. These basis states were eigenvectors of a Hermitian
number operator N, an inevitable n spikes belonging to the n-action potential state |n〉.
The more general normalised neural state |ψ〉 was resolved onto each basis vector to
give a complex amplitude 〈n|ψ〉. The squared modulus of this amplitude was the prior
probability of n spikes, the expected spike count 〈ψ|N|ψ〉 being the sum of spike counts
weighted by such probabilities.

1 Corresponding author, present address: Department of Neurology, Level 1, Westmead Hospital,
Hawkesbury Road, Westmead, NSW 2145, Australia; email: andrew.duggins@sydney.edu.au; phone +61
2 98456793, fax: +61 2 96356684
2 An ‘action potential’ here is not the depolarisation event itself but the propensity for a neuron eventually
to produce a single spike. In the conventional neuron doctrine, action potential and spike are synonymous.
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This description was limiting in two major respects. Firstly, it provided only a vague
hint as to the dynamics of the neural state over time. An assumption that neural firing
is ‘memoryless’, consistent with the exponential decay of evoked responses to brief
sensory stimuli, lead to the conclusion that the expected spike count of an initial single
neuronal state vector must be proportional to the initial instantaneous firing rate and
perception value (with proportionality constants w and r respectively). Yet the quantum
mechanical parallel would imply that such a coherent state could only persist in a closed
system. In a model of consciousness at a neural level, it may have been reasonable to
neglect quantum physical interactions between subneural structures and the extraneural
environment [2]. But clearly there is internal inconsistency in discussing spikes and
evoked responses while neglecting synaptic interaction between neurons.
A formal account of the evolution of the neural state through synaptic interaction will

be held over to a subsequent paper. Here an attempt will be made to overcome a second
major limitation of the model that stems from considering the neuron to be isolated: it
fails to capture emergent properties of consciousness in neural systems. In the model as
it stands, the experiences attributable to multiple single neurons would be no more than
a loose federation of uni-dimensional ‘microconsciousnesses’3. There could only be a
‘summative atomism’ of consciousness, as suggested by Leibniz and elaborated by Mill
[4], Wundt [5] and Titchener [6] (see [7]). From this perspective, the attempt to ascribe
subjective experience to single neurons seems hopelessly naive.
Yet there was good reason to introduce the idea of a ‘pure’ state vector at the level of

the single neuron. The mathematical structures required to reveal the relation between
mind and brain have their own fundamental elements that need to be introduced early
in discussion, elements that in interacting neural systems do not necessarily have single
neuronal correlates. In fact, it is only when the pure state concept is expanded to a
system of interacting neurons that a formal mathematical characterisation of emergence
and reduction becomes apparent.
So what are the fundamentals of consciousness that emerge? It seems likely, given the

common neuro-anatomy and physiology between humans, that the essential qualities of
experience are shared. But it is difficult to describe these qualities without straying into
specific interpretation reflecting a particular cultural influence. Nevertheless, it seems
important to state the author’s view, if only to establish terms of reference for this
theoretical inquiry.
In the author’s previous work [1], two features were nominated as fundamental: sub-

jectivity and smooth evolution. Here the unity of consciousness is added to the list: “a
sub-mind is an atrocious monstrosity, just as is a plural-mind - neither having any coun-
terpart in anybody’s experience, neither being in any way imaginable” [8]. A unified
consciousness is singular and not plural; complete in itself, not a fraction of a greater
whole. In contrast, sensation, cognition, emotion and volition are not complete experi-
ences but aspects of the subject’s consciousness. Indeed, whatever level of perceptual

3 The ‘microconsciousness’ theory, proposed by Zeki, held that consciousness was (neuro-anatomically)
locally explicable: “Activity in each separate processing node generates a microconsciousness for the
attribute for which that node is specialised. Consequently, there are several microconsciousnesses, corre-
sponding to the activity of cells at different nodes within different processing systems” [3].
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or conceptual experience one introspects upon, it always seems possible to consider a
higher level at which one experiences the relation between simultaneous percepts or
concepts. In this sense, unity subsumes the phenomenon of binding, through which el-
ementary visual experiences of motion, colour and form are bound in the percept of a
falling red ball. Unity then does not imply uni-dimensionality. Just as the bound percept
might be resolved along multiple perceptual dimensions, perhaps a unified conscious-
ness might usefully be represented as a ‘mental state vector’ in a ‘subjective space’
spanned by all of the dimensions of perceptual experience:

“It seems inevitable that psychophysical explanation will apply first at the
level of some kind of elements of experience; but if these elements come
together in a single consciousness, they must also be components of a single
point of view” [9].

To make progress, it will be necessary to develop formal rules for combining neural
spaces so that a state of a composite system quantifies experience along multiple per-
ceptual dimensions, while also defining the qualitative relationship between elements of
experience. For the most part, this will be a process of assimilation of the quantum me-
chanical principles for combining state spaces. First the concept of a tensor product of
single neuron states and state spaces will be introduced, considering a system of just 2
neurons. An expression that satisfactorily separates the experience of a product state into
two single neuronal elements will be extended to inseparable pure states whose existence
is implied by the superposition principle on the composite 2-neuron space. The reduced
single neuron state in this more general case will be shown to be mixed rather than pure,
mathematical description of this mixed state demanding introduction of a density matrix
rather than vector formalism. Finally it will be shown that what is lost in the process of
reduction of consciousness to mixed neural elements, and regained through considera-
tion of pure states of neural systems, is a characteristation of the relational aspects of
unified experience.

TENSOR PRODUCTS OF SINGLE NEURONAL STATES

In a 2-neuron system, call the state space of the first neuron A, spanned by the states of
0, 1, 2... action potentials |0A〉, |1A〉, |2A〉..., the dimension of the space limited by the
maximal potential to spike. Similarly the space of neuron B is spanned by |0B〉, |1B〉,
|2B〉.... Now it may be that a state of the 2-neuron system can be completely described
by the states of the individual neurons considered separately4. If these states of A and
B are the vectors |a〉 and |b〉 respectively, then this ‘separable’ state of the composite
2-neuron system will be denoted |a〉|b〉 or for simplicity just |ab〉. For any particular
state |a1〉 of neuron A, there is then a range of composite states |a1b〉, corresponding
to the vector space B of possible states |b〉. Consider two such states of neuron B,
perhaps |b1〉 and |b2〉. By the superposition principle the state c1|b1〉+ c2|b2〉 must also

4 Objectively, this is a requirement that the joint probability density of simultaneous spikes in the two
neurons is the product of single neuron firing rates (see equation (13)).
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describe a valid state of neuron B, where c1 and c2 are arbitrary complex numbers. Hence
|a1〉(c1|b1〉+c2|b2〉) is a valid state of the composite system. We might expect this to be
equivalent to the same linear combination of composite states ([10], 2.2.8), such that5

|a1〉(c1|b1〉+ c2|b2〉) = c1|a1b1〉+ c2|a1b2〉.
This is like a distributive axiom of multiplication, suggesting that the composite state
|ab〉 is a type of product of single neuron states |a〉 and |b〉.

Now consider the product states |0A0B〉 and |0A1B〉. In the former state it is certain that
neuron B will remain silent, whereas in the latter it is certain that neuron B will spike
once. Just as are the integer action potential states of the single neuron, so must these
product states be orthogonal. This is consistent with an expression for the scalar product

〈a1b1|a2b2〉 = 〈a1|a2〉〈b1|b2〉. (1)

Since the single neuron integer action potential states |0A〉, |1A〉,... and |0B〉, |1B〉,... are
all normalised, |0A0B〉 and |0A1B〉 are also orthonormal6. It is possible then to describe a
tensor product space A ⊗ B spanned by the orthonormal basis

{|0A0B〉, |0A1B〉, |0A2B〉..., |1A0B〉|1A1B〉|1A2B〉..., |2A0B〉, |2A1B〉, |2A2B〉...}.

The tensor product of vectors |ab〉 could be represented with respect to this basis as

|ab〉 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈0A0B|ab〉
〈0A1B|ab〉

:

〈1A0B|ab〉
〈1A1B|ab〉

:

〈2A0B|ab〉
〈2A1B|ab〉

:

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2)

or with respect to the {|0A〉, |1A〉, |2A〉...} basis of A as

|ab〉 =

⎛

⎜
⎜
⎝

〈0A|a〉|b〉
〈1A|a〉|b〉
〈2A|a〉|b〉

:

⎞

⎟
⎟
⎠ (3)

5 We will further assume that the composite product state has the properties (see [11])

c(|ab〉) = (c|a〉)|b〉 = |a〉(c|b〉),
|a1〉(|b1〉+ |b2〉) = |a1b1〉+ |a1b2〉,
(|a1〉+ |a2〉)|b1〉 = |a1b1〉+ |a2b1〉.

6 In an orthonormal basis set {|n〉}, scalar products between members of the set satisfy 〈n|n〉 = 1 and
〈m|n〉 = 0.
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where each element is a vector in the neural space B.

PURE STATES AS UNIDIMENSIONAL PROJECTORS

It would be intuitively appealing for any weighted superposition of these basis states also
to be a valid state of the composite system. If instead the superposition principle were to
hold only within single neuron spaces, this would be to make the neural level privileged
in relating subjective to objective properties. This would seem contrary to the philoso-
phy, espoused here and in the previous paper [1], that a neural theory of consciousness
should be merely a convenient starting point for future theoretical development.
However, if the superposition principle were to be adopted, it would be necessary to

concede that valid states of the composite system exist that are inseparable, in the sense
that they are not simple products of single neuron states. For example, the distributive
axiom would require that

c20|0A0B〉+ c21|1A1B〉 �= (c0|0A〉+ c1|1A〉)⊗ (c0|0B〉+ c1|1B〉).
In one sense this is a positive development for the theory of consciousness, in that a priori
it would be unlikely that the bound percept could be reduced to elements of experience
in simple combination. This is not to abandon the practice of attributing experience
to single neurons. In fact, the process of specifying the perception value of neuron A
when the neural system is in a product state, when applied to an inseparable state of the
composite system, reveals a more general expression for the reduced state of the single
neuron. This will, however, require an alternative description of neural states, which is
introduced next.
In the original formulation [1], the pure state of the neuron was portrayed as the state

vector |ψ〉. The entity |1〉〈1| ‘projects’ |ψ〉 onto the 1-action potential state, in that

|1〉〈1|ψ〉 = 〈1|ψ〉|1〉.
The sum of projectors onto integer action potential states (or onto any other complete
set of orthonormal basis states for the neural space) must equal the identity operator I,
in that for example

(|0〉〈0|+ |1〉〈1|+ ...)|ψ〉 = 〈0|ψ〉|0〉+ 〈1|ψ〉|1〉+ ...

which is just a resolution of |ψ〉 onto a complete set of orthonormal basis vectors.
The expected spike count can then be expanded

〈ψ|N|ψ〉 = ∑
n

〈ψ|n〉〈n|N|ψ〉 =∑
n

〈n|N|ψ〉〈ψ|n〉 (4)

which is the sum of diagonal elements of a matrix representation of N|ψ〉〈ψ| with
respect to the {|n〉} basis7, known as the trace of the matrix (see [10], 2.1.8). The

7 Just as the nth element in a representation of |ψ〉 with respect to the {|n〉} basis is 〈n|ψ〉 (equation (2)),
the element in the mth row and nth column in a representation of an operator Q is 〈m|Q|n〉.
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choice of basis was of course arbitrary, so the expected spike count (equation (4)) can
be considered the trace of any matrix representation of the operator N|ψ〉〈ψ|,

〈ψ|N|ψ〉 = tr(N|ψ〉〈ψ|).
Description of the pure neural state ψ as the projector onto |ψ〉 is then completely

equivalent to its description as the vector. The requirement that |ψ〉 is normalised:

∑
n

〈n|ψ〉〈ψ|n〉 = 1

is equivalent to

tr(|ψ〉〈ψ|) = 1. (5)

A pure state of the composite 2-neuron system ψAB could equally well be considered a
vector |ψAB〉 or a unidimensional projector on A ⊗ B:

ρAB = |ψAB〉〈ψAB| (6)

This new notation for states of neural systems is intentionally chosen to leave open the
possibility that the reduced state of neuron A might also be expressed as a generalization
of a unidimensional projector on neural space A, ρA.

A DENSITY OPERATOR FORMALISM OF EMERGENCE

Returning to the perception value concept, for this to have any meaning, it must be
possible to take a pure state of the 2-neuron system, such as ρAB (equation (6)) and from
it derive a level of perceptual experience attributable to neuron A that does not depend
on the experience attributable to neuron B. In previous work [1], a perceptual variable
operating on a single neuronal space, the ‘nervous energy’ H, related the perception
value to a pure state of the neuron. Considering neuron A specifically:

HA = rNA

perception value A = 〈a|HA|a〉 = tr(HA|a〉〈a|). r is a constant so that the perception
value is proportional to the expected spike count.
Taking a product state |ab〉 of the 2-neuron system, and extending the rules governing

the order of terms in the scalar product (equation (1)) to matrix multiplication generally

〈ab|HA ⊗ IB|ab〉 = 〈a|HA|a〉〈b|IB|b〉 = 〈a|HA|a〉,
implying that HA ⊗ IB is the extension of HA to the composite neural space (see Ap-
pendix). It will be assumed that the expectation value of the operator HA ⊗ IB also gives
the perception value A in the more general (possibly inseparable) state of the composite
system, ψAB:

〈HA〉 = 〈ψAB|HA ⊗ IB|ψAB〉 = tr(HA ⊗ IBρAB). (7)

167



A good candidate for the reduced neural state A would then be some state ρA, which
could be expressed in terms of basis states of A alone, such that

〈HA〉 = tr(HAρA). (8)

Indicating integer action potential basis states of A as |pA〉 and integer action potential
basis states of B as |mB〉, the pure state ψAB could be described by the normalised vector

|ψAB〉 =∑
pm

cpm|pA〉|mB〉 (9)

or equivalently as the projector

ρAB = ∑
pqmn

cpmc∗
qn|pA〉〈qA|mB〉〈nB|. (10)

When the latter is substituted into equation (7), the expression for the element of
experience attributable to neuron A can be simplified, utilising properties of the trace
and orthonormalisty of basis states (see Appendix), to give

〈HA〉 = tr

[

HA ∑
pqm

cpmc∗
qm|pA〉〈qA|

]

where

ρA = ∑
pqm

cpmc∗
qm|pA〉〈qA| (11)

satisfies the criterion of equation (8) for the reduced neural state A.
Comparison with equation (10) reveals that

ρA =∑
m

〈mB|ρAB|mB〉.

Similarly we could write

ρB =∑
p

〈pA|ρAB|pA〉 (12)

which is known as the partial trace over A (see Appendix):

ρB = trA(ρAB).

If, consistent with our interpretation of |ψ〉 in the single neuron, we interpret |ψAB〉
or ρAB as the subjective state of the composite system, then taking each partial trace of
ρAB to yield ρA and ρB is the mathematical counterpart of reducing consciousness to its
neural correlates (in this simple example of a 2-neuron system). Taking the partial trace
yields a local ‘reduction’ of consciousness in the sense that the experience attributable to
the system is inadequately described by ρA and ρB alone. Mathematically, the property
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of ρAB that it does not in general equal the tensor product of these neural correlates,
corresponds to the ‘emergence’ of consciousness in the combined system.
Many of the results of the previous paper [1] relied upon a representation of the neural

state as a vector, or a projector onto a single dimension of the neural space. It is now
evident that this was an oversimplification, applying only when the combined system
exists in a product state. While we still assume that the state of the composite system is
a projector onto a single dimension of the composite space, our description of the state
of the neural subsystem must now be more general.
As with the perception value, it is possible to reformulate, in terms of the reduced

neural state ρA on neuron A, expressions for the prior probability of 1 eventual spike

P(1) = tr(|1A〉〈1A|ρA)

for the expected spike count (p)

〈p〉 = tr(NAρA), NA = p|pA〉〈pA|
and for the instantaneous firing rate

fA(t) = w tr(NAρA).

Like the number operator (see [1]), ρA (equation (11)) is Hermitian and positive (see
Appendix). Unlike NA, ρA is normalised (as in equation (5)). These three conditions,
hermiticity, positivity and normalisation, characterise a ‘density operator’. They imply
that ρA has a spectral decomposition

ρA =∑
k

pk|φk〉〈φk|

where {|φk〉} is some orthonormal basis for the neural space A, and the eigenvalues
pk are positive real numbers which sum to one (a representation of ρA with respect
to the {|φk〉} basis would be a diagonal matrix, with elements pk along the diagonal).
Conceptually, the neural state A could be considered a weighted mixture of orthogonal
projectors |φk〉〈φk| corresponding to the neural states φk, each occurring with probability
pk . The unidimensional projector ρAB also satisfies the criteria for a density operator on
the combined space AB, but in that there is a single term in the spectral decomposition
(equation (6)), it is a ‘pure’ as opposed to ‘mixed’ state.
It is postulated that there is a direct correspondence between the unity of experience,

a property of the system as a whole, and the purity of the density operator that describes
the state [12]. Extending this principle to the ultimate multi-partite system, the human
brain, one would want the unified mental state to be described by a mental state vector
or a pure uni-dimensional projector on the tensor product of neural spaces: a combined
system of vast dimension. The reduced state of any subsystem of one or many neurons
would be a mixed-state density operator. Were this not so, the completeness privilege of
consciousness described above would be lost. Imagine a situation in which it were possi-
ble to define several neural subsystems, whose subjective correlates could be accurately
and completely described by pure states. In that case, presumably the overall mental
state would be described as a separable product of microconsciousnesses. It would be
intrinsically composite, and there would be no unity.
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THE CORRESPONDENCE HYPOTHESIS

So far little understanding has been gained of how the structure of experience emerges
moving from single neuron reduced states ρA and ρB to the pure state description ρAB
on the tensor product space. In previous work [1] it was suggested that the contribution
of a single sensory neuron to the neural code for the sensory environment parallels the
relationship between a neuronal element of experience and the overall sensory percept.
This ‘correspondence hypothesis’ is now extended to address the structure of perceptual
experience:

However the similarity between environmental features specified by a pair
of neurons is encoded in their joint activity, this objective association parallels
the qualitative proximity of respective neuronal elements of experience.

Note that a neuroscientist is able to establish a neuron’s functional specificity experi-
mentally by correlating its activity with aspects of the sensory environment. In contrast,
the brain has no other access to the environment than the sensory neurons themselves.
A definition of neural coding that assists a formulation of consciousness cannot depend
on such external validation.
For example, how is it possible for the brain to interpret, from the activity of neurons

in early visual cortices, the geometry of physical space? An initial possibility is that
a sensory neuron somehow has access to its own location in a neuroanatomical map
of the environment. Optical principles dictate that there is an inverted but spatially
veridical mapping from the location of a source within the visual field to the retinal
location of photoreceptor activation. However, this cannot be the source of phenomenal
spatial relationships unless the retina itself supports consciousness. Although there is
a retinotopic map in primary visual cortex (V1), a magnification factor is introduced
to allocate a proportionately greater cortical area to the central region of the visual
field. Higher visual and association cortices receive inputs from V1, but presumably
have no access to the topography of the original retinal image, nor any other map of
spatial relationships8 that would allow the reverse transformation. Nor does it seem
that any such transformation is ‘hardwired’: rod achromats, who lack photoreceptors
in the central foveal region of the retina, develop a primary visual cortex without the
usual magnification factor [14], yet negotiate their environment as if they encode spatial
relationships in the same way as normals. These observations suggest that that there
exists no absolute spatial reference frame to which sensory input is co-registered.

8 Applying an ‘enactive theory’ of perception to visuo-spatial relationships, one would contend that we
learn veridical spatial relationships by acting upon our environment. This would seem to require a primary
veridical sense of proprioception from which we might establish order in our visual experience. The
magnification factor for oral and manual inputs in the primary somatosensory homunculus (reminiscent
of V1) makes this seem unlikely [13].
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If indeed only relative spatial locations are encoded9, there is support for the corre-
spondence hypothesis in the relativity of spatial experience. A transformation that inverts
the visual input relative to the orientation of the retina, but preserves relative retinal loca-
tion, does not alter visuospatial experience10. The term ‘subjective symmetry’ is coined
for any such transformation of the sensory input that leaves experience unchanged.
Further evidence for the correspondence hypothesis is found in the representation

and experience of colour. The organisation of wavelength information into opponent
channels in the retina and thalamus imposes a 2-dimensional encoding space on an input
that has a single degree of freedom (the visual spectrum). The activity of a V1 opponent
cell in one such channel reflects the difference in activity between long (L, peak 558 nm)
and medium (M, peak 531 nm) wavelength cones in the retina, whose spectral response
functions overlap considerably11. V1 neurons in a second opponent channel compare the
sum of activities in M and L cones with the activity of short wavelength cones, whose
spectral response function (peak 420 nm) is relatively distinct.
Using the simple criterion that minimally perceptually different colours should lie

adjacent and separated by a uniform distance, it is possible also to define a 2-dimensional
vector space of chromatic experience in which opposing hues are reflected through the
origin (CIE 1976 L*a*b*, see [17]). If each opponent channel could be associated with
one of the principal red-green (a*) and yellow-blue (b*) axes of this chromatic plane,
then the antagonistic inputs from photoreceptors to wavelength opponent cells would
provide a satisfying explanation of phenomenal colour opposition. Corresponding to its
instantaneous firing rate, the perception value of one such wavelength-opponent cell
would be the chroma of colour experience along a single qualitative dimension from
saturated green, through grey, to saturated red. Corresponding to the ‘orthogonality’
of red/green and blue/yellow qualities of colour experience, the neuroscientist should
discover independence of firing of neurons in each channel.
In fact this model is too simplistic. Consistent with the relativity of spatial experience,

the attribution of red colour actually depends not on the absolute intensity of low fre-
quency light reflected from a surface, but on the relative intensity compared to all other
surfaces within the visual field (known as a ‘lightness record’, see [16]). The subjective
symmetry in the case of colour vision is the alteration of frequency components in illu-
minant light that preserves phenomenal colour constancy. If there is dependence in firing
that corresponds to qualitative proximity between V1 neuronal elements of experience,
one surmises that it will be found not only within but also between retinotopic modules.

9 Perhaps relative spatial relationships are learned by applying a primary concept of size constancy
to define isometric regions as objects move through egocentric space. Alternatively, since the spatial
frequency of natural scenes does not vary with retinal eccentricity, perhaps the statistics of neural firing
across a retinotopic map, over a critical period of immersion in the natural world, are themselves sufficient
to establish the proportions of space.
10 Normal visual experience is restored after several days to a subject who wears inverting lenses [15].
Presumably the delay reflects gradual adaptation to inverted ‘sensorimotor contingencies’.
11 Actually, V1 neurons demonstrate ‘double opponency’, performing a comparison of wavelength com-
parisons between the centre and surround of the receptive field [16]. Whilst relevant to the ensuing dis-
cussion of the relativity of colour experience, this complication can be neglected at this stage.
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DEPENDENT FIRING AND PHENOMENAL PROXIMITY

What objective measure of paired association would complement the relationship be-
tween perception values and instantaneous firing rates that has been proposed, but would
remain consistent with neurophysiologic evidence? Certainly the joint probability den-
sity of spikes between neurons A and B, fA,B(t), does not satisfy the former criterion.
This measure is affected not only by the dependence in spike timing between neurons,
but also by single neuron firing rates fA(t), fB(t). If single neuron firing rates are to
be allowed a role in the quantity but not the quality of experience, fA,B(t) needs to be
‘corrected’ to produce a purer measure of dependence in spike timing:

QAB =
fA,B(t)

fA(t) fB(t)
. (13)

Instantaneous firing rates have been hypothesised to be directly proportional to percep-
tion values. QAB can then be reformulated in terms of expectation values of operators in
a tensor product neural space:

QAB =
〈HA ⊗ HB〉
〈HA〉〈HB〉 .

QAB is postulated to be the phenomenal proximity between elements of experience A
and B quantified by perception values 〈HA〉 and 〈HB〉.
Happily the same idea, of paired association between two neurons as a deviation from

independent firing, is behind the cross-correlation function [18] of cellular neurophys-
iologic studies. This is a plot of the conditional firing rate of neuron A in the period
surrounding spike occurrence in B (defined as t = 0), calculated by summing over con-
secutive spikes at site B. ‘Synchrony’ is said to occur when the conditional firing rate
at t = 0 significantly exceeds the average firing over an epoch of measurement. Figure
1 presents a fictitious example of responses evoked in two neurons by recurrent stereo-
typed stimulus presentation, to illustrate the connection between dependence in firing
probability and another measure of paired association: the Pearson correlation, com-
monly displayed in the normalised joint peri-stimulus time histogram (see [19]).
Stimulus parameters that modulate association in neural firing have been extensively

studied, but rarely the association between single units in remote regions that is envis-
aged here. In fact, most invasive studies in animals and humans have employed multi-
unit recordings that count spikes from multiple neurons within the vicinity of an elec-
trode. The success of such multi-unit recording depends on being able to isolate neu-
ronal subsets that are homogenous in their firing patterns. Cerebral cortex has a modular
organisation in which neurons that share feature specificities tend to reside within a col-
umn (extending inwards from the cortical surface), such that they are jointly accessible
to a suitably placed electrode. Synchrony seems to depend on this joint feature speci-
ficity, evident as significant ‘auto-correlation’ of pooled neuronal firing at t = 0 ([20];
explained in [21], Figure 2.5).
Cross-correlation also depends on the similarity of neuronal feature specificity be-

tween recording sites. For example, when stimulating two remote orientation-specific
regions of cat visual cortex with moving light bars of optimal orientation for neurons in
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FIGURE 1. Dependent firing of two neurons A and B evoked by recurrent stereotyped stimulus presen-
tation. It is assumed that this small sample is representative of an infinite ensemble of stimulus repetitions
in three ways. Firstly, the time window is sufficiently short that neither neuron ever fires more than once.
Secondly, the frequency of spikes over these 20 trials is the actual spike frequency. Thirdly, just as the
frequency of spikes is the same in both the first and second half of the window, it is assumed that the
instantaneous firing rate remains constant throughout the window. (a) The response of neuron A (in red)
and B (in blue) within a time window of fixed latency relative to 20 stimulus presentations. Unit elements
of response vectors identify trials in which a spike occurs in the first half (bold font) or at any time (normal
font) during the window. Frequencies of these outcomes are indicated at bottom right. (b) Table of joint
probabilities of spike outcomes. Cells in the first column (row) correspond to outcomes in which neuron A
(B) fires in the first half, in the second column (row) the second half of the window, and in the third column
(row) outcomes in which neuron A (B) does not fire. Marginal probabilities are written below and to the
right of the table. The joint probability of spikes in both neurons at any time during the window is 1.5x the
product of marginal probabilities from each, whereas the probability of a spike in neuron B in the first half
doubles, given a spike in A during this shorter period. Dependence in spike probability will remain stable
when the temporal resolution of measurement exceeds the fundamental precision of correlations, so that
the joint probability density of spikes and single neuronal instantaneous firing rates can be substituted for
spike probabilities, as in the text. (c) Depiction of a 2D subspace of the vector space that includes mean-
corrected response vectors a and b from (a). The Pearson correlation coefficient between spike counts is
the cosine of the angle between vectors, which reduces as the time window narrows (vectors from the first
half-window are in bold).
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the respective columns, synchrony between sites only occurs when the two regions share
the same preferred orientation. Synchrony of firing between these remote sites is ampli-
fied still further when a single light bar extending across both receptive fields replaces
separate light bars of the same orientation [22].
Following from the correspondence hypothesis, it is assumed that neurons united

in maximally correlated and anti-correlated states contribute identical and opponent
elements of experience respectively. When firing is ‘uncorrelated’

QAB = 1

but this is also a firing pattern that defines a ‘separable’ product state of a two neuron
system (see footnote 4, also [23]).
The extreme example of an inseparable state of a 2-neuron system in which firing is

maximally correlated is

|ψAB〉 =
√

1/2 |0A0B〉+
√

1/2 |1A1B〉.
The equivalent inseparable state in which firing is maximally anti-correlated is

|ψAB〉 =
√

1/2 |0A1B〉+
√

1/2 |1A0B〉.
What will be the conditional firing rate of B given a spike in A when a 2-neuron com-
posite system is in such an inseparable state? In the spirit of the previous discussion of
the single neuron [1], such posterior probabilities should be consistent with an objective
interpretation of a spike as action potential annihilation. Applying such an interpretation
to the maximally correlated state, if a spike occurred in A then this would imply that an
action potential had been present. A posteriori a spike in B would become certain, as
if 1 action potential also existed in neuron B. When QAB is calculated (see Appendix),
the conditional instantaneous firing rate of B doubles, given a simultaneous spike in A.
In the equivalent anticorrelated state, 〈HA ⊗ HB〉 and QAB vanish, suggesting that the
qualitative distance (conceived as an angle in radians) between elements of experience
A and B, quantified by perception values 〈HA〉 and 〈HB〉, follows the anti-linear relation

θ(A,B) = π − (π/2)QAB. (14)

DISCUSSION

The unity of consciousness

The mental state has been modeled as a vector on a tensor product space in order
to capture the unity of consciousness. Mental states are in general ‘inseparable’. They
reduce to but are not entirely constituted in semi-classical phenomenal correlates of
firing rate at the single neuron level. In the formalism that has been chosen, the locally
irreducible aspect of consciousness is the relation between elements of experience,
manifest objectively as a correlation in firing between anatomically remote neurons.
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Not all theorists of consciousness acknowledge that the unity constraint exists. Ac-
cording to MacLennan [24], “subjective qualities come from the structure of the inter-
dependencies of protophenomena”: elements of experience not unlike perception values.
He identifies such interdependencies with firing correlations established through synap-
tic transmission: “Under the assumption that ...protophenomenal intensity corresponds
to the membrane potential of the cell body, protophenomenal dependencies are mediated
by the axons, synapses, and dendrites”. But for MacLennan “there is no need to postu-
late a reified ‘phenomenon’ to integrate the coherently changing intensities of masses of
protophenomena”. According to this view, consciousness is merely a list of qualitative
relationships between neural elements.
On the other hand, the unity constraint compels some theorists to conclude that

areas that are only indirectly connected, via a pathway of several synaptic steps, cannot
simultaneously be contributing to consciousness. For example, Crick and Koch [25]
exclude primary visual cortex partly on the basis of its lack of direct connectivity
to frontal cortex, an anatomic region to which they are more confident in attributing
experience. But this stringent requirement for direct connectivity, between neurons
participating in consciousness, would seem severely to limit the possibility of a rich
visual percept. Others see a semblance of unity among neurons whose activities are
coordinated by polysynaptic thalamocortical feedback that seems to justify a slackening
of the direct connectivity criterion [26]. In such models, the richness of experience is
further accommodated by the rapid confederation and dissolution of such groupings
across cortices of varying functional specificity.
Other authors who allow recurrent projections a pivotal role in consciousness are

motivated to do so by the idea that self-reference is a model for subjectivity [27].
Recurrent projections from higher to lower-order visual cortices, which seem vital to
allow report of visual experience [28], and which are equated with consciousness by
Lamme [29], are abundant but remain modular. Recurrent projections from fronto-
parietal to visual areas might seem to have more prospect of binding visual experience,
but do not issue from a single source. The unity of experience still eludes explanation.
An interesting way out of the conundrum, proposed by Edwards [30], is to claim

that a complete copy of consciousness belongs to each individual neuron. Here, the
relevance of neural connectivity to the unity of consciousness is in providing each neuron
“simultaneous (cotemporal) access to many elements (of information) in defined inter-
relationships”. We experience unity, according to this model, not because we have a
single mental state, but because our billions of mental states are all the same! The
obvious problem is that the model requires that each neuron have access to the same
inputs, a contention that is patently false: the firing of a neuron in V5 in response to
motion in a specific direction, and a neuron in V4 to wavelength information relative to
a lightness record, surely reflects access of these cells to differing information in their
dendritic inputs.
In conclusion, it seems inevitable that any classical model grounded in realistic neural

connectivity will be unable to capture both the unity and complexity of consciousness.
One of the reasons to pursue a quantum mechanical formalism was the potential for a
better characterisation of these aspects of consciousness than a classical model would
allow. Whereas classical neuroscience would accept only objective local influences upon
neural transmembrane potential, in the quantum formalism the occurrence of a spike in
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one neuron instantaneously influences the posterior probability of a spike in a remote
neuron with which it is united in an inseparable pure state. Regrettably, the model has
not been developed sufficiently to predict the remote modulation of spike probabilities
in a realistic brain. However, the 2-neuron model does suggest that the need to invoke
non-local influences upon spike probability might be used as an indication that reductive
explanation of brain has failed.

The function of a unified consciousness

Evolution provides a powerful argument in favour of taking such a leap of credibility:
consciousness must have a function, yet classical neuroscience appears causally closed.
An influential recent account sees sensory experience as a process of distillation of order
from the chaos of unregulated interaction with the environment: “Out of this melee of
sensory events only a few privileged events make it into phenomenal feelings, while the
rest are discarded into an experiential limbo. Natural selection pursued a strategy that
amounts to summarizing most of the pertinent facts about the outside world compactly
and sending this description to the planning stages to consider the organism’s optimal
course of action” ([31], 14.1). It remains to be explored how these putative processes
might be facilitated in a brain endowed with a pure, inseparable mental state.
Considering initially this synthesis of “phenomenal feelings” from “sensory events”,

the idea that a metric of paired association between neurons might express the qualitative
distance between elements of experience within a visual sensory modality could easily
be extended to binding of motion, form or colour experiences. “To say an element is
‘bound’ to another is simply another way of saying that they are represented in awareness
dependently and are nested together... Furthermore, the degree to which lower order
features are bound into a higher order feature is directly related to the extent to which
lower order features lose their independence from each other” [32].
In fact, it must be conceded that the relation between firing dependencies and the

structure of sensory experience is likely to be more subtle than has been portrayed
(equation (14)). It seems likely, given the vast numbers of neurons involved in visual
representation, that the firing patterns of neuronal arrays are higher dimensional than the
perceptual experiences that they afford. Yet somehow we do perceive the two intrinsic
degrees of freedom of random dot motion across a screen, or the two degrees of freedom
imposed by the organisation of wavelength information into opponent channels in the
retina and thalamus.
In principle, “overlapping local neighbourhoods-collectively analysed-can provide

information about global geometry” [33]. If a linear relationship between some measure
of association in firing and phenomenal proximity were to hold only for qualitatively
similar elements of experience (for example V5 neurons of similar direction specificity),
then it might still be possible to define the local geometry of perceptual experience.
This would imply that within the higher dimensional space defined by V5 neuronal
firing patterns, there is embedded a (locally linear) 2-dimensional curved ‘surface’ or
manifold that captures the 2 modes of variation in the experience of motion on a screen.
More generally, perhaps genetically encoded patterns of neural connectivity, refined and
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pruned through exposure to the sensory environment, constrain the population activity
in early visual cortices to lie on low-dimensional manifolds. Perhaps it is on such a
manifold that θ(A,B) (equation (14)) expresses the qualitative distance in a particular
visual modality between two neuronal elements of experience. Still, it would seem
necessary to extract the information from overlapping or intersecting manifolds in early
visual cortices, in order to capture the perceptually meaningful structure of the sensory
environment. Perhaps this is the function of the ascending dorsal and ventral visual
streams.
The suggestion that some form of dimensionality reduction is necessary for experi-

ence to arise prompts speculation on the neural criteria for consciousness. It is tentatively
proposed that dependence in firing between neurons is a necessary (but insufficient) cri-
terion for a neural representation to be considered ‘conscious’: satisfied when the com-
bined system exists in an inseparable state. Similarly MacLennan [24] proposes, as a
correlate of “unconscious neural activity”, “incoherent protophenomenal activity, which
is unconscious because it does not cohere into conscious phenomena”.
Whatever is the dimension of the neural representation of the sensory enviroment,

this summary of “pertinent facts about the outside world” ([31], 14.1) would be expo-
nentially more compact in the current formalism than a purely classical neuronal register.
A linear increase in the number of neurons would be associated with an exponential in-
crease in the dimension of the tensor product of neural spaces. Just as a single neuron
could be in a superposition of 0- and 1- action potential states, a pure state of n neurons
could be in a superposition of at least 2n states of definite spike potential.

Turning now to the translation of perception into action, one putative benefit of a
pure mental state might be an improved efficiency of spike generation afforded by
synchronous dendritic inputs. “100 fast excitatory inputs, distributed over the dendritic
tree of a large pyramidal neuron, are sufficient to generate ...(a spike)... if they are
activated within a millisecond of each other. If the pre-synaptic spikes arrive smeared
out over a 25 msec window, however, twice as many synapses are needed to fire the
cell” ([31], 2.3). The objective manifestation of an inseparable pure mental state would
be correlations between neurons in anatomically remote higher-order visual cortices that
have no direct synaptic connection with each other, perhaps correlations that could not
have been established classically by common synaptic input from some lower level of
the visual hierarchy. Not only would the subject experience the bound percept of a falling
red ball, but synchronous convergent input to neurons in motor cortex might allow him
to catch it!

Conclusion

The unified mental state has been proposed to exist at the apex of a hierarchy of bound
percepts and concepts. This structure of experience would be expected to be manifest
in specific correlation patterns between neuronal sub-systems, and even remote brain
regions. The question is, if not constrained by this notion of unity of consciousness,
would it have been possible to come up with a different set of neuronal elements of
experience that would be manifest as an identical pattern of objective neural activity?
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Or could there be something inexplicable in these terms, something irreducible about
the brain that parallels the emergence of a unified consciousness? It is hoped that
future work will explore just how demanding are the conditions imposed on neural
mutual information by the existence of a pure mental state in the tensor product space,
presenting an opportunity for experimental test of the scheme.

APPENDIX

Just as in the representation of a vector product (equation (3)), the representation of
HA ⊗ IB with respect to the {|0A〉, |1A〉, |2A〉...} basis of A would be

HA ⊗ IB = r

⎛

⎜
⎜
⎝

0 IB 0 IB 0 IB ..
0 IB 1 IB 0 IB ..
0 IB 0 IB 2 IB ..
: : : ::

⎞

⎟
⎟
⎠

where each element is an operator on neural space B.

When the expression of the pure state of the 2-neuron composite system as a projector
(equation (10)) is inserted into in equation (7), the perception value A then becomes

〈HA〉 = tr

[

∑
pqmn

cpmc∗
qn HA|pA〉〈qA| ⊗ |mB〉〈nB|

]

.

Each term in the sum inside the brackets is a weighted tensor product of an operator
HA|pA〉〈qA| on A with an operator |mB〉〈nB| on B. In a matrix representation of the sum
of such terms, each element would be the sum of corresponding elements of the tensor
product matrices. Clearly then the trace of the sum of terms must be the sum of traces of
each tensor product. Consideration of matrix representations also reveals that the trace of
a tensor product is the product of traces of each operator12. Moreover, in a representation
of |mB〉〈nB| with respect to the orthonormal {|mB〉} basis we find that the trace vanishes
unless m = n (see footnotes 6 and 7) , in which case it equals 1, so

〈HA〉 = tr

[

∑
pqm

cpmc∗
qm HA|pA〉〈qA|

]

.

12 For example, the trace of HA ⊗ IB is r(0+1+2+ ...)tr(IB) = tr(HA)tr(IB).
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A representation of ρAB with respect to the {|pAmB〉} basis is (see footnote 7)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈0A0B|ρAB|0A0B〉 〈0A0B|ρAB|0A1B〉 . 〈0A0B|ρAB|1A0B〉 . .
〈0A1B|ρAB|0A0B〉 〈0A1B|ρAB|0A1B〉 . . 〈0A1B|ρAB|1A1B〉 . .

. . : : . . : :

〈1A0B|ρAB|0A0B〉 . . 〈1A0B|ρAB|1A0B〉 . .
. 〈1A1B|ρAB|0A1B〉 . . 〈1A1B|ρAB|1A1B〉 . .
. . : : . . : :

. .
. . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

or equivalently ([34], 3.2.1) with respect to the {|pA〉} basis of A (compare with equation
(3))

⎛

⎝
〈0A|ρAB|0A〉 〈0A|ρAB|1A〉 .
〈1A|ρAB|0A〉 〈1A|ρAB|1A〉 .

. . : :

⎞

⎠

where each element in the latter matrix corresponds to a submatrix of the former and is
an operator on neural space B alone (compare with HA ⊗ IB above).

Equation (12) is then seen to be a kind of trace, a sum of diagonal submatrices.

Like ρAB, ρA is Hermitian, since for each term in the sum (equation (11)) in which p = q

cpmc∗
pm|pA〉〈pA| = (cpmc∗

pm|pA〉〈pA|)†

and for each term p �= q , there is a corresponding term in the sum that is adjoint

cpmc∗
qm|pA〉〈qA| = (cqmc∗

pm|qA〉〈pA|)†.
If |ψAB〉 is normalised, then from equation (9)

∑
pm

cpmc∗
pm = 1,

implying that the trace of both ρAB (equation (10)) and ρA (equation (11)) is 1.
ρAB is a positive operator since for any vector |ϕAB〉

〈ϕAB|ψAB〉〈ψAB|ϕAB〉 = |〈ϕAB|ψAB〉|2 ≥ 0.

But like HA, ρA could be considered the product of adjoint operators13

∑
pm

cpm|pA〉〈mB|, ∑
pm

c∗
pm|mB〉〈pA|

13 The latter operator takes a vector from A to B: |b〉 = (∑pm c∗
pm|mB〉〈pA|) |a〉. In that the squared length

of |b〉 must be positive or zero, the operator ρA is positive: 〈b|b〉 = 〈a|ρA|a〉 ≥ 0 .
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so it must also be positive.

The inseparable state of a 2-neuron system in which firing is maximally correlated is
written in density operator format

ρAB = 1/2|0A0B〉〈0A0B|+ 1/2|0A0B〉〈1A1B|+ 1/2|1A1B〉〈0A0B|+ 1/2|1A1B〉〈1A1B|.
With respect to the basis {|0A0B〉, |0A1B〉, |1A0B〉, |1A1B〉} of A ⊗ B:

ρAB =

⎛

⎜
⎝

1/2 0 0 1/2
0 0 0 0
0 0 0 0
1/2 0 0 1/2

⎞

⎟
⎠ .

The equivalent inseparable state in which firing is maximally anti-correlated is

ρAB = 1/2|0A1B〉〈0A1B|+ 1/2|0A1B〉〈1A0B|+ 1/2|1A0B〉〈1A0B|+ 1/2|1A0B〉〈0A1B|
or

ρAB =

⎛

⎜
⎝

0 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 0

⎞

⎟
⎠ .

In either inseparable state, taking the partial trace as in equation (12), the reduced states
of neurons A and B are each even mixtures of 0- and 1-action potential states:

ρA = 1/2|0A〉〈0A|+ 1/2|1A〉〈1A|,
ρB = 1/2|0B〉〈0B|+ 1/2|1B〉〈1B|.

In a representation with respect to the integer action potential basis:

ρB =

(
1/2 0
0 1/2

)
, HB =

(
0 0
0 r

)
, HA ⊗ HB =

⎛

⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 r2

⎞

⎟
⎠

so that the perception value

〈HB〉 = tr(HBρB) = r/2.

The expectation value of HA ⊗ HB is similarly the trace of the matrix product tr(HA ⊗
HBρAB), which in the case of the correlated inseparable state equals r2/2. Correcting
by perception values r/2, as in equation (13), yields the dependence measure QAB: the
conditional instantaneous firing rate of B doubles, given a simultaneous spike in A.
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Fractal characterization of neural correlates of
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Abstract. In this work we present a novel experimental paradigm, based on binocular rivalry, to
address the study of internally and externally generated conscious percepts. Assuming the nonlinear
nature of the EEG signals, we propose the use of fractal dimension to characterize the complexity of
the EEG associated with each percept. Data analysis showed signi�cant differences in complexity
between the internally and externally generated percepts. Moreover, EEG complexity of auditory
and visual percepts was unequal. These results support fractal dimension analyses as a new tool to
characterize conscious perception.
Keywords: EEG; fractal; consciousness.
PACS: 87.19.le, 87.17.-h

NEURAL CORRELATES OF CONSCIOUS EXPERIENCES

Conscious experiences could be internally or externally produced. We will refer to
the former as those subjective percepts caused directly by sensory inputs. The latter
type arises when attention is focused on the own train of thoughts (mind wandering-
MW). One reliable method to study conscious perception is to consider sensory inputs
that elicit alternating subjective experiences (e.g., binocular rivalry, binaural rivalry).
In binocular rivalry procedures, two visual inputs are presented independently to each
eye producing an alternating perception of each one. In binaural rivalry, two dissimilar
stimuli are presented one to each ear, only one being perceived by participants. Since
switches between each input occur during �xed physical presentation, changes at any
physiological measure are attributed to the conscious experience [1]. Although there
is not a consensus, research suggests that Neural Correlates of Consciousness (NCC)
depends on sensory modality. Thus, some areas involved in visual awareness (e.g.,
inferior temporal cortex) are not related with auditory NCC. On the contrary, areas like
the medial temporal gyrus that have never been found linked with visual NCC are related
with auditory percepts [2].

Conscious perception also arises from self-generated inputs. This type of conscious
“mode” has been called MW and may appear during in-attention of an ongoing task
or when an individual is not engaged at any task [3]. Smallwood and colleagues [4]
proposed that MW arises with a combination of default mode network and the fronto-
parietal control network that would protect internally generated trains of thought from
disruption. MW has been characterized by the examination of oscillatory properties
of the EEG. A study conducted by Braboszcz and Delorme [5] recorded the EEG of
participants while doing a simple breath cycles counting task. MW states were located
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during the task by online reports of participants. Obtained results showed an increased
power in the theta and delta activity and a decrease power in the alpha and beta bands.

NONLINEAR FRACTAL ANALYSIS

The fundamental assumption of non-linear methods is that EEG signals are generated
by deterministic processes re�ecting nonlinear associations between neuron assemblies
[6]. One of the applications of the theory of non-linear dynamics to the study of EEG
has relied in the use of the fractal dimension (FD) to characterize chaos variations under
different conditions. FD of EEG series has been already applied to a variety of behavioral
and cognitive tasks and populations (see, for example ref [7]). Although these studies
suggest that EEG complexity is indicative of important properties of the functional
organization of cortical structures, it has not been used to characterize NCC. Among all
algorithms developed to calculate FD of time series data, Higuchiâ �AŹs algorithm (HFD)
[8] produces the more accurate estimation [9]. In addition, HFD may be computed with
relatively short time series from the EEG.

GOALS AND PREDICTIONS

We wanted to study whether EEG complexity, measured with HFD can be used to char-
acterize internally and externally conscious perceptions. In addition, we wanted to ex-
plore whether binocular rivalry and MW procedures can be successfully combined to
extend previous investigations about NCC. In order to combine binocular rivalry and
MW procedures, participants watched a video in which the visual and auditory outputs
did not match. Hence, video and audio were mutually exclusive as binocular inputs in
binocular rivalry experiments. As in experiments designed to study MW, EEG segments
were assigned to visual, auditory and MW conditions according to introspective judg-
ments of participants. We calculated HFD from EEG associated to each of conscious
percepts. Given that externally generated percepts and MW have been related with dif-
ferent neural networks [4], it was reasonable to expect that our method would show
complexity variations depending on the type of percept. Speci�cally, variations between
MW and the rest of conditions are expected to be preponderant across the majority of
electrodes while visual and auditory differences will be less distributed on the scalp.

RESULTS AND DISCUSSION

For each of 11 participants, 10 relevant EEG segments of 50s were extracted and labeled
according with verbal self-reports as: visual content, auditory content or MW. Epochs
were submitted to Infomax ICA [10] for EEG denoising. HFD means obtained for each
epoch were submitted to aMultivariate Analysis of Variance with electrode as dependent
variables and conscious percepts (visual, auditory or MW) as between-participant factor.
Data analyses revealed global differences in signal complexity depending on type of con-
scious percepts. Speci�cally, Bonferroni post-hoc comparisons showed that complexity
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FIGURE 1. Topological distribution maps of HFD means for each conscious percept.

was signi�cantly higher in fronto-temporal electrodes for auditory than visual percepts.
Moreover, parietal electrodes showed the higher complexity for auditory percepts when
compared with visual ones. Regarding MW, the HDF was higher when compared with
visual and auditory percepts across the majority of channels. This result suggests more
distributed neural generators during MW when compared with internally generated ex-
periences (See Fig. 1).

This study compares the non-linear complexity of the NCC of internally and exter-
nally generated experiences. It was shown that the NCC of MW consisted of a higher
complexity of the EEG signature across the entire scalp. This �nding may indicate that
neural networks supporting MW are more distinct and distributed in the cortex. The
second important result in our experiment is that visual and auditory percepts differ in
complexity at frontal and central-parietal sites, which may re�ect unequal distribution of
neural generators on sensory cortical areas for the two types of experiences. Our study
clearly indicates that non-linear EEG complexity can be a �ne measure of the NCC.
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Abstract. We review some recent results on neural dynamics and information processing which
arise when considering several biophysical factors of interest, in particular, short-term synaptic
plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced
long-term memory capacities, a higher robustness of memory to noise, and irregularity in the
duration of the so-called up cortical states. On the other hand, considering some level of neural
heterogeneity in neuron models allows neural systems to optimize information transmission in
rate coding and temporal coding, two strategies commonly used by neurons to codify information
in many brain areas. In all these studies, analytical approximations can be made to explain the
underlying dynamics of these neural systems.
Keywords: short-term depression and facilitation; storage capacity; Up and Down states; hetero-
geneity; neural coding.
PACS: 87.19.La

INTRODUCTION

Theoretical and computational modeling has become a powerful tool to deepen our un-
derstanding of neural systems. This is especially important when dealing with mecha-
nisms or neural circuits that are not easily accessible experimentally, or when experimen-
tal data by itself is not enough to provide a clear picture of the phenomena under study.
A prominent biophysical mechanism that �ts in such a framework is short-term synap-
tic plasticity, also known as dynamic synapses [1]. This type of fast, activity-dependent
variation of the synaptic strength has been shown to have a strong impact on a number
of important neural tasks, such as cortical gain control [2], coincidence detection [3, 4],
sound localization [5], broadband coding [6], up and down cortical transitions [7, 8],
working memory [9] or network storage capacity [10, 11, 12]. There are still a number
of open questions, and thus short-term synaptic plasticity deserves further attention from
the theoretical and computational point of view.
Another important feature that can be studied in an ef�cient manner by using theo-

retical and computational modeling is the effect of cellular heterogeneity on the perfor-
mance of neural networks. When investigating neural coding strategies used by brain
circuits, most theoretical and computational studies do not take into account the intrin-
sic variability found among actual neurons. In addition, such variability is also usually
dif�cult to control experimentally, making neural heterogeneity a typically underrated
factor in neural information processing studies. In recent years, however, a number of
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studies have suggested a functional role of the intrinsic heterogeneity found in real neu-
ral systems, and in particular its possible in�uence on network synchronization [13, 14],
signal transmission [15, 16], neural coding [17] and sensory processing [18, 19].
In this work, we review some of our recent results on these topics. First, we consider

the effect of short-term synaptic plasticity on the storage abilities of attractor neural
networks, showing that it leads to enhanced memory capacities [11, 12] and a higher
robustness to noise [12]. Then, we consider a simpli�ed model of a neural population to
investigate the effect of short-term synaptic plasticity on the irregularity of the duration
of up states in cortical networks [8], which has been observed in experiments [20, 21,
22]. Finally, we address the effect of some level of heterogeneity among neurons in a
network on the optimization in the information transmission for rate coding and temporal
coding, two strategies commonly used by neurons to codify information in many brain
areas [17]. In the three studies presented, analytical approximations can be made to
explain the underlying dynamics of these neural systems.

MAXIMUM STORAGE CAPACITY

We �rst study the in�uence of dynamic synapses on the storage abilities of neural
networks (for more details, see [11, 12] and references therein). We consider a fully
connected network ofN binary neurons whose state s≡{si= 0,1; ∀i= 1, . . . ,N} follows
a probabilistic parallel dynamics

P[si(t+1) = 1] =
1
2
{1+ tanh[2β (hi(s, t)−θi)]} ∀i= 1 . . .N, (1)

where hi(s, t) is the local �eld or the total input synaptic current to neuron i, namely

hi(s, t) = ∑
j �=i

ωi jx j(t)u j(t)s j(t). (2)

Also, β ≡ T−1 is a temperature or noise parameter (i.e., for β → ∞ we have a determin-
istic dynamics), and θi represents the neuron �ring threshold. The coef�cients ωi j are
�xed synaptic weights, consequence of the slow learning process ofM memory patterns
of activity. In the following we choose the following learning rule

ωi j =
1

N f (1− f )

M

∑
μ=1

(ξ μ
i − f )(ξ μ

j − f ), (3)

where
{

ξ μ
i = 0,1; i= 1 . . .N

}
represents theM stored random patterns with mean activ-

ity over the patterns 〈ξ μ
i 〉= f = 1/2. On the other hand, the variables x j, u j appearing in

hi describe the short-term depression and facilitation synaptic mechanisms, respectively.
We assume that these variables evolve according to the discrete dynamics [23, 24]

x j(t+1) = x j(t)+
1− x j(t)

τrec
−USEu j(t)x j(t)s j(t) (4)
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FIGURE 1. Critical network load in the presence of short-term synaptic plasticity forUSE = 0.2. Left:
network load vs depression time constant, for different values of the facilitation time constant. Right:
critical network load vs facilitation time constant, for different values of the depression time constant
(the inset shows the low τ f ac regime, where maxima appear). As one can see, the presence of facilitation
allows optimal retrieval abilities in the network while preserving the dynamic nature of synapses. Mean-
�eld predictions (lines) agree with simulations (symbols), which were done with a network of N = 3000
neurons.

u j(t+1) = u j(t)+
1−u j(t)

τ f ac
+(1−USEu j(t))s j(t). (5)

Here, τrec,τ f ac are the time constants for depressing and facilitating processes respec-
tively, and USE is a parameter related with synaptic unreliability. The original Hop�eld
model is recovered when xi = ui = 1, ∀ i, t (i.e. static synapses). By simple inspection
of Eqs. (4-5), this corresponds to the case of τrec,τ f ac 	 1 which makes x j and u j ∀ j
quickly reach their maximum values, x j = u j = 1 ∀ j, t (see [11] for a careful explanation
of this limit). We also choose

θi =
1
2 ∑
j �=i

ωi j. (6)

The network load is de�ned as α ≡M/N. One can obtain a mean �eld solution of the
network at the limit of zero temperature (see [11] for details) and obtain the following
expression for the critical network load αc (de�ned as the maximum number of patterns
per neuron that the network is able to retrieve), simpli�ed here for clarity purposes:

αc ∼
0.138

1+
(
1+γγ ′−γ ′

γ ′
)2 , (7)

where γ ≡ USEτrec and γ ′ ≡ 1+τ f ac
1+USEτ f ac . We can employ such a mean �eld solution to

compare with the numerical simulations of the model and study the effect of the time
constants τrec, τ f ac on the critical network load. As Fig. 1 shows, the presence of purely
depressing synapses (that is, τ f ac = 0) leads to low critical network loads; this effect
is stronger for larger τrec (see also [24]). On the other hand, the presence of a certain
level of facilitation allows an optimal network load (and therefore optimal retrieval
abilities) for certain �nite nonzero values of τrec, τ f ac. This is highly desirable from both
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FIGURE 2. Effect of short-term plasticity on the retrieval abilities of noisy networks. Left: phase
diagram of the network for USE = 0.2, τrec = 2 and different values of τ f ac. Right: critical temperature
as a function of τ f ac, forUSE = 0.2 and different values of τrec. Mean-�eld predictions (lines) agree with
simulations (symbols), which were performed with a network of N = 3000 neurons.

computational and biophysical points of view, since one would want to have a neural
network with good retrieval abilities while preserving the dynamic nature of synapses,
which endow it with further information processing and coding capabilities.
One can also extend the mean-�eld solution found in [11] to the case of nonzero

temperatures, in order to study the behavior of the network in more general conditions
(see [12] for details). In particular, we can compute the phase diagrams of the model
as a function of the network load and temperature, and then investigate the effect of
short-term plasticity on these diagrams. As the left panel of Fig. 2 shows, the presence
of short-term facilitation increases the area of the memory phase, even in the presence
of short-term depression [12]. The effect on the critical temperature Tc, which is the
maximum temperature allowing good retrieval abilities and corresponds to the α → 0
case, is worth mentioning. We can observe clearly in the right panel of Fig. 2 that
increasing τ f ac leads to large values of Tc, for different values of the depression time
constant. Such dependence can be found analytically [12], and it is Tc = γ ′/(1+ γγ ′).
These large Tc values comfortably surpasses the critical temperature of the standard
Hop�eld model (marked as a dashed line in the �gure), indicating that the presence of
facilitation allows the network to perform optimally in retrieval tasks even in strong
noise conditions.

IRREGULARITY OF CORTICAL UP STATES

We have seen so far that, from a purely theoretical standpoint, short-term synaptic
plasticity, and in particular short-term facilitation, may be highly bene�cial for a neural
network to improve information retrieval properties. However, short-term depression by
itself is also crucial to explain certain features observed in actual neural systems. A
good example of this is the spontaneous transitions between activity states observed in
cortical areas in the brain, a phenomenon which is referred to as up and down transitions.
Such behavior may provide a framework for neural computations [25], and could also
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coordinate some sleep rhythms into a coherent rhythmic oscillatory behavior in cortical
and thalamocortical areas [26, 27, 28].
A prominent feature of up and down transitions is that, for certain experimental

conditions, the times between transitions seem to be highly irregular, and in particular
the duration of up states is found to range from a scale of miliseconds to seconds [20,
21, 22]. While previous modeling studies (which consider up and down transitions as a
phenomenon induced by synaptic depression) are not able to explain such irregularity
[29, 7, 30], a combination of short-term depression and other biophysical factors could
still be able to explain such erratic behavior. Here we brie�y discuss a simpli�ed model
of a neural population, with short-term depression and synaptic noise, which is able to
explain the irregularity found in the duration of up states (for more details, see [8]).
We assume that the dynamics of the �ring rate of the neural population is described

by

dν(t)
dt

=−ν(t)+F [J x(t)ν(t)−θ ]+ζ (t), (8)

where ν(t) is the mean �ring rate or activity of the neural population, J is the synaptic
coupling strength in absence of short-term depression, and θ is a �ring threshold. The
variable ζ (t) is a Gaussian white noise of zero mean and standard deviation δ , which
takes into account the inner stochasticity of neurons. The term F [z]≡ νmax

2 (1+ tanh(z))
is a sigmoidal function, which sets the up and down activity levels to ν = νmax and ν = 0,
respectively.
The variable x(t) takes into account the synaptic variations due to short-term depres-

sion, and evolves according to

dx(t)
dt

=
1− x(t)

τrec
−USE x(t)ν(t)+

D
τrec

ξ (t), (9)

where τrec is again the depression time constant, and USE is a parameter related with
the synaptic unreliability (we do not consider short-term facilitation here). The last term
(with ξ (t) being a Gaussian white noise of zero mean and unitary variance, and D a con-
stant representing the strength of the noise) takes into account any source of uncontrolled
noise that is not included in ζ (t) and that could directly in�uence the synaptic strength,
such as �uctuations in neurotransmitter release or receptor unreliability [31, 32].
A typical temporal evolution of this model is shown in Fig. 3A, while Fig. 3B

corresponds to the histogram of population activity values, which re�ects the bimodal
nature found in experiments. The activity of up and down states can be easily identi�ed
as 5 spikes/s and 0.5 spikes/s, respectively.
One can develop a theoretical estimation of the probability distribution P(T ) of a

certain up state duration T (such as the one displayed in Fig. 3A). Brie�y, by carefully
analyzing the conditions for the existence of a double well in the dynamics (8), one can
�nd that only a limited window of values of x(t) is compatible with the existence of
such a double well. When x(t) is above (below) this window, the double well turns into
a single well centered at the up (down) activity state, respectively. If the synaptic noise
is strong enough, the variable x(t) will be constantly pulled away from this window, and
as a result the synaptic strength will drive the transitions between up and down states. In
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FIGURE 3. (A) Transitions between up and down states in a neural population with depressing
synapses. In the model, the transition between the two possible activity levels is driven by the average
strength of the synapses at a given time, namely x(t). Population activity (top) as well as averaged synaptic
strength (bottom) are shown, with the mean value of x(t) denoted by a dashed line. (B) Histogram of
the population �ring rate, displaying the bistable nature of the population dynamics. (C) Distribution of
duration times of the up state, for different levels of synaptic noise. The slope λexp = 1.43 corresponds
to the value found in in vitro experiments (see main text for details). Parameters are J = 1.1, USE = 0.6,
τrec = 1000 ms, δ = 0.3 and νmax = 5 spikes/s.

practice, the double well window for x(t) will be small and centered on its mean value
x0. One can see this effect in Fig. 3A, where large deviations of x(t) from its mean value
(dashed line) drive the population activity towards up or down states.
In this context, the presence of temporal correlations in x(t) (re�ected by the short-

term depression time constant τrec) will increase the duration of the excursions of x(t)
out of the double well window, which in turn will imply an increment in the duration of
the up states. Thus, calculating the distribution of ruin times of x(t) (that is, the mean
duration of the excursions of x(t) away from its mean value) will give us the distribution
of up state durations, which results in P(T )∼ T−λ with λ = 1.5.
The numerical simulations of our model indicate, as can be seen in Fig. 3C, that

the distribution of up state durations P(T ) tends to a power-law distribution with slope
∼ 1.5 for suf�ciently large values of the synaptic noise D, as our theoretical estimations
predict. The �gure also shows, for a direct comparison, the slope of λexp∼ 1.43 found in
in vitro experiments [21], in a very good agreement with our theoretical and numerical
predictions.
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HETEROGENEITY AND NEURAL CODING

In this last section, we focus on the effect of neural heterogeneity on the coding prop-
erties of neural networks (a detailed description of this section can be found in [17]).
We start by considering a fully connected network of N excitatory neurons, where the
dynamics of each neuron i is described by

τm
dVi(t)
dt

=−Vi(t)+S(t)+μ+
√

τmσξi(t)+
τm
N ∑

j
∑
k
J δ (t− tki j), (10)

where τm is the neuron membrane time constant, Vi is its membrane potential, S(t) is
an external input signal to be determined, μ is a constant input bias, ξi(t) is a gaussian
white noise of zero mean and unitary variance, σ is the noise strength, J is the synaptic
coupling strength, and the k− th spike from neuron j arrives at neuron i at tki j; the effect
of this spike on the neuron is modeled as a delta-like pulse. Each neuron i is assumed
to �re an action potential (AP) every time Vi reaches a certain �ring threshold, and after
that the membrane potential is reset to Vr for a time period τre f . In addition, we assume
here that each neuron i has a �ring threshold θi which is randomly distributed following a
gaussian pro�le P(θ)with mean θ and standard deviation w. Such heterogeneity re�ects
some of the variability in the individual excitability properties of neurons found in actual
neural systems. The network will be homogeneous for w = 0, when the distribution of
thresholds becomes a delta centered at θ .
We now consider that the external signal S(t) is a weak, low-frequency sinusoidal sig-

nal. Assuming a homogeneous network (that is, w= 0) that remains in an asynchronous
state (see [33]), the signal is able to slowly modulate the mean �ring rate of the network
(see Fig. 4A). Such modulation of the �ring rate, which captures and transmits the in-
formation of the signal, is referred to as rate coding [34, 35]. In order to investigate the
effects of neural heterogeneity on information transmission and neural coding, we now
assume a certain level of heterogeneity in the network (so w> 0) and compute the mod-
ulation of the mean �ring rate due to S(t) in this case. We observe, both analytically and
numerically, that the strength of the modulation depends on the level of heterogeneity
in a non-trivial way (Fig. 4B). In particular, we found a non-monotonic behavior of the
modulation (measured as an input-output correlation) with w, suggesting that there is a
certain neural heterogeneity level which optimizes information transmission under rate
coding. This optimization is found to be caused by the nonlinear effect of heterogeneity
on the baseline mean �ring rate of the network [17].
On the other hand, if we assume that the working point of our homogeneous network

(w = 0) is close to the stability line of the system, a small external perturbation may
be able to destabilize the network and make the neurons synchronize brie�y, producing
a population spike [33, 36]. Networks can use this high sensitivity to small external
perturbations to process well time-located incoming signals, as seen in Fig. 4C. Such a
detection strategy, which strongly relies on the generation of sharp responses precisely
located in time, is known as temporal coding [34, 35]. When considering the effect of
neural heterogeneity in information transmission under temporal coding (for which we
use here the positive predictive value, PPV, a widely used measure [37]), we observe a
nonlinear dependence as well (see Fig. 4D). More precisely, we �nd a non-monotonic
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FIGURE 4. Effect of neural heterogeneity on the coding properties of spiking neural networks. (A)
Modulation of the network mean �ring rate (black) due to a weak sinusoidal signal (grey); the network
is in an asynchronous working regime and w = 0. (B) Signal transmission, measured as the input-output
correlation of the system, is optimized for a certain nonzero level of neural heterogeneity under rate
coding. Theoretical estimation (line) agrees with numerical simulations (points). (C) Detection of sharp
inputs (triangles) by the network through population-spike generation. The network is close to the stability
line, and w= 0. (D) Signal transmission, measured as the PPV, is optimized for a certain nonzero level of
neural heterogeneity under temporal coding. Parameter values areN = 1500 (for simulations), τm = 20ms,
μ = 14 mV , Vr = 10 mV , τre f = 5 ms, θ = 20 mV and σ = 3 mV . Coupling strength J is 10 mV (A, B) or
20 mV (C, D).

shape of the PPV with w, suggesting that a certain neural heterogeneity value is able
to optimize the detection of signals under temporal coding. This phenomenon is due
to a diversity-induced synchronization of the neurons which leads to a resonance-like
behavior of the system [15, 16, 17].

CONCLUSION

In this work, we have reviewed some recent results concerning the role of several
factors, such as short-term synaptic plasticity or neural heterogeneity, on the dynamics
of neural networks. In the case of short-term synaptic plasticity, we have shown that
short-term facilitation has a positive impact (with respect to purely depressing synapses)
in the retrieval abilities of attractor neural networks [11]. In particular, the presence of
facilitation allows to have a neural network with good retrieval abilities while preserving
the natural fast dynamics of synaptic weights, convenient for information processing and
coding. Furthermore, the storage properties of attractor neural networks are improved
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with facilitation also in high-noise conditions, yielding a larger area of good memory
retrieval and higher critical temperatures [12]. This suggests that facilitation may have
an important role in helping actual neural circuits to access and maintain previously
stored information in the presence of strong noise, which would occur, for instance, in
working memory tasks [9].
Short-term depression, on the other hand, has been found to have a major impact

on several tasks, such as gain control [2] or sound localization [5]. As we reviewed
here, the combination of short-term synaptic depression and synaptic noise may be
responsible for the irregularity of the duration of up states [8]. Such irregularity has
been observed in several experimental conditions [20, 21, 22], although there is also
experimental evidence of a much lower irregularity in different conditions [22, 38, 39].
Therefore, further theoretical and experimental work is needed to understand the origin
of the irregularity of up state duration, and why it is absent in some situations. This
absence could involve, for instance, underlying mechanisms modulating the level of
short-term depression or the strength of synaptic noise.
Finally, we have analyzed the role of intrinsic neural heterogeneity on the coding

properties of spiking neural networks. Contrary to what is traditionally assumed, hetero-
geneity on neural systems does not only allow networks to process information properly,
but a certain level of such heterogeneity may even boost the abilities of the network to
process and transmit information under several neural strategies, namely, rate coding and
temporal coding. Such results are found to be robust in more realistic structures, such
as in sparsely connected networks of excitatory and inhibitory neurons [17]. The way
in which short-term synaptic plasticity and neural heterogeneity could interact in the
processing of information constitutes an open question which is currently under study.
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Abstract. Understanding of short-term synaptic depression (STSD) and other forms of synaptic
plasticity is a topical problem in neuroscience. Here we study the role of STSD in the formation of
complex patterns of brain rhythms. We use a cortical circuit model of neural networks composed of
irregular spiking excitatory and inhibitory neurons having type 1 and 2 excitability and stochastic
dynamics. In the model, neurons form a sparsely connected network and their spontaneous activity is
driven by random spikes representing synaptic noise. Using simulations and analytical calculations,
we found that if the STSD is absent, the neural network shows either asynchronous behavior
or regular network oscillations depending on the noise level. In networks with STSD, changing
parameters of synaptic plasticity and the noise level, we observed transitions to complex patters
of collective activity: mixed-mode and spindle oscillations, bursts of collective activity, and chaotic
behavior. Interestingly, these patterns are stable in a certain range of the parameters and separated by
critical boundaries. Thus, the parameters of synaptic plasticity can play a role of control parameters
or switchers between different network states. However, changes of the parameters caused by a
disease may lead to dramatic impairment of ongoing neural activity. We analyze the chaotic neural
activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I., 2004) and show that it has a
collective nature.
Keywords: short-term synaptic depression; chaotic neural activity; brain rhythms; stochastic neural
network.
PACS: 87.18.Sn, 87.19.lg, 87.19.lw, 87.19.lj, 87.10.Mn

INTRODUCTION

Short-term synaptic depression (STSD) is an important form of short-term plasticity
that provides a dynamic gain-control mechanism enhancing the sensitivity of cortical
neurons to afferent �ring patterns and expanding the range of possible coding strategies
for cortical neurons [1, 2]. Recent experimental studies and phenomenological model of
STSD (so-called Tsodyks-Markram (TM) model, [3]) have reported that transmission
across neocortical synapses depends on the frequency of presynaptic activity (spike-
timing dependent plasticity, STDP). Hence, synaptic ef�cacy is changed and adapted
according to the dynamics of presynaptic and postsynaptic neurons. In turn, changes
in synaptic ef�cacies in�uence activity of neurons. Thus, interplay between STSD and
neuronal activity is an underlying mechanism that in�uences collective dynamics of
neural network, in particular, brain rhythms. At the present time, understanding of this
in�uence is elusive.
The brain is always surrounded by noise and also it is noisy. Noise leads to stochas-

tic processes that are important ingredients of dynamics of neural networks. Intuitively,
noise is damaging. However, in neural networks, noise can play a positive role support-
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ing oscillations and synchrony [4, 5].
In the present work, we study the role of STSD in the formation of complex patterns

of neuronal activities. We use a cortical circuit model of neural networks with structure
of a sparsely connected random network and with excitatory and inhibitory neurons
that have stochastic dynamics [6]. The advantage of this model is that it can be studied
analytically and does not need time-consuming simulation. For describing STSD, we
apply the TM model to excitatory-excitatory synapses. In our simulations of the cortical
model, we observed that STSD yields a rich repertoire of neuronal activities, such as
mixed-mode oscillations (MMOs), spindles, and chaotic behavior. The parameters of
synaptic plasticity can play a role of control parameters or switchers between different
network states. We analyze the chaotic neural activity by use of the 0-1 test for chaos
[7, 8] and show that it has a collective nature.

CORTICAL NETWORK MODEL
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FIGURE 1. Spike frequencies of excitatory (squares) and inhibitory (circles) neurons versus input V .

Network structure. Let us consider two types of neurons: excitatory and inhibitory
neurons. The total number of neuron is N. The fractions of excitatory and inhibitory
neurons are ge and gi = 1−ge, respectively. Neurons are linked at random by directed
edges and form a directed classical random graph with an adjacency matrix anm, where
m,n = 1,2, ...,N. An entry anm is equal to 1 if there is an edge directed from neuron
n to neuron m, otherwise, anm = 0. If neuron m is connected to presynaptic neuron n,
the synaptic ef�cacy of this synapses is Jnm(t). Each neuron can be in either an active
or inactive state. Active neurons �re random trains of spikes with a Poisson inter-spike
intervals distribution [4, 9]. We assume that there is no phase correlation between trains
of random spikes generated by different neurons.
Noise. Neurons are bombarded by random spikes that represent synaptic noise and

random spikes from other areas of the brain. This is the only source of noise in our
model. In simulations, we used a Gaussian external noise with a mean rate of random
spikes in the range from 0 to 20 kHz.
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Input-output relationships. Neurons demonstrate various types of spiking behavior
in response to stimulus [10, 11]. There are two types of threshold behavior: neurons
that show continuous (type 1) or discontinuous (type 2) input-output curves [12, 13].
Excitatory neurons (pyramidal cells) show type 1 behavior, whereas inhibitory neurons
(interneurons) show type 2 behavior (see Fig. 1).
The total input at neuron m is a sum of spikes that arrive from presynaptic neurons

and random spikes from noise during the time interval [t−τ, t]where τ is the integration
time:

Vm(t) =
N

∑
n=1

kn(t)anmJnm+ξ (t), (1)

where kn(t) is the number of spikes that arrive from presynaptic neuron n and ξ is the
number of random spikes from noise. Here we consider the case τ f < 1, where f is the
frequency of presynaptic neuron. In this case, a postsynaptic neuron receives only one
spike (kn = 1) or none (kn = 0) from an active presynaptic neuron during the integration
time τ . The value τ f has a meaning of the probability that a postsynaptic neuron receives
a spike from an active presynaptic neuron during time τ .
Activation-deactivation. If the total input Vm(t) at an inactive excitatory or inhibitory

neuron m at time t is at least a certain threshold Ωa (i.e. Vm(t) ≥ Ωa), then neuron
m is activated with a rate μa where a = e for excitatory and a = i for inhibitory
neurons, respectively. If Vm(t) < Ωa, then active neuron m is inactivated at a rate μa.
For simplicity, we assume that the rate μa does not depend on the input. The relation
between excitatory and inhibitory activation rates is μi = αμe where α is a parameter in
the model.

Short-term synaptic depression. The model of short-term synaptic depression takes
into account depletion of a pool of vesicles containing neurotransmitters [3]). In the
present paper, we assume that only excitatory-excitatory synapses are dynamical. We
use the model proposed in [3]. The strength of synapse depends on time as follows
Je(t) = J0y(t) where J0 is the absolute strength and y(t) is the fraction of releasable
synaptic resources. The rate equation for evolution of y is

dy
dt

=
1− y

τR
−Pdyδ (t− ts), (2)

where Pd is the fraction of available synaptic resources (0≤ Pd ≤ 1), τR is the recovery
time, and ts is the arrival time of a presynaptic spike.
In numerical simulations, we studied sparsely connected networks and used the fol-

lowing algorithm.We divided time t into intervals of width Δt = τ . At each time step, for
each neuron, we calculated the input Eq. (1), taking into account that each active presy-
naptic neuron contributes with a spike with probability Δt f where f is a �ring rate of
presynaptic neuron. The number of random spikes from noise in this input is generated
according to the Gaussian distribution with the mean number < ξ > of random spikes.
Then, with the probability Δtμa states of neurons are updated by use of the stochastic
rules formulated above.
In simulations, we used the following parameters: the network size N = 103−105; the

mean degree 103; the fraction of inhibitory neurons gi = 0.25; the absolute strength of
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excitatory ef�cacies Je(0)= 1; the inhibitory ef�cacies Ji=−3; Ωe= 25 and Ωi= 27 are
excitatory and inhibitory activation thresholds, respectively; the maximum mean �ring
rates of excitatory and inhibitory neurons are f maxe = 4 and f maxi = 3, respectively; the
activation rate of excitatory neurons μe = 1; the deviation of the Gaussian random noise
σ = 10; the ratio μi/μe = α was in interval [0,1]; the fraction of available synaptic
resources Pd = [0,1]. These parameters agree with measurements in cortex.

RESULTS

In order to describe dynamics of a neural network, we introduce the fractions ρe(t) and
ρi(t) of active excitatory and inhibitory neurons, respectively. ρe(t) and ρi(t) are so
called “activities”of the excitatory and inhibitory populations. These activities can be
related with neuronal activity in EEG measurements in the brain. To clarify the effects
of depressing synapses, �rst we study the cortical model in the absence of synaptic
plasticity. This model has a complex phase diagram and demonstrates �rst-order phase
transitions, hysteresis phenomena, and neural avalanches in activation processes, and
damped and sustained network oscillations [6]. The phase diagram in α−< ξ > plane is
shown in Fig. 2. On can see that, in neural networks without synaptic plasticity, neuronal
activity shows different forms of collective behavior: (I) an asynchronous state with a
weak neural activity; (II) an active state with damped oscillations at α < 1; (III) sustained
network oscillations. We analyzed the phase diagram by use of an analytical approach
and simulations and found a very good agreement at N = 100000. To investigate the
effect of STSD on dynamics of neural networks, we chose representative points on the
phase diagram in regions II and III, and near the phase boundary between II and III (see
the points A, B, C in Fig. 2). The points, A, B, and C correspond to the same noise level
< ξ >= 15 but different values of the parameter α , α = 0.2, 0.6, and 0.8, respectively.
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FIGURE 2. α–< ξ > plane of the phase diagram of the considered cortical model: (I) an asynchronous
state with a weak neural activity; (II) an active state; (III) sustained network oscillations. Points A, B, and
C show the parameters chosen to study the role of STSD: (A) α = 0.8 and < ξ >= 15; (B) α = 0.6 and
< ξ >= 15; (C) α = 0.2 and < ξ >= 15.
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Our simulation showed that the model with dynamical (STSD) excitatory-excitatory
synapses demonstrates various patterns of collective neuronal activities that were exper-
imentally observed in vitro and in vivo mammalian brain.
At point C in Fig. 2, we observed that sustained oscillations of neuronal activity

reveal amazing robustness against noise level < ξ > and STSD parameters Pd and τR.
With increasing the parameter Pd and/or the recovery time τR, new patterns of sustained
oscillations appear, so-called mixed-mode oscillations (MMOs) (see Fig. 3).
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FIGURE 3. Activity of excitatory (solid line) and inhibitory (dashed-dotted line) populations versus
time in the case of mixed-mode oscillations. Parameters: α = 0.2, < ξ >= 15, Pd = 0.01, τR = 51.

In the case of mixed state without plasticity (point B in Fig. 2), in a certain range
of STSD parameters {Pd,τR}, a new phase with a so-called spindle-like oscillations
appears. For example, at parameters Pd = 0.008 and τR = 9, we found 4−5 Hz spindle-
like oscillations (about 24 spindles/min) (see Fig. 4b). It is interesting to note that in
the brain, spindles are generated during early stages of sleep. The frequency of spindles
characterizes the quality of sleep.
At the point A in Fig. 2, in a certain range of parameters Pd and τR, the model

with STSD demonstrated a new phase with chaotic neuronal activities as shown in
Fig. 4c. Emergence of chaos is very intriguing phenomenon which was found in EEG
measurements [14, 15]. Usually, MMOs and spindle oscillations are considered as
examples of chaotic behavior.
To check whether, in our model, the observed activity is chaotic or not, we used a

recently proposed method, so called the 0-1 test for chaos introduced by Gottwald and
Melbourne [7, 8]. If the parameter Kc calculated by this method is equal to 1, then the
behavior is chaotic. For a chaotic behavior in Fig. 4c, we obtained Kc = 0.971950. This
con�rms that the observed behavior is chaotic. In the regime with spindles in Fig. 4b, we
obtained Kc = 0.764383. For sustained network oscillation in Fig. 4a, we found a much
smaller value, Kc � 0.
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FIGURE 4. Three patterns of neuronal activity versus time and the parameter Kc from the 0-1 test for
chaos. (a) Kc = 0.17 for sustained oscillations (α = 0.2, < ξ >= 15, Pd = 0.002, τR = 4). (b) Kc = 0.76
for spindle oscillations (α = 0.6, < ξ >= 15, Pd = 0.008, τR = 9). (c) Kc = 0.97 for chaotic behavior
(α = 0.8, < ξ >= 15, Pd = 0.004, τR = 2.5). Squares and solid lines (gray color online) represent the
original activity of excitatory neurons. Circles and dashed lines (blue color online) show smoothing points
(time interval is equal to 5 integration times, 5τ).

CONCLUSION

In conclusion, our investigation of the cortical circuit model with excitatory and in-
hibitory neurons have showed that the short-term synaptic depression (STSD) plays a
very important role in the formation of various patterns of collective behavior in neu-
ronal networks. We have performed intensive simulations and showed that if the STSD
is absent, then, in dependence on the noise level, the neural network exhibits either
asynchronous behavior or sustained network oscillations. Taking into account excitatory
synapses with STSD leads to a rich repertoire of network oscillations such as mixed-
mode oscillations, spindles, and chaotic activity. We have analyzed the chaotic neural
activity by use of the 0-1 test for chaos [7, 8] and have showed it has a collective nature.
These complex patterns of collective activity are stable in a certain range of the STSD
parameters and are separated by critical boundaries. Thus, the parameters of synaptic
plasticity can play a role of control parameters or switchers between different network
states. On the other hand, if changes of the parameters are caused by a disease, then this
may lead to dramatic dysfunction of ongoing neuronal activity.
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Abstract. In biological sensory systems, a presence of noise can actually enhance detection of
weak signals. This phenomenon is called stochastic resonance (SR). We show that SR can emerge
as a collective phenomenon in neural networks. We consider a cortical circuit model composed
by stochastic excitatory and inhibitory neurons that form a sparsely connected network. We find
that SR appears due to nonlinear dynamics in a region near the critical point of a dynamical
phase transition to network oscillations. The critical point is actually an emergent threshold in the
collective dynamics. Using the cortical model, we mimic experiments of Gluckman et al. [B. J.
Gluckman et al., PRL 77, 4098 (1996)] that observed stochastic resonance in a response of CA1
networks from mammalian brain on periodic electric stimuli. Results of our numerical calculations
are in agreement both qualitatively and quantitatively with these experiments.

Keywords: neural networks; stochastic resonance; signal recognition; brain rhythms.
PACS: 87.19.ll, 87.10.Mn, 87.19.lt

INTRODUCTION

The nervous-system is noisy [1]. How noise influences brain function is an open question
in neuroscience. Here, we are interested in studying how sensorial systems process
information regardless of noise. In fact, there are two different possibilities [1], the
system either tries to compensate somehow noise, or it can use noise for its own benefit
by means of a phenomenon called stochastic resonance (SR). This phenomenon allows
nonlinear systems to recognize weak signals using noise. The fact that the signal-to-
noise ratio has a maximum at a non-zero level of noise is a fingerprint of SR [2].
Stochastic resonance has been observed in biological sensory systems and it may explain
the sensitivity of some animals to weak signals in noisy environments [3, 4, 5, 6, 7].

Sensory neurons operate as nonlinear threshold systems in the presence of noise.
Several models based on nonlinear dynamics of single neurons were proposed to explain
SR in the brain. However, these models neglect interactions between neurons. In the
present paper, in contrast to these models, we consider a cortical circuit model composed
by stochastic excitatory and inhibitory neurons which interact with each other and form
a sparsely connected network [8]. We are motivated by the fact that SR can occur at
the network level [9]. In particular, Gluckman et al. [10] observed SR in a response
of CA1 networks from mammalian brain on periodic electric stimuli. We model these
experiments using the cortical model and we show that SR is actually an emergent
property of neural networks.

Physics, Computation, and the Mind - Advances and Challenges at Interfaces
AIP Conf. Proc. 1510, 202-206 (2013); doi: 10.1063/1.4776520

©   2013 American Institute of Physics 978-0-7354-1128-9/$30.00

202



CORTICAL MODEL OF NEURAL NETWORKS

We consider a simple cortical circuit model introduced in [8]. The circuit is composed
by N neurons connected by directed edges (synapses) at random (directed Erdős-Rényi
network). The probability that two randomly chosen neurons are connected is c/N where
c is the mean number of synaptic connections. There are two populations of neurons, geN
excitatory and giN inhibitory neurons (ge+gi = 1). Neurons are active if they fire bursts
of spikes and inactive if they do not. For simplicity, we consider that active neurons
fire with a constant firing rate ν . A neuron receives signals from its presynaptic active
neurons (a positive contribution from excitatory neurons and a negative contribution
from inhibitory neurons) and random spikes. These random spikes represent synaptic
noise and random spikes arriving from other areas of the brain. Within a certain time
window τ , a neuron n integrates all inputs and compares the total input Vn with a
threshold Ω. If Vn ≥ Ω then inactive neuron n is activated at a rate μa1 (a = e for
excitatory and a = i for inhibitory neurons). Similarly, active neuron n is inactivated at a
rate μa2 if Vn < Ω. For simplicity, we consider the case μa1 = μa2 = μa. Note that μ−1

e
and μ−1

i are the first spike latencies of excitatory and inhibitory neurons, respectively.
In order to study collective dynamics of neural networks, we introduce the quantities

ρe(t) and ρi(t) as the fractions of active excitatory and inhibitory neurons at time t. We
call them "activities". Using the stochastic rules for single neurons formulated above,
we derived rate equations for the activities ρe(t) and ρi(t),

dρa(t)
μadt

= F(t)(1−ρa(t))−ρa(t)+Ψ(ρe(t)+Ae(t),ρi(t)) (1)

where a = e, i and

Ψ(ρe +Ae,ρi) =∑
ξ ,k,l≥0

Θ(Jek+Jil+ξ−Ω)G(ξ )Pk(cgeντ[ρe +Ae])Pl(cgiντρi). (2)

F(t) is a stochastic force acting at the network level and producing stochastic fluctu-
ations of neural activity. We define the sensory input Ae(t) = x(t)gs/ge where gs is a
fraction of the excitatory neural population stimulated by a stimulus x(t). The exter-
nal stimulation x(t) can come from sensory neurons or from an applied electric field.
Ψ(ρe,ρi) is the probability that a randomly chosen neuron has a total input at least the
threshold Ω. Θ(x) is the Heaviside step function. ξ is the random number of spikes due
to noise. ξ follows the Gaussian distribution G(ξ ). Pk(geρecντ) and Pl(giρicντ) are
the probabilities that during a time τ a neuron receives k spikes from active excitatory
neurons and l spikes from active inhibitory neurons. Pn(c) is the Poisson distribution
function. Je and Ji are the efficacies (synaptic strengths) of connections with presynap-
tic excitatory and inhibitory neurons, respectively, see [8] for details. We believe that
Eq. (1) and Eq. (2) are exact in the thermodynamic limit, N → ∞. In our numerical
solution of Eq. (1), we used the following parameters: the mean degree c = 1000; the
threshold Ω = 30; the frequency ν = 100 Hz; the integration time τ = 10 ms; the exci-
tatory and inhibitory efficacies Je = 1, Ji = −3, respectively; the fraction of excitatory
neurons ge = 0.75; the fraction of excitatory neurons which receive a stimulus gs = 0.1;
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FIGURE 1. Phase diagram of the cortical circuit model. There are three regions of collective neural
activity: (I) exponential relaxation to a steady state; (II) decaying oscillations; (III) network oscillations.
The point shows the parameters used in our numerical calculations for SR: α = 0.7 and 〈ξ 〉 = 15. The
arrow represents the effect of a stimulus x(t) that moves the system from region (I) to region (III).

the first spike latency of excitatory neurons μ−1
e = 20 ms; and the variance of the random

number of spikes due to noise σ2
ξ = 10.

Solving the rate equations, Eq. (1), at dρa/dt = 0, we determined the stationary states
[8]. Then, we studied how the activities relax to a steady state at different levels of noise
(the noise level is characterized by the mean number of random spikes, 〈ξ 〉, that a neuron
receives during the time window τ) and at different values of the ratio μi/μe ≡ α . Fig. 1
shows the phase diagram of the model in the plane α −〈ξ 〉. There are three different
regions of relaxation: (I) a region of exponential relaxation to a steady state; (II) a region
of decaying oscillations; (III) a region of sustained network oscillations. The emergence
of network oscillations occurs as a dynamical phase transition at a critical boundary that
separates region (I) from region (III).

STOCHASTIC RESONANCE

Let us consider the case when our neural network stays in region (I) (a region of
asynchronous dynamics and weak neural activity), on the left of region (III) (a region
of sustained network oscillations) (see the point in Fig. 1). In order to move neural
dynamics from region (I) to region (III), one can either increase noise level 〈ξ 〉 or
alternatively apply a stimulus x(t) to the neural network (see the arrow in Fig. 1). We
would like to outline that the critical boundary is an emergent threshold in the collective
dynamics. In our model, it is due to this emergent property that it is possible to find SR.

Now we discuss the experiments in Ref. [10]. Gluckman et al. prepared hippocam-
pal slices from the rat temporal lobe. Then, they applied a time varying electric field to
deliver both a sinusoidal signal and noise directly to the neuronal network. They demon-
strated stochastic resonance in the response of the neuronal network finding an optimal
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FIGURE 2. (a) Signal applied to the neural network. (b) Response of the neural network to stimulus
composed by the signal (a) and noise with the mean amplitude Anoise = 1.23× 10−2. (c) Signal-to-noise
ratio (SNR) as a function of Anoise for a neural network. A maximum of the SNR at a non-zero level of
noise is a fingerprint of stochastic resonance. Time is in the units μ−1

e . Parameters: α = 0.7 and 〈ξ 〉= 15.

non-zero magnitude of the stochastic component for which the signal-to-noise ratio had
a maximum. In order to understand the mechanism of the observed SR, we mimic the
conditions present in these experiments.

First, we placed our neural network in region (I) (see the point in Fig. 1). For simplic-
ity, we set F(t) = 0 in Eq. (1) and approximated the expected stochastic fluctuations due
to the stochastic force by adding white noise with standard uniform distribution on the
open interval [0,10−2] to the activities ρa(t).

Second, we applied a stimulus which was the sum of a weak sinusoidal signal and
noise to the neural network. In Eq. (1), we assumed that the sensory input Ae(t) was
proportional to the stimulus x(t) where x(t) = x[sin(2π f t)+ 1]/2+ ζ (t) was the sum
of a weak signal and noise, respectively. We used x = 4.5×10−3 and f = 1.25 Hz, see
Fig. 2 (a) (like in Ref. [10] we chose the stimulus frequency smaller than the frequency
of network oscillations which was about 4 Hz). The noise input ζ (t) was generated by a
Gaussian process characterized by the mean amplitude Anoise and the standard deviation
σn = 1.5Anoise. We chose a sufficiently weak signal, i.e., the signal that could not move
the network through the critical boundary, from region (I) to region (III).

Third, we calculated the response of the neural network to the stimulus using Eq. (1)
for different mean amplitudes of the input noise Anoise, see Fig. 2 (b). We chose the
amplitude Anoise such that the ratio x/Anoise was close to that used by Gluckman et al..

Finally, we calculated the signal-to-noise ratio (SNR), using the same method as
Gluckman et al.: (i) we calculated the response of activities of the neural network to
the stimulus for each amplitude of noise Anoise; (ii) we obtained the power spectrum
of each response from the respective Fourier transform; (iii) in the power spectrum,
we measured the amplitude A of the peak at the frequency of the input sinusoidal
signal, and the background averaged amplitude B of the spectrum; (iv) we calculated
the SNR= (A−B)/B.
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Our results are represented in Fig. 2 (c). In this figure we plot the signal-to-noise ratio
versus the noise amplitude Anoise applied to the neural network. The figure shows that
there is an optimal level of noise at which the SNR is maximum. This maximum of the
signal-to-noise ratio at a non-zero level of noise is a fingerprint of stochastic resonance.
Interestingly, the maximum of the SNR takes place at an amplitude Anoise such that
the ratio x/Anoise is close to the ratio found in Ref. [10]. Thus, the proposed model
reproduced well the observed SR and our results are both qualitatively and quantitatively
in agreement with the experiments of Gluckman et al..

CONCLUSION

In the present paper, using a cortical circuit model, we have investigated the mechanism
of stochastic resonance in neural networks. We have studied response of neural networks
on periodic stimulus plus noise. We have showed that, due to the interaction between
neurons and nonlinear dynamics near the critical point of a dynamical phase transition
to network oscillations, the model demonstrates a resonance phenomena similar to
the SR phenomenon observed in neural networks from mammalian brain [10]. The
critical point is actually an emergent threshold in the collective dynamics. Results of our
numerical calculations agree both qualitatively and quantitatively with the experiments
of Gluckman et al. [10].
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Abstract. If a network of neurons is repeatedly driven by the same fluctuating signal, will it give
the same response each time? If so, the network is said to be reliable. Reliability is of interest in
computational neuroscience because the degree to which a network is reliable constrains its ability
to encode information in precise temporal patterns of spikes. This note outlines how the question
of reliability may be fruitfully formulated and studied within the framework of random dynamical
systems theory. A specific network architecture, that of a single-layer network, is examined. For the
type of single-neuron dynamics and coupling considered here, single-layer networks are found to
be very reliable. A qualitative explanation is proposed for this phenomenon.

Keywords: reliability; spike-time precision; coupled oscillators; random dynamical systems; neu-
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Introduction. If we repeatedly drive a network of neurons with the same complicated
signal, will the network’s response be the same each time? A network for which the
answer is “yes” is said to be reliable. This property is of interest in computational
neuroscience because neurons communicate information via brief electrical impulses,
or spikes, and how reliable a system is may affect its ability to encode information via
precise temporal patterns of spikes.
A variety of experimental and theoretical studies have found that single neurons are

reliable under a broad range of conditions (see, e.g., [3, 11, 4]); much less is known about
the reliability of networks, both experimentally and theoretically. The work described in
this brief note is part of a program aimed at understanding the types of networks and
network conditions (e.g., network architecture, type of stimulus, etc.) that may enhance
or disrupt the reliability of a network. This work combines qualitative theoretical ideas
from dynamical systems theory and numerical simulations.
The results mentioned here are summarized in [10] and explained in detail in [9];

interested readers are referred to those papers. In addition to layered networks, we have
also carried out a general study of reliability of feed-forward and recurrent networks.
This work is described in [8], and some of the main results are surveyed in [7].

Models. Our networks are composed of so-called “theta neuron” models. These are
idealized models for neurons that, in the absence of external forcing, spike periodically

Physics, Computation, and the Mind - Advances and Challenges at Interfaces
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at a fixed frequency. The network equations take the form

θ̇i = ωi+ z(θi)
(
∑
j �=i
a ji g(θ j)+ εI(t)

)
, i= 1,2, · · · ,N, (1)

where the state of the ith neuron is given by an angle θi; ωi > 0 is the intrinsic frequency
of the ith neuron; I(t) represents an external stimulus, here modeled as white noise; g is
an approximate delta function, i.e., it is a smooth function supported in a small interval

around 0 satisfying
∫ 2π
0 g(θ) dθ = 1 (this is a simple model for relatively fast synapses);

and z is the phase response curve (PRC), modeling state-dependent neuronal response to
inputs. The angle θi represents the fraction of its cycle that a neuron has completed; the
neuron is viewed as spiking at θ = 0. A nonzero input I(t) modulates the firing rate of
the neuron, and the phase response z captures the state-dependent response of the neuron
to stimuli. Here, we assume z(θ) = 1− cos(θ) , a so-called “Type I” PRC [2].
In Eq. (1), the coupling matrix A = (a ji) encodes the network structure. In this note,

we consider only single-layer networks, i.e., the neurons are sparsely and randomly
coupled to each other, and receive a single common input (Fig. 1(a)); see [10] for details.

Reliability formulation and a mathematical framework. In this context, we can
define reliability to mean that the network stateΘ(t) = (θ1(t), · · · ,θN(t)) is reproducible
across repeated trials, where each new “trial” means generating a new set of initial
conditions (but keeping all else — network structure, stimulus, oscillator frequencies
— fixed). Note that this notion of reliability is not the only one relevant to applications;
some other types of reliability are discussed in [9].
A mathematically equivalent way to view reliability is in terms of how the flow

defined by Eq. (1) acts on an ensemble of initial conditions. That is, let ω denote a
specific realization of the stimulus, and let Φs,tω be the solution map of Eq. (1), so that
for any solution Θ we have Φs,tω (Θ(s)) = Θ(t) . (For properties of such flow maps, see
[1].) Then reliability is equivalent to the statement that an ensemble of initial conditions,

when transported in time by the flow Φ0,t
ω , collapses to a single, distinguished trajectory.

Because the mappings Φs,tω depend on the white noise stimulus, it defines a random
dynamical system. A useful tool that enables us to study reliability efficiently is the max-
imum Lyapunov exponent λmax of a system. Roughly speaking, the maximum Lyapunov
exponent measures the rate of separation of nearby trajectories in state space: λmax > 0
means nearby trajectories diverge exponentially fast, whereas λmax < 0 mean exponen-
tial convergence. The relation of λmax to reliability is encapsulated in two theorems: the
first, due to Le Jan [6] (with extensions by Baxendale [1]), states that subject to certain
non-degeneracy conditions, if λmax < 0, then the ensemble will collapse to a single tra-
jectory. The second theorem, due to Ledrappier and Young [5], states that if λmax > 0,
then the ensemble does not collapse to a single trajectory, but rather converges to a “ran-
dom strange attractor.” The latter are complicated geometric objects that wind around
phase space in a complicated way, and for our systems are usually not localized in phase
space. Taken together, these theorems tell us that λmax is a useful indicator of reliability.

Single layer networks. Fig. 1(b) shows λmax for a single-layer network, plotted against
a quantity A measuring the total synaptic input received by each neuron (precise defini-
tions are in [10, 9]). Observe first that when A = 0, which corresponds to a “network”
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FIGURE 1. Single-layer network. Panel (a) shows an example. In (b), we plot λmax for vs. mean total
input A for 2 stimulus amplitudes ε . Panel (c) shows the phase distribution of neurons at pulse arrival.

where the oscillators are uncoupled, we have λmax < 0. This is because single theta neu-
rons can be shown to be always reliable. As |A| increases, λmax increases, suggesting
that the coupling is destabilizing. But even when A= 2 (which is quite strong [10]), the
system remains reliable. Why is this the case? The following explanation is proposed in
[9]: if all neurons have the same frequency and there are no couplings, then the neurons
would be synchronized by the common input. But if we now perturb the frequencies and
couplings away from 0, then we would expect the neurons to remain nearly synchro-
nized. But the phase response z(θ) =O(θ 2) for θ ∼ 0, so when the neurons are spiking,
they are not listening to their inputs. Thus, the couplings are effectively attenuated.
Among other things, this proposed mechanism predicts that the neurons would have

phases that are highly clustered, e.g., if we look at the distribution of phases conditioned
on the arrival of an incoming pulse, the distribution should be highly peaked. This is
indeed the case (Fig. 1(c)). Also, any factor that makes it harder for the neurons to
synchronize would be detrimental to reliability; this has also been shown numerically.
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Abstract. Two identical dynamical systems coupled unidirectionally (in a so called master-slave
configuration) exhibit anticipated synchronization (AS) if the one which receives the coupling
(the slave) also receives a negative delayed self-feedback. In oscillatory neuronal systems AS is
characterized by a phase-locking with negative time delay τ between the spikes of the master and of
the slave (slave fires before the master), while in the usual delayed synchronization (DS) regime τ is
positive (slave fires after the master). A 3-neuron motif in which the slave self-feedback is replaced
by a feedback loop mediated by an interneuron can exhibits both AS and DS regimes. Here we show
that AS is robust in the presence of noise in a 3 Hodgkin-Huxley type neuronal motif. We also show
that AS is stable for large values of τ in a chain of connected slaves-interneurons.
Keywords: Hodgkin-Huxley; synchronization; phase-locking.
PACS: 87.19.lj, 87.19.ll, 87.19.lm

WHAT IS ANTICIPATED SYNCHRONIZATION?

Synchronization of oscillators was initially studied by Huygens with two pendulum
clocks. Since then an extensive study of synchronization of nonlinear systems has been
done on a variety of physical and biological systems [1]. Here we are interested in a new
scheme of synchronization called “anticipated synchronization” (AS) [2]. It consists of
the stable state reached by two identical dynamical systems coupled in a master-slave
(MS) configuration if the slave is also subjected to a negative delayed self-feedback.
Such systems are described by the following set of equations:

Ṁ = f (M(t)), (1)

Ṡ = f (S(t))+K[M(t)−S(t− td)].
The solution S(t) =M(t+ td), which characterizes AS, means that at time t the slave (S)
is in the same state as the master (M) will be in a future time t+ td .

3-NEURONMOTIF: MASTER-SLAVE-INTERNEURON

The first verification of AS in a neuronal model was done in a system of two FitzHugh-
Nagumo models, coupled as MS, forced by the same random external current and
subjected to a recurrent negative delayed connection in the slave neuron [3]. However
this recurrent feedback has no obvious biological correlate. In a previous work, we have
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FIGURE 1. Neuronal network motifs that exhibit anticipated synchronization. (a) 3 neurons in a master-
slave-interneuon (MSI) configuration. (b) Chain of slave-interneurons.

proposed a more biophysically plausible system in which the delayed self-feedback is
replaced by an inhibitory feedback loop mediated by a third neuron [4]. It consists of
the master-slave-interneuron (MSI) motif shown in Fig. 1(a) which is composed of 3
neurons coupled by two excitatory synapses (from M to S and from S to I) and one
inhibitory synapse from I to S.
In Fig. 1 each neuron is a Hodgkin-Huxley (HH) type model [5]. It consists of four

coupled ordinary differential equations associated to the membrane potential V and the
ionic currents flowing across the axonal membrane corresponding to the Na, K and
leakage currents. Each link is an excitatory (or inhibitory) synapse mediate by AMPA
(GABAA) with synaptic conductance gA (gG). Each synaptic current is also described by
a dynamical equation [4].
It has been shown that 3 HH neuron models coupled as MSI and driven by either

constant or periodical external current exhibits both DS and AS regimes for a large set
of parameters [4]. Since DS and AS are phase-locking regimes (master and slave fire
with the same period), it is possible to define the time delay τ as the difference between
the spike timing of the master and the slave in each cycle: τ = tS− tM. τ turns out to be
a nonlinear function of gG. In the absence of the recurrent inhibitory feedback (gG = 0)
the slave fires a little later than the master: τ > 0, which characterizes the DS regime. As
we increase the value of gG, τ decreases: master and slave fire spikes closer and closer
until they reach a regime of complete (or zero-lag) synchronization. Increase gG even
more makes the slave fire spikes before the master: τ < 0, which characterizes the AS
regime. The transition from AS to DS is smooth and continuous. For larger values of gG
the system reaches a phase drift regime (master and slave fire with different periods).
An MSI motif of modified HH model neurons including a slow K+ current [6] and

colored noise added to the constant external current also exhibits both DS and AS
regimes depending on the strengths gG of the inhibitory synapse (see Fig. 2(a)-(d)).
This is a more realistic model for cells in the cortex. Due to the noise, spiking is not
periodic, as can be seen in Fig. 2(a). τ varies in each cycle but maintains a well defined
sign, as shown in Fig. 2(b). The mean value of τ is a well behaved function of gG.

LARGER MOTIFS: CHAIN NETWORKS

It has been show that a chain network can propagate stable activity with temporal
precision in songbirds [7], and that a chain of chaotic slave neural network can exhibit

211



AS [8]. As the brain exhibits well defined sequences of neuronal processes during
complex behaviors, such as cognitive tasks, we wondered if a chain of slave-interneurons
(see Fig. 1(b)) can exhibit AS and control the temporal precision between spikes of
different neurons. Such a chain of connected standard HH neurons driven by a constant
current can provide a mechanism for obtaining larger anticipation time between the
first master and the last slave as shown in Fig. 2(e) and (f). Furthermore, the chain
network motif has precise time differences among the spikes that depend on the synaptic
conductances and the external current.

FIGURE 2. Characterizing DS and AS regimes. (a)-(d) Results for the 3-neuron motif. (a) With colored
noise added to the input current, spiking is not periodic. (b) Under noisy dynamics, the time delay τ in each
cycle fluctuates around a mean with well-defined sign (for the DS and AS regimes) (c)-(d) gG controls the
relative timing of the master and slave spikes, leading to DS or AS. The chain in Fig. 1(b) exhibits (e) DS
for weaker inhibition and (f) AS for stronger inhibition. Note that the anticipation time is largest between
neurons 1 and 5.
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Abstract. The synaptic plasticity rules that sculpt a neural network architecture are key elements
to understand cortical processing, as they may explain the emergence of stable, functional activity,
while avoiding runaway excitation. For an associative memory framework, they should be built
in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response
to an external stimulus. Still, how these rules may be implemented in recurrent networks and the
way they relate to their capacity of pattern recognition remains unclear. We studied the effects of
three phenomenological unsupervised rules in sparsely connected recurrent networks for associative
memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The
system stability is monitored during the learning process of the network, as the mean �ring rate
converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure
the recovery ef�ciency of the activity following each initial stimulus. This is evaluated by a measure
of the correlation between spike �re timings, and we analysed the full memory separation capacity
and limitations of this system.
Keywords: unsupervised synaptic plasticity; spiking neurons; homeostasis; STDP; STP.
PACS: 87.18.Sn, 87.19.lg, 87.19.lj, 87.19.lp, 87.19.lv, 87.19.lw

INTRODUCTION

The ever-going changes in synaptic connections are thought to play a major role in
a neural network’s memory capacity. In this work we investigate how experimentally
derived plasticity rules may affect their dynamics within a recurrent architecture, and
whether they might give rise to some kind of associative memory. More speci�cally,
we focused on homeostatic scaling[1, 2, 3] with pre-synaptic dependency[4] and spike-
timing-dependent-plasticity[5, 6, 7] and their relation to the recovery of patterns of
precise timing of spikes, as observed for example in some layers of the visual cortex[8].

SIMULATION DETAILS

We used two models for neural dynamics: an analytically solvable integrate-and-�re
with Dirac’s delta interactions and an Izhikevich model for pyramidal neurons[9] with
conductance-based synapses, and added short-term-plasticity (as in [9]) in both for
stability. The system consists of N = 500 neurons, being 80% excitatory and 20%
inhibitory, randomly connected with probabilities taken from the literature [10].

The simulation starts with a quiescent network to which is imposed a pattern of
neuronal spikes. The synaptic weights are updated after the transient activity ceases,
in a trial scheme (such as [4]). As the synaptic weights evolve, the network starts to
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FIGURE 1. On the left: development of activity during learning time on the bottom (full line is the
mean A for excitatory neurons, dotted is for inhibitories), and on top, raster plot of the untrained input
(black) and subsequent response after learning (grey). On the centre and on the right, juxtaposition of
raster plots from two different trials (black and grey symbols): same learned input and different learned
inputs respectively. Note that neurons 1-400 are excitatories and 401-500 are inhibitories.

develop activity following the input (Fig. 1), and it converges to a mean value AGoal
de�ned by the homeostatic scaling rule,

W ν+1
i j =W ν

i j +αWAν
j (AGoal−Aν

i )W
ν
i j

where W ν
i j is the synaptic weight from the neuron j to the neuron i and Aν

i is an
accumulated mean value of the number of spikes Sν

i of the neuron i in the trial ν:

Aν+1
i = Aν

i +αA(Sν
i −Aν

i ) .

Aj is the pre-synaptic dependence factor, used as a mechanism to further stabilize the
activity. AGoal was set to 1 spike per trial for excitatories and 2 for inhibitories.

Correlation measure

The correlation measured between the activities of two trials

Cνν ′

=
1
γ ∑

i

Sν
i ,Sν′

i

∑
k,l=1

e
−

(
tνi,k−t

ν′
i,l

2σ2

)2

γ =
[
MAX(Sν

,Sν ′

,N)
]

compares the kth spike time of the neuron i in the trial ν with the lth time, the closest one,
in the trial ν ′, with a tolerance of σ = 1ms. Cνν ′ is normalized by γ , the largest value
within either the number of spikes of one of the trials, or N. This is to take into account
that the activity should obey the homeostasis constraint of 1 spike for each excitatory
neuron in one trial. Fig. 2 shows the simulation results up to 15 trained patterns. It
is possible to see that it recovers the activity if a trained pattern is presented again
(Cνν ′

≈ 1), and that it is different from the other trained ones (Cνν ′
≈ 0).
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FIGURE 2. On the left, averages for correlation between the same input (dashed line), two different
trained inputs (full) and a trained and an untrained one (dotted). On the centre, correlation measures for
two presentations of the same pattern with (full line) and without (dashed) STDP. On the right, averages for
correlation with the same pattern with varying network connectivity values. The stars are the same of the
other graphs, excitatory→excitatory: 0.12, excitatory→inhibitory: 0.2 and inhibitory→excitatory: 0.2. For
the others, connectivities are scaled by: 0.75 (diamonds), 0.5 (triangles), 1.5 (circles) and 2 (pentagons).

CONCLUSIONS

We searched for associative memory of spike patterns and presented results of timing
correlation as a function of increasing trained patterns, which also enhances the network
level of recurrence. There were no major differences of activity behaviour or correlation
capacities between the two models of synapses used (static charges for integrate-and-
�re or conductance-based for Izhikevich model). The pre-synaptic dependence factor
Aj introduces a Hebb-like relation to the connections, making the homeostatic scaling
suf�cient for the recovery of spike timings. The system without STDP actually yields
similar activity and correlation results for a small number of learned inputs. We also
checked that the network connectivity sparseness heavily in�uences this capacity, and
there is an optimal range for it (Fig. 2).
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Introducing time-varying parameters in the
kuramoto model for brain dynamics

S. Petkoski and A. Stefanovska
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Abstract. The mean �eld dynamics of the Kuramoto model (KM) with time-dependent (TD)
parameters is described, and the response in the adiabatic and non-adiabatic limits is explained. The
observed low-frequency, homogeneity-dependent �ltering is discussed, together with the possible
implications to the modelling of the brain dynamics.
Keywords: Kuramoto model; time-dependent variables; non-autonomicity.
PACS: 05.45.Xt, 87.10.Mn

INTRODUCTION

The KM results from the phase reduction in dealing with large populations of interact-
ing oscillating subsystems [1], and was largely motivated by biological examples [2]. It
assumes that in the limit of many single units, the time of the occurrence of the events
matters more than the actual magnitude of each of them. In that sense, e.g. for popu-
lations of �ring neurons, the measured EEG signals represent the mean �eld of many
thousands or millions of oscillators. When they are synchronized, an amplitude peak at
the entrainment frequency will be observed.
Although the model itself only represents idealized scenario, its analytical tractability

makes it the prevailing approach in tackling a wide variety of important problems. Still,
neither the original model, nor most of its extensions (for a review of all generalizations
and the problems they address see [3]), have incorporated a fundamental property of
living systems – their inherent time-variability.
A recent generalization of the KM [4] introduced explicit consideration of determinis-

tically time-varying parameters. As a result the dynamics of the collective rhythms con-
sists of the external system superimposed on the autonomous one, a characteristic feature
of many thermodynamically open systems. In this way, many important characteristics
of open systems that stem from their time-dependent parameters can be better described.
Namely, experimentally reported results for the anaesthetized brain [5] provide a strong
motivation to model it using time-varying couplings [6], whereas variability in neuron
�ring rates [7] can be also deterministically encompassed with this model.

KURAMOTO MODEL WITH TIME-DEPENDENT PARAMETERS

The original KM consists of phase oscillators running at arbitrary intrinsic frequencies
and coupled through the sine of their phase differences. The oscillators’ natural fre-
quencies and/or couplings are in�uenced by identical external forces with constant or
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distributed strengths. The generalization [4] additionally introduces an external, explic-
itly time-dependent, bounded function x(t), that modulates the frequencies or couplings
of the original model. In the most general case, the strengths of the interactions Ii are
distributed according to a probability density function h(I), and likewise the distribution
g(ω) of the natural frequencies ωi. Thus, depending on which parameter is in�uenced
two models emerge

A : �θi = ωi+ Iix(t)+K r(t)sin[ψ(t)−θi], (1)
B : �θi = ωi+[K+ Iix(t)] r(t)sin[ψ(t)−θi]. (2)

Here, a TD complex order parameter is introduced

z(t) = r(t)eiψ(t) =
1
N

N

∑
j=1

eiθ j , (3)

where r(t) and ψ(t) are the TD mean-�eld amplitude and phase respectively.
In the thermodynamic limit N → ∞ the state of the systems (1, 2) is described by a

continuous PDF ρ(θ ,ω, I, t) which gives the proportion of oscillators with phase θ at
time t, for �xed ω and I. A recent ansatz by Ott and Antonsen [8] gives a particular solu-
tion to the continuity equation for ρ(θ ,ω, I, t)= 1

2π {1+{∑
∞
n=1 [α(ω, I, t)]neinθ + c.c.}},

as long as α(ω, I, t) evolves with

A :
∂α
∂ t

+ i[ω + Ix(t)]α +
K
2
(zα2− z∗) = 0, (4)

B :
∂α
∂ t

+ iωα +
K+ Ix(t)

2
(zα2− z∗) = 0. (5)

Using the same ansatz the complex order parameter of the system becomes

z∗ =
∫ +∞

−∞

∫ +∞

−∞
α(ω, I, t)g(ω)h(I)dωdI. (6)

Eqs. (4, 5) hold for any distributions of ω and I, and for any forcing x(t). They
describe the evolution of the parameter α which is related to the complex mean �eld
through the integral equation (6). However, for polynomial or multimodal δ -like dis-
tributions of ω and I, the integral (6) can be solved, thus leading to low-dimensional
evolution of the order parameter z(t). Several different scenarios are shown in Fig. 1.

Slow/Fast Reduction

The plots in Fig. 1 (a)-(b) show that the oscillations of the mean �eld follow the
frequency of the external forcing. Another obvious feature of the same results is the low-
frequency �ltering of the external �elds, i.e. the only difference between plots (a) and (b)
is the frequency of the external forcing, whilst its in�uence is much more pronounced in
the latter. In that sense, the magnitude of the mean �eld’s oscillations depends solely on
the system’s inherent transient time, compared to the period of the external force.
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FIGURE 1. (a-b) The time-varying mean �eld and (c) the magnitude of the response, Δ(ε,Ω), of model
A. (a-b) The full system’s dynamics (light blue) are in agreement with the low-dimensional (dashed
red). Adiabatic (dotted brown), and non-adiabatic evolutions (dashed-dotted green), are con�rmed in
their limits (see [4] for details). The distribution h(I) = (εω) with K = 3.5, ε = 0.6, Ω = 10 and
Ω = 0.1 respectively. (c) Non-adiabatic (dotted black) and adiabatic (dashed black) evolution for ε ∈
{0.05,0.0629,0.0791,0.0995}, comparedwith the full dynamics (light blue).K = 4.5 and Ω∈ [10−2,102]

CONCLUSION

The system’s response to the external forcing depends solely on its heterogeneity. Hence,
the mean behaviour of homogeneous ensembles is more easily in�uenced by changes in
the parameters. Similarly, heterogeneous ensembles are more resistant to fast changes.
This means that the ensembles behave as low-frequency �lters, with their heterogeneity
and coherence being the only factors determining whether certain changes are going to
be adiabatically mapped in the mean �eld.
Many possibilities arise for applying these results to the brain dynamics. For example,

they could explain how slow-varying signals from the cardio-vascular system [9] could
modulate membrane potentials of the populations, leading to modulated spiking activity.
Or analogously, the same slow signals would be better captured by the neurons, than the
faster signals that would mostly in�uence more homogeneous and more synchronized
neurons.
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Oscillatory dynamics in an attractor neural
network with firing rate adaptation
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Abstract. We develop a framework for generating oscillations in ring attractor networks with
firing rate adaptation. We show the relationship between the frequency of rotation around the
ring of the shifting bump of activity, the adaptation variable and other model parameters using
perturbation theory. The analytic solutions are validated against simulations of such networks.
Further preliminary findings indicate that the frequency of these networks can be simply controlled
using an external stimulus. The mechanism developed here could potentially be used for temporal
coding of position through interference of oscillators of different frequencies.

Keywords: oscillations; attractor networks; adaptation.

INTRODUCTION

Oscillations occur ubiquitously in nature and throughout mammalian physiology, from
cardiac pacemaker cells to circadian rhythms marking phases of wakefulness and sleep.
Oscillations in the brain are thought to be involved in many processes, such as input se-
lection, synaptic plasticity, communication between ensembles of neurons and temporal
codes for spatial position [1].

The hippocampal formation of freely moving rodents shows a prominent theta rhythm
(4-12Hz) [2], whose frequency is modified by the running speed of the animal [3, 4].
Complementing this temporal periodicity, ‘grid cells’ in the medial entorhinal cortex
display strikingly periodic spatially modulated firing. The oscillatory interference model
of grid cell firing [5] posits that the periodic spatial firing pattern of grid cells is formed
by the thresholded sum of a baseline oscillation and one or more active oscillations
whose frequencies vary from the baseline frequency according to the running speed and
direction of the animal. We wanted to investigate the possible mechanisms which could
generate such variable frequency oscillations.

More specifically we investigated ring attractor networks as a possible mechanism for
generating oscillations, inspired by the work of Zhang [6] who demonstrated that one-
dimensional ring attractors could underlie a mental compass where each neuron in the
network represents a specific head-direction [7]. The pattern of activity in this type of
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attractor network converges in time to a family of possible stable activity patterns. Such
networks require recurrent connectivity with a symmetric center-surround pattern of ex-
citation and inhibition, i.e., each neuron locally exciting their near neighbors and distally
inhibiting the rest in both directions. This connectivity pattern has rotation invariance:
each neuron has the same connectivity regardless of their position in the ring of neurons.
Such a network can generate a family of activation patterns corresponding to approxi-
mate cosinusodial bumps of activity centered anywhere around the ring. These bumps
can be shifted around the ring by introducing an asymmetric component to the connec-
tivity matrix which effectively skews the connectivity pattern of excitatory/inhibitory
connections of each neuron either in the clockwise or anticlockwise direction. If a con-
stant asymmetric component is added the bump of activity rotates around the ring there-
fore causing phase-offset oscillations in each of the neurons in the network, see also
[4, 8]. A change in frequency in such a network requires a change in the magnitude of
the asymmetric component.

Another possible method of destabilizing and shifting the bump of activity in an
attractor network is through firing rate adaptation. In real neurons one often sees that
during input of a persistent tonic stimulus the firing rate of the neuron decreases.
A potential mechanism for this effect is an increased potassium conductance, from
calcium gated potassium channels responding to small increases in intracellular calcium
following an action potential , which hyperpolarizes the cell [9], although a separate
non-calcium dependent potassium current may also contribute to hyperpolarization [10].
Recently active neurons will therefore fire less than recently inactive neurons, given the
same input. This would cause a bump of activity to move, as neurons on the trailing
edge of the bump show firing rate adaptation compared to those on the leading edge.
Thus a stationary bump will become unstable and a moving bump will speed up to reach
a stable oscillation of constant frequency.

We investigated the effect of firing rate adaptation in a ring attractor network, and
whether it could generate stable oscillations of activity around the network. Existing
work has examined adaptation in attractor network models of hippocampal place cells,
to model mental exploration of possible trajectories [11]. A similar use of rate adapta-
tion was adopted by Itskov et al [12] to generate fast drift of the activation pattern to
give a read-out of time elapsed during straight trajectories. Work by Melamed et al [13]
used combined formulations of synaptic depression (effectively similar to adaptation
where an increase in activity is marked by a depletion in synaptic resources) and facili-
tation (increase in synaptic resources) to generate slow oscillations during ’up-states’ in
recurrent networks.

Here we aimed to characterize analytically the relationship between the model param-
eters and the frequency of rotation of the activity bump.
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ANALYSIS

We analyzed a standard rate coded attractor network with rate adaptation as described
by the coupled pair of differential equations in 1,2.

τmν̇i = φ(
N

∑
j=1

Wi jν j−ai+hi)−νi (1)

τaȧi = cνi−ai (2)

In the coupled equations νi denotes the rate of neuron i,Wi j the connectivity matrix, φ a
sigmoidal activation function, ai the adaptation variable of each neuron, c the adaptation
constant (the fraction of the rate which is integrated following neuron activation) and τm
and τa indicate the membrane and adaptation time constants respectively.

To begin our analysis we ignore the external input term hi and we assume that the
symmetric rotation invariant weights permit a stable family of solutions such that:

f (θ −θi) = φ(
N

∑
j=1

(Wi j− cδi j) f (θ −θ j)) (3)

Where θ indicates location around the ring of neurons, θi being the location of neuron
i, and δi j is the Kronecker delta.

From this stage we look at the effect of a small perturbation δνi about this attractor
state by substituting νi = νi+ δνi in Equation 1 and Taylor expanding about the stable
solution. Following this we carry out a few stages of eigenvector manipulation followed
by cancelling terms which are sufficiently small and rearrangement to reach a final
expression in Equation 4

θ̇ =
1

τm∑i
f ′(θ−θi)2

φ ′i

(−∑
i
f ′(θ −θi)ai) (4)

We can confirm that the form of this equation is a requirement for displacement of the
bump; as the function − f (θ − θi) is an odd function which is positive on the back of
the bump and negative on the leading edge. The second step of the analysis proceeds by
examining Equation 2, with the substitution νi = f (θ − θi)+ δνi (we ignore the term
cδνi as both factors are assumed to be sufficiently small). Giving the following equation:

τaȧi = c f (θ −θi)−ai (5)

Intuitively we see that when c = 0 there is a stationary bump and as c is increased
the perturbation grows relative to the rate of relaxation of ai and therefore one can
destabilize the bump.

Equation 5 is of the form da
dt =Pa+Qwhere P andQ are functions of t and is therefore

solvable using an integrating factor. Doing the integration and Taylor expanding θ
in terms of a shift in time, permits a simple solution differential equation which is
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again Taylor expanded assuming smallness of τaθ̇ to give Equation 6 (where f (Δθi) =
f (θ(t)−θi))

ai = c
∞

∑
n=0

f n(Δθi)(−τaθ̇)n (6)

In order to find a closed form solution we can assume that the bump can be characterized
with a cosinusodial profile, which is fairly valid within the non-saturating regime of the
activation function. Following this assumption we can write Equation 6 as a summation
of an infinite geometric series of sines and cosines, which after simplification gives us
the following expression for ai:

ai = c
cos(θ −θi)+ sin(θ −θi)(τaθ̇)

1+(τaθ̇)2
(7)

Combining this equation and the equation for frequency (Equation 4) derived in the
first step, cancelling orthogonal terms and rearranging gives us an expression for the
frequency of the bump, where the scalar constant k is a term dependent of the shape of
the bump of activity and the derivative of activation function about the stable solution:

θ̇ =
1

τa

√
kτac
τm

−1 (8)

It is important to note that Equation 8 is a particular solution for the cosinusodial activity

profile. A more general form can be written as v0 = 1
τa

√
kc
c0
−1. Where we have a

constant frequency v0 for some factor c0 depending on the bump profile.

SIMULATION RESULTS

Following the analysis we simulated the network specified by Equations 1 and 2 with
N = 100 neurons and integrated these equations using Eulers method with a step size
δ t = 0.25ms and set the time constants of the membrane and adaptation as τm = 1ms
and τa = 50ms respectively.

We integrated the simulations for 20000 steps and calculated the phase of the activity
bump by computing the weighted circular mean of the activity profile at each time step
and computing the change of phase over time giving the instantaneous frequency (θ̇ ). To
verify our analysis we ran the simulation for different values of the adaptation constant
c, measuring the instantaneous frequency and averaging it over the time where we have
oscillations (as opposed to stationary attractors), see Figure 1.

There is strong agreement here between the results of the simulation and the analytic
solution, excepting values just greater than c = 1 (where we start to see oscillations);
this is due to the fact that the smaller c becomes, the longer it takes for the negative
feedback provided by ai to get the bump moving. Theoretically therefore at the point
where kc

c0
is infinitesimally greater than 1, it will take an infinite amount of time for the

stationary attractor to move into a steady oscillation. Therefore small values of c do not
match accurately. However we can see the general square-root singularity characteristic
is preserved showing the effectiveness of the approach.
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FIGURE 1. This figure shows a bifurcation diagram of the frequency of the bump rotation θ̇ against
the adaptation constant c. The crossed markers indicate results from simulation and the line shows the
analytic solution. We can clearly see the transition from stationary attractor (where θ̇ = 0) to an oscillator
(at c≥ 1).

DISCUSSION

We have demonstrated analytically and through simulation a possible role of adaptation
in generating oscillations in ring attractor networks. Preliminary work suggests that
oscillation frequency can be tuned by varying the net external excitatory input to the
network however further work is needed. This mechanism could provide a candidate for
generating velocity modified theta as observed in the hippocampal circuit [3, 4].

One prominent criticism of attractor networks [14], which could be addressed by
future work, is how they are affected by heterogeneities in synaptic connectivity and
neural responses. An experimental verification of the ring attractor architecture could be
validated by future advances in optogenetics and connectomics.
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In vitro closed loop optical network
electrophysiology: An introduction

A. El Hady∗,†,‡,§ and W. Stühmer†,‡,§
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Abstract. We present a novel experimental paradigm “In vitro closed loop optical network electro-
physiology (ivCLONE)”. This seminar note gives an overview of the basics of optical neurostimula-
tion, network electrophysiology and closed loop electrophysiology.Moreover, the notes discuss how
combination of aforementioned techniques would help us to address network-level phenomenon and
how single neuron properties are related to collective network dynamics.
Keywords: optogenetics; network electrophysiology; closed loop stimulation.
PACS: 87.19.lj, 87.18.Sn, 87.19.lr, 87.19.lv, 87.19.lw

OPTICAL NEUROSTIMULATION

Recent advances in genetics, chemistry and optics have provided unprecedented op-
portunities to use light to stimulate, inhibit or control neuronal activity with molecular
speci�city and a high temporal and spatial resolution. Optical simulation offers a non-
invasive method to control neuronal activity. It has the advantage of producing fewer
artifacts than electrical stimulation. It also allows stimulating neurons in a high spatial
and temporal resolution taking into consideration advances in optical technologies such
as digital micromirror devices (DMD) and holographic photostimulation.
The optical control strategies can be broadly divided into non-genetic and genetic

methods for optical control. The non genetic methods comprise: caged neurotransmit-
ters, reversibly caged signaling molecules that can be released by a �ash of light allow-
ing the liberated compound to act on endogenous or exogenous neuronal targets before
diffusing away (e. g. Bis-Q, GluAzo, XAQs), photoswitched tethered ligands for na-
tive channels (QBr and a Quaternary Ammonium PAL) and nanoparticles that stimulate
neurons upon magnetic-�eld mediated heating. The genetic methods include genetically
engineered light gated channels and receptors (SPARK light gated K+ channels and
LiGluR: light gated kainate type glutamate receptor) and Opsin based control of neu-
ronal activity. The opsin-based tools are a large class of channels that are genetically
targeted. It comprises the ChARGe channel, Melanopsin, Channelrhodopsin 1 (ChR1),
Channelrhodopsin 2 (ChR2), Volvox Channelrhodopsin 1 (VChR1), Volvox Channel-
rhodopsin 2 (VChR2) and Halorhodopsin [1]. The genetic methods have the advantage
that constructs can be expressed and targeted to speci�c neuronal compartments thus
avoiding unspeci�c effects.
Channelrhodopsin 2 (ChR2) is our optogenetic tool of choice. Channelrhodopsin 2 is
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an inwardly rectifying non-selective cation channel. At neutral pH, ChR2 is permeable
to physiologically relevant cations such as H+, Na+, K+, and Ca2+ [2, 3]. The single ion
channel conductance of ChR2 has been estimated at 50 fS [4]. Channelrhodopsin 2 is
a membrane spanning retinylidene protein. It has a 7 transmembrane domain structure.
The chromophore is an all trans retinal that undergo isomerization to 13-cis-retinal upon
absorption of a blue photon.
The typical photocurrent of channelrhodopsin 2 consists of a large transient peak

that has onset of around 4–10 ms [2, 5, 6]; this transient peak quickly decays to a
stationary component that is typically <20–50% of the initial peak photocurrent [2]
Upon removing the light, ChR2 closes with a time constant of 10–20 ms [2]. After
switching off the light, the photocurrent decays in a biexponential manner [7].
Although wild type ChR2 is the gold standard in optogenetics, it suffers from few

shortcomings that prevent it from being used for some neuroscience applications. The
shortcomings are: non-selectivity, fast inactivation, slow recovery and low conductance.
Variants and mutants are of ChR2 are designed to circumvent the aforementioned short-
comings. The E90Q mutation [8] has increased sodium selectivity and much reduced
proton permeability vs. wild-type ChR2. Another channel called CatCh with the mu-
tation L132C had increased calcium permeability [9]. The variant K132A and Q95A
show strong photocurrents and increased potassium selectivity thus enabling suppress-
ing of neuronal activity. On the other hand, the H134R mutant [10] demonstrates in-
creased conductance by approximately twofold. Step function opsins (SFO) are built
using mutations to C128 [11] drastically slowing down the rate of ChR2 closure from
the open state, thus effectively creating a bistable open P520 state until illuminated with
green light. The SFO mutations are designed to stabilize the active retinal isomer, which
results in the prolongation of the active state of the channel even after light-off. An-
other SFO with the mutation D156A have even longer inactivation time-constant that
can reach eight minutes [12]. A new class of channels called Stabilized Step Function
Opsins (SSFOs) was constructed by combining both the D156 and C128 mutations that
led to spontaneous deactivation times of around 30 minutes [13].
In order to allow high frequency stimulation, the E123T mutant, combined with the

H134R mutation, speeds channel closure and increases the precision of neural action-
potential �ring at the expense of photocurrent and light sensitivity [14], resulting in
a mutant called ChETA. The E123T mutation was combined with T159C mutation to
produce a channel that can drive neurons at high frequencies and have a high light
sensitivity [15]. On the other hand, chimeras of ChR1 and ChR2 have been constructed
by several researchers [3, 16], one of which was that composed of ChR1 helices A-E
and ChR2 helices F-G (called ChEF). These chimeras displayed the small inactivation
of ChR1, but the large photocurrents of ChR2 on account of improved membrane
localization and light sensitivity. An I190 V substitution to ChEF led to the molecule,
“ChIEF”, capable of driving more reliable fast spiking due to the much larger stationary
current and faster channel closing kinetics after light offset [16]. Another chimera called
C1V1 was constructed. C1V1 is composed of the �rst two and one half helices of ChR1
and the last four and one half helices of VChR1, which led to a red shifted activation
spectrum for the chimeric channel and nanoampere currents. All of the above variants
and mutants of ChR2 provide a versatile toolbox to control neuronal activity.
Optogenetic tools have been proposed and implemented for advancing the analysis of
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neuronal systems on all levels from single cells through circuit’s structure and function
up to the level of behaviour. Optogenetics has been used in many in-vitro studies. It was
used in investigating synaptic physiology and plasticity at single synapses level [17]. It
was also used to induce homeostatic synaptic depression and to understand the molecular
machinery underpinning it [18]. It was also used to study oscillations in hippocampal
slices in vitro [19]. It is also contributing to understand receptor pharmacology [20, 21,
22]. It was also used to probe various aspects of astrocytes functioning [23]. Recent
developments have led to use of optogenetics tools to control signaling pathway [24].
Optogenetics have been used in many in vivo animal models. It was used to control

the c.elegans muscle wall motor neuron and mechanosensory neuron activity [10]. It
was also used in �ies to investigate the neuronal basis of the nociceptive response
[25]. On the other hand, it was also used in Zebra�sh to examine cardiac function
and development [26], transduction of sensory neuron mechanoreception [27] command
of swim behaviour [28] and saccade generation [29]. In the mouse, ChR2 was used
to investigate the contribution of the hypothalamic hypocretin neurons to sleep and
wakefulness [30]. Optogenetic stimulation was also used to stimulate axonal terminals
in the nucleus accumbens, which lead to the discovery that dopamine neurons co-
release glutamate [31, 32]. Reports on the functions of parvalbumin expressing fast
spiking interneurons demonstrated directly their involvement in gamma oscillations and
information processing in mouse prefrontal [33] and somatosensory cortex [34, 35]. It
also enabled rapid functional mapping of motor control across the motor cortex [36].
Optogenetics is also being used to discern the possible therapeutic mechanism of

cortical intervention in mouse models of depression [37] and to develop novel strategies
for control of peripheral neurons [38]. It will increase our understanding for disease
states and the development of novel therapeutics as it has been used for example [39]
to optically control symptoms of Parkinson’s disease and also to control of epileptiform
activity [40].
There has also been some work on optogenetic modulation of primate neurons [41,

42, 43, 44]. Optogenetics will have great impact on the development of neuroprothetics
specially retinal prosthetics that are now reaching a mature and advanced stage that
might allow it to be translated for use in human beings [45].

NETWORK ELECTROPHYSIOLOGY

There is a growing consensus that individual elements of information are encoded by
populations or clusters of cells, and not by individual cells. This encoding strategy
is named “Population coding”. Visual features for example such as orientation, color,
direction of motion and depth are encoded with population codes in visual cortical areas
[46, 47] Motor commands in the motor cortex rely also on population codes [48]. Thus, it
became clearer that sensory processing in our brain and memory and learning processes
are coordinated by the activity of many neurons in a network. Another crucial aspect
that is crucial for neuronal information processing is the topology and connectivity of
the networks. Over the past decades experimental and theoretical studies have revealed
candidate connectivity architectures that are expected to enable networks of neurons to
operate as memory storage devices, as sensory modules that can track rapidly changing
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sensory inputs or as discrimination devices that can support e. g. categorical perception.
It further highlight the crucial role of networks to perform computations that are relevant
to the brain cognitive functions. In order to study the problem of distributed network
processing and the network structure-function relationship, it is important to develop
experimental tools that address neurons on the network level. These experimental tools
will help us to understand network-level phenomenon and the relationship between
single neuron properties and population activity.
Neurons spontaneously form functional synapses when cultured in vitro and develop

complex patterns of activity that closely resemble those recorded from developing brains
of animals [49]. Neurons retain their morphological and pharmacological identities in
culture but there are likely to be numerous subtle changes in their properties due to the
unnatural environment in which they have been placed. Many techniques have been de-
veloped recently in order to track the activity of neurons grown in vitro and to tackle
these network level activities. These techniques can be divided into electrophysiological
or optical methods. Optical methods either use population calcium imaging [50, 51, 52]
or voltage sensitive imaging [53, 54] in order to track the activity of multiple neurons
simultaneously. Electrical methods include planar titanium nitride based multielectrode
arrays, CMOS based microelectrode arrays [55], �eld effect transistor arrays [56], verti-
cal nanowire arrays [57] and gold mushroom shaped microelectrodes [58]. Of particular
interest are the nanoelectrode arrays, which promise to provide intracellular like record-
ings and stimulation of many individual neurons while the electrodes maintain an ex-
tracellular position. Micha Spira coined the term “In cell recording” [59], re�ecting the
fact that interfacing neurons with these arrays of nanoelectrodes will allow recordings
of individual action potentials and sub-threshold potentials with matching quality and
signal to noise ratio of conventional intracellular sharp glass microelectrodes or patch
electrodes. Moreover, it will ultimately offer a high spatial resolution and might achieve
the single synapses resolution so that one can monitor several synapses simultaneously.
For our purpose, we used the conventional commercially available titanium nitride

based multielectrode arrays (MEA). MEAs are produced with variable layouts, number
of electrodes, electrode materials, electrode size and interelectrode distances specially
for slice recording where a speci�c geometry is required to monitor activity of different
brain regions: retina [60, 61], spinal cord [62] and Hippocampus [63, 64]. Multielectrode
arrays are able to gather data from multiple sites in parallel, and to avoid the need to
place all electrodes individually by hand thus allowing multi-unit neuronal recordings.
It also provides the opportunity to perform long-term recordings of cultured neuronal
networks. On the other hand, they have the following limitations: Smaller amplitude
recordings as compared to traditional instrumentation such as intracellular recordings
because the electrodes are not inserted inside the cells or the tissue and the electrodes
cannot be moved independently because they are arranged in �xed patterns.
On the application side, MEAs have been used in neuronal and cardiac electro-

physiological applications. They were used for multisite slice recordings on hypotha-
lamic slices to investigate the effect of Gherlin on hypothalamic network activity, on
the activity of dissociated root ganglia cell cultures and on acute hippocampal slice in-
vestigating oscillations and rhythmic activity [65] and to monitor synchronized cardiac
muscle and stem cell culture activity. It can also be used for studying learning and mem-
ory on the network level [66, 67] and to study of development of network electrical
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activity and population bursting dynamics [68]. MEAs were also used to study retinal
information processing and the role of correlations in the retinal circuitry [69, 70]. MEAs
might also be used to establish high-throughput systems to perform drug screenings and
toxicology studies [71].

CLOSED LOOP ELECTROPHYSIOLOGY

The basic paradigm of closed loop electrophysiology involves recording neural activity
or behavior and delivering activity-dependent stimulation in real time. Closing the loop
around neural systems offers advantages over traditional open-loop feedforward neuro-
physiological approaches by providing the ability to stimulate neural systems contingent
on their behavior. Closed loop neurophysiology has been advanced by recent software
and hardware developments and by the emergence of novel tools to control neuronal
activity with spatial and temporal precision. Real-time stimulation feedback enables a
wide range of innovative studies of information processing and plasticity in neuronal
networks under realistic conditions [72, 73, 74].
In addition to advancing basic neuroscience, bidirectional neural interfaces pro-

vide novel adaptive neuroprosthetic devices that incorporate arti�cial sensory feedback.
Activity-dependent stimulation also promises innovative paradigms for effective treat-
ment of neurological diseases. Using closed loop stimulation, it is possible to program
an arti�cial feedback with de�ned rules and constrains. Closed loop electrical stimula-
tion has been successfully used beforehand to clamp network activity [75], to control
bursting activity [76] and realize embodiment by using the network represented on the
network to control a robotic arm [77].
Feedback closed loop stimulation will further increase our system versatility by pro-

viding a mean to photostimulate neurons depending on their current state. We termed
our experimental system, combining optical neurostimulation and closed loop network
electrophysiology, “In Vitro Closed loop Optical Network Electrophysiology”.

IN VITRO CLOSED LOOP OPTICAL NETWORK
ELECTROPHYSIOLOGY (IVCLONE)

System description

The system [78] is composed of a 60 channel MEA ampli�er that records from
multielectrode arrays on which ChR2 transfected neurons are grown and a high power
blue LED used for whole �eld illumination (photostimulation) (Figure 1).

Cell preparation

Cell cultures were prepared according to Brewer et al. [79]. Hippocampal neurons
were obtained from Wisteria WU rat embryos at 18 days of gestation (E18). Cells
were then cultured on multielectrode arrays (Standard MEA; type TiN-200-30iR from
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FIGURE 1. ivCLONE setup: (a) Picture depicting the setup with its different components. (b) Sketch
showing the main components of the system.

Multichannel Systems) coated with a mixture of poly-D-lysine and laminin at a density
of 1000 cells per mm2. A droplet of approximately 100 μl cell suspension was added
in the middle of the multielectrode array to cover the recording area. The arrays were
then �lled with 1 ml of the aforementioned serum free B27/Neurobasal medium .The
cells were kept in an incubator at 37◦C and a mixture of 5% CO2 + 95% O2. Half of
the medium was changed every two days. The cultures were kept till 40 DIV. MEAs
were sealed with gas permeable membranes, which allowed the long-term culture. The
culture dishes are sealed with a Te�on membrane, �uorinated ethelyene-propylene.
Although the membrane has no pores (thus preventing infection), it is quite permeable
to some small molecules notably oxygen and carbon dioxide. It is hydrophobic and
thus relatively impermeable to water and water vapor. The membrane slows the shift
in pH of carbonate buffered media caused by removal from an incubator with 5% CO2
atmosphere, by about a factor of two compared to a standard culture disch with an air gap
[80]. All animals were kept and bred in the animal house of the Max Planck Institute for
Experimental Medicine according to the German guidelines for experimental animals.
Animal experiments were carried out with authorization of the responsible federal state
authority.
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Multielectrode arrays measurements

Recordings were done on 21 DIV hippocampal neuronal cultures (transfected at 14
DIV with AAV-CAG-CHOP2 virus). Data from MEAs were captured at 25 kHz using a
64-channel A/D converter and MC_Rack software (Multichannel Systems, Reutlingen).
The MCS measurement card has 64 analogue input channels, with a resolution of 16 bit,
a programmable gain and an input voltage range of±400 mV to±4 V, depending on the
gain level speci�ed. Sixty of these serve as input channels for the multi electrode array
(MEA), three serve as analogue inputs, and one of which serves as a combined channel
for 16 digital inputs, which each set a single bit. After high pass �ltering (Butterworth
2nd order, 100 Hz) action potentials are detected in a cutout recorded 1ms before and 2
ms after crossing a threshold of -20 μV, which was > 3 times standard deviations of the
baseline activity. Routinely, it was made sure that the ampli�er noise does not exceed
±10 μV, which was indicated by manufacturer to be the acceptable noise level. Standard
recording were performed for a maximum of 30 minutes. Longer recordings for many
hours were performed under continuous perfusion.

Whole �eld photostimulation

The key requirements for the light source used for illumination were high light power
at around 480 nm, fast and well controllable modulation of the light power and sta-
ble illumination over several hours. An additional requirement for the illumination of
the spatially extended MEAs is homogeneous light power density over an area of 1 ×
1 mm. All these requirements were met by a blue light emitting diode (LED, Luxeon
rebel color with Lambertian dome, Philips Lumileds) with 5 W maximal power con-
sumption, placed 25 mm below the illuminated hippocampal neuronal cultures grown
on multielectrode arrays. The absorption spectra of the LEDs have a large overlap with
the absorption spectra of channelrhodopsin 2. The light output was controlled via the
voltage of STG 2008 stimulus generator (Multichannel systems, Reutlingen) , converted
to current in a custom made analog driver circuit, resulting in a input of 1 W at the LED
for each Volt at the D/A-board. Rise-time to maximumLight power was < 20 μs (Figure
2).

System’s applications

Our optical network electrophysiology was used to induce network level plasticity and
modify the intrinsic collective dynamics of a cultured neuronal network [81]. Towards
this aim, we designed a photostimulation paradigm that aims to drive neurons in a more
naturalistic in vivo like fashion [82, 83]. The possibility to detect action potentials over
long periods of time and from many individual neurons in parallel combined with non-
invasive photostimulation will enable us to address new questions e. g. screening for the
effect of mutations or protein knockdown on the dynamical properties of neurons and
also on their ability to be potentiated. It can also help us compare among individual
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FIGURE 2. Whole �eld blue light illumination: (a) The LED holder which screws into objective turret
under microscope stage. (b) Spectra of four blue Luxeon Rebel Color emitters compared with each other
overlapped with action spectrum of ChR2. (c) Relative variation on the irradiance respective to the point
of maximum power density, measured approximately 25 mm above the bare LED. The active area of the
MEA is only 1 × 1 mm2 in size.

neurons with respect to their encoding diversity thus contributing to understand the
biophysical basis of such diversity.
Closing the loop using our optical stimulation system would allow us to futher extend

the questions to be addressed as the photostimulation can be adjusted depending on the
response of neurons thus offering a better control over neuronal dynamics. In the context
of learning and memory, closing the loop would help to stabilize a learned sequence over
long time and most interestingly, one can address the cellular and molecular mechanisms
underlying such long term network level memory.
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Experiments on clustered neuronal networks
S. Teller and J. Soriano

Departament d’Estructura i Constituents de la Matèria. Facultat de Física. Universitat de
Barcelona, Spain.

Abstract. Neuronal cultures show a rich repertoire of spontaneous activity. However, the mecha-
nisms that relate a particular network architecture with a speci�c dynamic behavior are still not well
understood. In order to investigate the dependence of neuronal network dynamics on architecture
we study spontaneous activity in networks formed by interconnected aggregates of neurons (clus-
tered neuronal networks). In the experiments we monitor the spontaneous activity using calcium
�uorescence imaging. Network’s �ring is characterized by bursts of activity, in which the clusters
�re sequentially in a short time window, remaining silent until the next bursting episode. We also
investigate perturbations on the connectivity of the network. We mainly focus in physical damage.
In some cases we observe important changes in the collective activity of the network, while in other
cases some dynamic motifs are preserved, hinting at the existence of dynamic robustness.
Keywords: neuronal cultures; clustered networks; spontaneous activity; motifs.
PACS: 87.85.Wc, 87.18.Sn, 87.19.lh, 87.19.lj, 87.19.ll

INTRODUCTION

One of the major challenges of modern neuroscience is the understanding of the inter-
play activity–connectivity, i.e. the relationship between a particular neuronal network
architecture and the activity patterns or dynamic scenarios that it exhibits. Recent stud-
ies [1, 2] have focused on the dependence of network’s activity on connectivity, and
studied the stability and synchronization of neuronal groups as well as the ef�ciency of
these networks to propagate, process and store information.

Many of these studies are motivated by the importance of spontaneous activity in
neuronal networks, which plays a pivotal role in processes as complex as development,
learning, memory, and synchronization [3]. Spontaneous activity is often characterized
by episodes of intense collective activity of several hundred of milliseconds (network
bursts), separated by quieter inter–burst intervals of several seconds in duration [4]. De-
spite substantial efforts, the mechanisms behind the origin, maintenance and regulation
of spontaneous activity are still unclear.

The aim of our work is study how changes in the connectivity of a neuronal network
in�uence its spontaneous dynamics. We focus on a particular neuronal network design
formed by densely packed aggregates of neurons (clusters) [5, 6] connected to one
another. Clustered cultures in vitro are constituted by interconnected aggregates of
neurons and glia (Fig. 1a). When neurons are deposited on a substrate and are free
to move, the inherent motility of cells together with the tension forces exerted by
neurite bundles results in a fast aggregation process that leads to the formation of
the clusters. Clustered neuronal networks are a versatile experimental tool that has
proven very successful for the development of patterned neuronal cultures [6, 7], and
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the investigation of several problems, including synchronized oscillations [5], neuronal
collective activity [8] , and self–organization mechanisms [9].

In our experiments we study the richness and variability of the clusters’ spontaneous
activity. Among other aspects, we investigate the initiation of activity (for instance by
identifying hubs or specially active clusters). We also study which are the fundamental
topological and dynamical ingredients that maintain network’s collective activity.

PREPARATION OF CLUSTERED CULTURES

The neurons in our experiments are harvested from embryonic Sprague–Dawley rats.
We use cortical neurons of 18−19 day old embryos. The cortices are isolated from the
rest of the brain and dissociated by repeated pipetting. Finally, the neurons are plated
on a 13 mm glass cover slips in the presence of supporting medium, 5% CO2 and 95%
humidity. Further details in the culturing procedure can be found in [10].

An important aspect of the culture preparation process is the absence of adhesive pro-
teins in the glass substrate. The free substrate facilitates cell motility and a preferential
attachment of a neurons with its neighbors. The resulting clusters have a characteristic
spherical shape that minimizes the surface contact with the substrate (Fig. 1a).

Activity measurements are carried out 2− 3 weeks after plating. At this stage the
network is considered mature, i.e. the clusters and their interconnectivity is stable and the
whole network is spontaneously active. Neuronal activity is monitored through calcium
�uorescence imaging [11], and we use Fluo–4 as �uorescence calcium indicator.

Cultures are observed in a Zeiss inverted microscope connected to a CCD camera.
Images of clusters’ spontaneous activity are recorded at 60 frames per second and a size
of 700×600 pixels that cover about 4×3 (width×height) mm2. In a typical experiment
we record spontaneous activity for about 1 h in networks containing ∼ 20 clusters.

RESULTS AND DISCUSSION

Activity in our clustered networks is characterized by a series of bursting episodes in
which clusters �re sequentially. The sequence of activation and the number of clusters
participating may vary from burst to burst, as shown in the raster plot of Fig. 1b.

A �rst and simple strategy to identify bursts that share a similar activation sequence
(dynamic motif ) consists in calculating the average �ring onset time of the clusters
within a burst, and then compare the obtained value from burst to burst. Since the
connectivity of the culture is not changed during the experiment, this analysis provides
a general overview of the statistical richness of the activation sequences, as well as their
similarity. The analysis is shown in Fig. 1c for the 7 �rst bursts of a typical experiment.

We also studied the loss of actual connections in the network by ablating connections
through a pulsed laser. Preliminary results show that some dynamic motifs are preserved
upon network damage, hinting at the existence of dynamic robustness. However, in other
cases the spontaneous activity is highly affected, but in a non–trivial manner. Indeed,
it seems that secondary connections are reinforced when the primary ones are lost,
suggesting that the network regulates itself to maintain the overall activity.
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FIGURE 1. Experiments on clustered neuronal cultures. (a) Bright �eld image of a region of a culture.
(b) Raster plot of clusters activity, with the dots marking the �ring of a given cluster. The blue outline
depicts a network burst, and the dashed line the average �ring time of the clusters within the burst. (c)
Classi�cation of the �rst 7 bursts recorded in the experiment. Three distinct groups are observed (bursts 2
to 5; 1; and 6–7), each group corresponding to a similar clusters’ �ring sequence.

Our experiments, and the results by others [12] reveal that clustered cultures exhibit
a rich repertoire of motifs and suggest different explanations for burst repetition in a
propagation pro�le. For instance, repetition may arise from a particular balance between
inhibitory and excitatory connections, noise, a favorable network architecture, or the
existence of special neurons that initiate the spontaneous activity. Our work and new
experiments may help clarifying in the future these and other aspects.
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Effect of input noise on neuronal �ring rate
S. Gonzalo-Cogno and I. Samengo

Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina.

Abstract. When neurons are driven with a noisy input, the mean and the variance of the stimulus
modulate the �ring rate. Previous studies have shown that in linear-nonlinear model neurons the
mean �ring rate obtained in response to a noisy input is the average rate that would be obtained from
an ensemble of constant currents. In this work, we study the �ring rate of several neuron models,
focusing on its dependence on the amount of input noise. We �nd that for models with monotonic
activation curves, the theory provides a good qualitative approximation of the �ring rate. For neurons
with non-monotonic activation curves, however, the theory fails. The discrepancies between the
theory and the simulations appear because rapidly �uctuating stimuli involve intrinsically dynamical
processes that cannot be interpreted as an ensemble of constant stimuli.
Keywords: �ring rate; LN models; activation curve; receptive �eld.
PACS: 87.16.ad, 87.17.Aa, 87.18.Tt, 87.19.ll

INTRODUCTION

Neurons in the brain process unsynchronized signals arriving to their thousands of
dendrites. These signals add up to an irregular input current. Therefore, to understand
how neurons process information in realistic conditions, researchers must not only
analyze the responses to stereotyped stimuli as sinusoidal signals or step currents, but
also explore noisy inputs. In presence of noise, the �ring rate of a neuron depends both
on the variance and the mean of the stimulus. In this work we focus on linear-nonlinear
(LN) models. These models are based on the concept of the receptive �eld, that is, the
direction in stimulus space that maximizes neuronal output. This direction is inherent to
each neuron, so different neurons have different receptive �elds.
For neurons with a single receptive �eld, LN models assume that the �ring probability
depends on the similarity (the scalar product) between the stimulus and the receptive
�eld. Mathematically, the probability of having a spike at time t0 in response to a
stimulus s(t) is

P[spike at t0|s] = g
[∫ t0

−∞
s(t) f (t − t0) dt

]
, (1)

where g is typically a nonlinear function and f (t) is the receptive �eld of the neuron,
which can be estimated from the Spike Triggered Average (STA),

STA(t) =
1
N ∑

ti
s(t − ti), (2)

where N is the total number of spikes, and ti are the spiking times.
Consider a neuron that has a single receptive �eld and is driven with a stimulus

s(t) = I0+ηξ (t), where I0 and η2 represent the mean and the variance of the signal,
Physics, Computation, and the Mind - Advances and Challenges at Interfaces
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FIGURE 1. Mean �ring rate of different types of models. (a) Integrate and �ring neuron. (b) Type 1
Morris-Lecar neuron. (a1) and (b1): Firing rate as a function of I0 for σ = 0. (a2) and (b2): Firing rate as
a function of the input noise η for different I0 values. (a3) and (b3): Predicted �ring rate calculated with
Eq. 3 as a function of the kernel width σ .

and ξ (t) is Gaussian white noise of zero mean and unit variance. In this case, the STA
is proportional to the receptive �eld [1]. Hence, once the STA has been estimated, the
�ring probability of Eq. (1) is easily obtained. With this result, if the noiseless activation
curve g(I0) is known, by averaging Eq. (1) one can derive the mean �ring rate also for
η > 0 [2]. The LN prediction of the �ring rate reads

fp(I0,σ) =
1√
2πσ2

∫ +∞

−∞
e−(x−I0)2/2σ2g(x)dx, (3)

where σ = η/ε is the kernel width of the gaussian and ε =
∫ 0

−∞ f (t)dt.

RESULTS

Here we test the validity of Eq. (3) in two different types of models.

Models with monotonic activation curves

In these models, in the absence of noise, the �ring rate is a monotonic function of the
input current I0. In Fig. 1 (a) we show the leaky integrate-and-�re model as an example.
In this model, the exact �ring rate can be found analytically [3]. In (a1) the �ring rate as
a function of I0 is shown for the noiseless case (η = 0). The exact �ring rate appears in
(a2) as a function of η , and can be compared with (a3), where the predicted rate is shown
as a function of the kernel width σ . The two families of curves are similar, since after an
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initial transient, in both of them the �ring rate grows linearly with the amount of noise.
Hence, the LN approximation provides a good description of the mean �ring rate. The
same conclusion is reached when Eq. (3) is tested with other models with monotonic
�ring rates, for example for Hodgkin-Huxley [4] or Wang Buszaki [5] neurons.

Models with non-monotonic activation curves

We now move to neuron models with non-monotonic activation curves, more specif-
ically, to models that in the absence of noise only �re for a �nite range of I0 values,
bounded from above and from below. One such example is a Type I Morris Lecar model
[6]. In this case the noiseless �ring rate cannot be obtained analytically, so we compute it
numerically (b1). When driven with constant currents, this model has two bifurcations.
The neuron only �res for I0 values lying between the two critical currents. In (b2) and
(b3) the simulated and the predicted �ring rates are displayed as a function of the amount
of noise. We see that as noise grows, the simulated �ring rate increases whereas the pre-
dicted �ring rate decreases. We conclude that the LN description is not successful in this
case. Other models with non-monotonic activation curves show the same discrepancy, as
for example the Type 2 Morris Lecar neurons, and the slow currents of transiently �ring
thalamic neurons [7].

DISCUSSION

LN models assume that �uctuating input currents are equivalent to an ensemble of
constant input currents: In Eq. (1), increasing σ can cause the same effect as modifying
I0, if the scalar product remains unchanged. As a consequence, Eq. (3) states that the
�ring rate in response to noisy stimuli can be obtained by averaging the �ring rate in
response to constant stimuli. This picture works well when applied to neural models with
monotonic activation curves. However, when applied to transiently �ring models, Eq. (3)
predicts that for large σ �ring rates should decay, contradicting analytical results and
numerical simulations. The discrepancy appears because large σ values are considered
equivalent to a broad ensemble of I0 values—some of them large—and for large I0 these
models stop �ring. Ceasing to �re for large I0, hence, is traduced in diminished �ring for
large σ . When transient models stop �ring, the phase portrait no longer shows a closed
limit cycle. However, the system still has excitable trajectories. Therefore, if noise forces
the voltage to jump away from its resting value, the system requires a long detour along
a spike-shaped trajectory to return to the �xed point. Therefore, although periodic �ring
is not possible in the noiseless case, spike-like excursions are still possible when η > 0.
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Unsupervised learning in neural networks with
short range synapses

L. G. Brunnet, E. J. Agnes, B. E. P. Mizusaki and R. Erichsen Jr.

Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 9150-970
Porto Alegre, RS, Brazil.

Abstract. Different areas of the brain are involved in speci�c aspects of the information being
processed both in learning and in memory formation. For example, the hippocampus is important
in the consolidation of information from short-term memory to long-termmemory, while emotional
memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures
in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering
degree but, at this level, learning and memory are attributed to neuronal synapses mediated by long-
term potentiation and long-term depression. In this work we explore the properties of a short range
synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons
and a fraction of inhibitory ones. The mechanism of synaptic modi�cation responsible for the
emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where
potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving
two neurons. The system is intended to store and recognize memories associated to spatial external
inputs presented as simple geometrical forms. The synaptic modi�cations are continuously applied
to excitatory connections, including a homeostasis rule and STDP. In this work we explore the
different scenarios under which a network with short range connections can accomplish the task of
storing and recognizing simple connected patterns.
Keywords: pattern formation; theoretical neuroscience; synapses.
PACS: 87.19.lg, 87.19.lp, 87.10.Hk, 87.19.lv, 87.19.lw

INTRODUCTION

Since the original works on arti�cial neuron networks in the last century [1] the scien-
ti�c contact among physicists and biologists has increased considerably. These attempts
converged to a more realistic description of the phenomena and has enriched the knowl-
edge of this �eld. Versions of model neurons [2] adapted to speci�c needs and conditions
have been proposed along the last �fty years, but just rather recently experiments have
advanced to allow for a detailed description of Hebbian like synapses [3, 4] and on
mechanisms to regulate network homeostasis [6, 7]. Detailing the connections is also
a hard task and it is frequently supposed that they happen involve many neurons. Net-
work models then usually assume a fraction of random connections among neurons and
search for properties related to pattern learning, associative memory and storage capac-
ity. This random connections construction is quite arti�cial since neurons are physical
entities that will contact their closest neighbors with a greater probability than farther
ones. Here we ask how far should neurons be connected in order to reproduce the ex-
pected network properties. The aim of this work is to construct a model neuron lattice
with local synaptic connections and to search for the conditions under which spatially
induced pattern memories may be recovered.

Physics, Computation, and the Mind - Advances and Challenges at Interfaces
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FIGURE 1. Left: lattice topology. Excitatory neurons (pale gray) and inhibitory neurons (dark gray).
Right: Representation of excitatory neurons, typical pattern marked on excitatory neurons (dark gray)

THE NEURON LATTICE

The lattice nodes are composed by integrate and �re Izhikevich [8] neurons which
are either regular spiking excitatory neurons or fast spiking inhibitory neurons in a
proportion of 1 inhibitory to 4 excitatory. Excitatory synaptic currents include both
AMPA and NMDAmodeling terms and the inhibitory ones contain GABAA and GABAB
terms. The regular lattice used in the simulations (Fig. 1) has 256 excitatory and 64
inhibitory neurons. In this work we explore two types of connections: i) �rst neighbors;
ii) �rst and second neighbors.
Presynaptic dependent scaling (PSD) [7] is one of the mechanisms used for synaptic

modi�cation. Here it is presented in a continuous version. First we de�ne activity Ai for
a neuron i;

τA
dAi
dt

= (Si−Ai) (1)

where Si → ∑k δ (t − tk)/tmax is related to the number of spikes of neuron i in the
interval tmax. With this de�nition the weight between the presynaptic neuron i and the
postsynaptic neuron j are modi�ed by

τw
dWi j
dt

=
Ai

AGOAL
(AGOAL−Aj)

AGOAL
Wi j . (2)

The second mechanism used for synaptic modi�cation is spike time dependent plastic-
ity (STDP) which increases (decreases) synaptic intensity when the presynaptic neuron
�res before (after) the postsynaptic one. This can be modeled [7] (also in a continuous
version) by the expression:

dWi j
dt

= 1+
K

∑
k=1

L

∑
l=1

F(t jl − t
i
k−δi j) (3)
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where t jl is the l
th spike of neuron j, δi j is the synaptic delay and

F(Δt) =
{

cp exp(−Δt/τp), Δt > 0
−cd exp(Δt/τd), Δt ≤ 0 (4)

RESULTS AND CONCLUSIONS

We analyzed the two mechanisms for synaptic modi�cation separately. The protocol
for the input is to use low frequency (0.2 Hz) injection of current to a line of eight
neighboring neurons. We have chosen 4 different directions for these lines: vertical,
horizontal and two diagonal lines with ±45◦ (cross pattern). When studying PSD only
these currents are presented simultaneously; in the case of STDP they are separated by
6 ms. Yet for STDP, the procedure is repeated until a �rst neuron reaches the maximal
synaptic weight. After that only the �rst neuron of the line is excited to test if the pattern
has been learned. In both cases the initial synaptic weighs were �xed do half the maximal
value. The inhibitory weights were kept constant during all simulations.
In the case of PSD being the only mechanism the input protocol is applied constantly

at 0.2 Hz and we observe the lattice response. Two distinct behaviors are found for �rst
neighbor synapses: either the initial wave produced by the neurons line induces spiking
in some near by neurons and fades out or it produces a wave that propagates by whole
system. The parameter governing the transition is the maximal weight. This behavior
happens for any of the four excitation lines.
In the case of STDP only the lattice response depends on geometric details: only

vertical or horizontal patterns are learned with �rst neighbor synapses. Obviously diag-
onal lines cannot be memorized since their neighboring neurons lines are not connected.
When considering second neighbors only for excitatory neurons not just these patterns
are memorized but also some nearby ones are incorrectly excited. The correct pattern
reproduction for some diagonal lines (not all of them) only happens when second neigh-
bors are considered for inhibitory neurons and the patterns are not simultaneously pre-
sented. If simultaneous patterns crossing at some point are presented, the part after the
crossing is not retrieved. Future work should consider both PSD and STDP and also ex-
tend the synapses neighborhood and gradually test the effect of long range connections.
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Strategies to associate memories by unsupervised
learning in neural networks

E. J. Agnes, B. E. P. Mizusaki, R. Erichsen Jr. and L. G. Brunnet
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Abstract. In this work we study the effects of three different strategies to associate memories in a
neural network composed by both excitatory and inhibitory spiking neurons, which are randomly
connected through recurrent excitatory and inhibitory synapses. The system is intended to store a
number of memories, associated to spatial external inputs. The strategies consist in the presentation
of the input patterns through trials in: i) ordered sequence; ii) random sequence; iii) clustered
sequences. In addition, an order parameter indicating the correlation between the trials’ activities is
introduced to compute associative memory capacities and the quality of memory retrieval.
Keywords: unsupervised learning; spiking neurons; homeostasis; STDP.
PACS: 87.18.Sn, 87.19.lg, 87.19.lj, 87.19.lv, 87.19.lw

INTRODUCTION

Memories, and everything that is processed by the brain, are associated with the con-
nections among neurons. It is well established that learning includes mechanisms based
on Hebb’s hypothesis [1], which consists basically on potentiating and depressing con-
nections between neurons with correlated and uncorrelated activities, respectively. The
main mechanism of synaptic modi�cation that is responsible for the emergence of asso-
ciative memory in an unsupervised way is Spike-Timing-Dependent Plasticity (STDP)
[2, 3], which is a hebbian-like rule. Addionally to the associative memory mechanism,
the cells present homeostasis, which has been studied in theoretical works [4, 5].

It is known that, with some prede�ned connections between neurons and without
synaptic plasticity [6, 7], a neural network of spiking neurons has a certain capacity to
store memories. But how these speci�c connection matrices are acquired in an unsuper-
vised way is yet unknown, and here we introduce three distinct methods to do so.

LEARNING

We have used the Izhikevich model [8] with Regular Spiking (RS) parameters for the
320 excitatory neurons and Fast Spiking (FS) for the 80 inhibitory neurons. The learning
process was based on the work by Liu and Buonomano [5], where a trial, τ , is de�ned
as the network response after a spatial input. All the synaptic modi�cations are applied
after each trial, since the time window of a trial is less than 150 ms, which could match
synaptic plasticity time scales.

As used in ref. [5], the probability of connection from an excitatory to another ex-
citatory neuron, P(exc.→ exc.), was set to 0.12. For the other connections, we used
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FIGURE 1. Order parameter,C(τ,τ ′), versus learning trials, τ . In (a) and (b), the ordered sequence and
the random sequence, respectively. The correlation in the clustered order in (c) and (d). Details of τ ′ on
the text.

P(exc.→ inh.) = 0.2 and P(inh.→ exc.) = 0.2. Each input pattern consists on a ran-
domly chosen set of 20 excitatory and 10 inhibitory neurons that �re within the �rst 10
ms of the trial. Initial synaptic weights were set toWEE = 0.04 nS,WEI = 0.008 nS and
WIE = 0.1 nS. Excitatory synapses were modi�ed according to both homeostatic and
STDP rules used in ref. [5], with the same parameter values. Short-term plasticity (STP)
was implemented as described in ref. [8], with depression in all synapses.

The analysis was done with an order parameter which correlates the spike times of
the excitatory neurons in two distinct trials. It is de�ned as

C(τ,τ ′) = γ−1
320

∑
i=1

∑
{k, j}

exp

[
−(tτik− t

τ ′
i j )

2

100

]

, (1)

where γ = MAX(320,Sτ
,Sτ ′) is the normalization for the correlation value and Sτ =

(1/320)∑320
i Sτ

i , a sum over only the 320 excitatory neurons. The sum over {k, j}
indicates that kth and jth spikes are close in time.

We used three different learning methods of spatial input presentation: i) ordered
sequence; ii) random sequence; iii) clustered sequences. In the �rst strategy, each spatial
pattern is presented in a ordered way through the trials. The second strategy consists
in presenting the patterns in a random sequence and, in the third one, each pattern is
presented successively for a de�ned number of trials, which was set to 3000 trials. The
synaptic modi�cations are applied to excitatory connections, including a homeostatic
plasticity and STDP, as described in ref. [5]. The homeostasis rule is used to increase the
synaptic weights until the network presents a desired activity and thereafter to maintain
a stable activity.

Figure 1 shows the evolution of the correlationC(τ,τ ′), where τ ′= τμ=1 in (a) and (b)
and τ ′ = τ−1 in (c). A trial τμ=1 is the last trial - before τ - that the pattern μ = 1 was
the input pattern. In Fig. 1(d), the plot is the correlation of a trial between τ and τ + 1
with the presentation of the pattern μ = 1 without synaptic plasticity from homeostasis
and STDP rules and the last trial with the presentation of pattern μ = 1 with synaptic
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plasticity. For τ < 3000, the curve is the same as in Fig. 1(c) and for τ > 3000, pattern
μ = 2 begins to be trained and the curve informs how much information about pattern
μ = 1 is being forgotten.

Full lines in graphs 1(a) and (b) correspond to τ which has as spatial input the pattern
μ = 1, indicating correlation when the same input is presented at different times. These
lines converge to C = 1, showing that the spatiotemporal response from the network is
equivalent when the same input is used. We tested the same with the other 4 patterns
and the result is equivalent. Dashed lines correspond to correlation between trials with
different input patterns and they do not converge to C = 1, indicating that different
trained inputs evoke distinct spatiotemporal responses.

The plot in Fig. 1(c) shows that, using 30 patterns, the correlation converges toC = 1
for each one of them within a learning window of 3000 trials, but, as shown in Fig. 1(d),
the network response to a learned memory vanishes as new memories begin to be stored.

CONCLUSIONS

We presented a neural network with unsupervised learning, simulated using the Izhike-
vich model and synaptic plasticity applied in trials. We de�ned three different ways of
learning through trials - ordered, random and clustered sequences - and showed that the
two �rst methods are equivalent for 5 patterns while the last method is robust for a large
number of patterns but it presents a forgetting curve, which means that the memories
are forgotten when new ones are trained. When the number of stored patterns increase
in random and ordered sequences, some inputs do not develop spatiotemporal response
(not shown). A detailed study of the network’s behavior when increasing the number of
input patterns is needed for a more accurate understanding of the problem.
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Abstract. Correlated neural activity is a known feature of the brain [1] and evidence increases that
it is closely linked to information processing [2]. The temporal shape of covariances has early been
related to synaptic interactions and to common input shared by pairs of neurons [3]. Recent theoret-
ical work explains the small magnitude of covariances in inhibition dominated recurrent networks
by active decorrelation [4, 5, 6]. For binary neurons the mean-field approach takes random fluctu-
ations into account to accurately predict the average activity in such networks [7] and expressions
for covariances follow from a master equation [8], both briefly reviewed here for completeness. In
our recent work we have shown how to map different network models, including binary networks,
onto linear dynamics [9]. Binary neurons with a strong non-linear Heaviside gain function are in-
accessible to the classical treatment [8]. Here we show how random fluctuations generated by the
network effectively linearize the system and implement a self-regulating mechanism, that renders
population-averaged covariances independent of the interaction strength and keeps the system away
from instability.

Keywords: covariances; linearization by noise; spectral radius; chaos.
PACS: 87.19lj, 87.19ll, 87.19ln

A binary neuron has two states, 0 and 1, representing inactivity and activity, respec-
tively. The model used here has stochastic transitions between these two states hap-
pening at random points in time controlled by the transition rates. The state space of a
network of N such neurons is described by a binary vector n = (n1, . . . ,nN) ∈ {0,1}N ,
illustrated for N = 2 in Fig. 1B. The rate of an up transition in the i-th neuron is given
by the gain function 1

τFi(n) depending on the activity of all neurons providing synaptic

input to neuron i, for a down transition it is 1
τ (1−Fi(n)) as shown in Fig. 1A. We denote

as ni+ = (n1, . . . ,ni = 1, . . . ,nN) the state with the active i-th neuron (ni = 1), and as ni−
if it is inactive (ni = 0). In a stationary state, the rates entering and leaving each state
must sum to zero, leading to the master equation

0 =
N

∑
i=1

(2ni−1)︸ ︷︷ ︸
direction of flux

(p(ni−)Fi(ni−)− p(ni+)(1−Fi(ni+))) ∀n ∈ {0,1}N , (1)

illustrated in Fig. 1B. From (1) follows the expected activity, the first moment 〈nk〉
of neuron k by multiplying both sides with nk and summing over all possible states
n ∈ {0,1}N . Only the term with ni = nk remains, because for all other terms in the sum
the configuration with nk = 0, so that 2nk− 1 = −1, cancels the another configuration
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A B

Figure 1. (A) Binary states of a neuron i. A transition from state 0 to state 1 happens with rate
1
τFi(n), a transition from state 1 to state 0 takes place with rate 1

τ (1−Fi(n)). Transition rates depend
on the state all neurons that provide incoming synaptic connections to neuron i. (B) State space of a
network of two neurons described by two numbers n = (n1,n2) that take values {0,1} each. Stationarity
requires a vanishing sum of fluxes (arrows) entering and leaving each state, leading to constant occupation
probability p(n) formally expressed by (1).

with nk = 1, so that 2nk−1 = 1 , leaving us with

0 = ∑
n

nk (p(nk−)Fk(nk−)− p(nk+)(1−Fk(nk+))) (2)

〈nk〉= ∑
n\nk

p(nk+) = ∑
n\nk

p(nk−)Fk(nk−)+ p(nk+)Fk(nk+) =∑
n

Fk(n) p(n) = 〈Fk(n)〉.

The correlation between neuron k and neuron l is defined as c̄kl = 〈nknl〉 =
∑n p(n)nknl . It is large if both neurons are frequently activated together, the neurons
are said to be positively correlated. If activated independently, the correlation equals
c̄kl = 〈nk〉〈nl〉. We determine the correlations in the network from (1), multiplying both
sides by nknl and summing over all possible states n ∈ {0,1}N to obtain

0 = ∑
n\nk

(p(nk−)Fk(nk−)− p(nk+)(1−Fk(nk+)))nl

+ ∑
n\nl

(p(nl−)Fl(nl−)− p(nl+)(1−Fl(nl+)))nk.

As before, only the terms containing nk or nl remain, because all other terms in the sum
appear twice with opposite signs. With c̄kl =∑n\nk

p(nk+)nl rearranging terms results in

2c̄kl = 〈Fk(n)nl〉+ 〈Fl(n)nk〉. (3)

Often just the fluctuations around the mean value are of interest, motivating the definition
of the covariance c as

ckl = c̄kl−〈nk〉〈nl〉 =
1

2
〈Fk(n)δnl〉+ 1

2
〈Fl(n)δnk〉, (4)

where δni = ni− 〈ni〉. This equation has a simple interpretation. The right hand side
measures the influence of neuron l’s fluctuations around the mean activity on the transi-
tion probability of neuron k and vice versa.
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MEAN FIELD SOLUTION

We will now consider a randomly connected recurrent network of NE excitatory and
NI inhibitory neurons with NI/NE = γ and N = NE +NI . Each neuron has K excitatory
and γK inhibitory randomly drawn input connections, each with amplitude J and−gJ
respectively. We assume Fk(n) = H (hk−θ), where H is the Heaviside-function and
hk = ∑N

l=1 Jklnl the summed input to neuron k. Jkl is the synaptic weight from neuron l
to neuron k and θ the threshold. A binary state is either 1 or 0, so n2 = n and the second
moment that describes the strength of fluctuations is 〈n2

k〉 = ∑n p(n)n2
k = ∑n p(n)nk =

〈nk〉. The variance hence is ak
def
=〈n2

k〉− 〈nk〉2 = (1−〈nk〉)〈nk〉 determined by the mean.
For homogeneous connectivity we can assume that all neuron’s average activities are
well described by a single mean 〈n〉. The average input to each neuron then is

〈hk〉 = ∑
l

Jkl〈n〉= KJ(1− γg)〈n〉def
=μ.

Under the assumption of sufficiently irregular network activity, we can further assume
that the neurons approximately act independently, so that their variances add up to the
variance of the total input hk

〈h2
k〉−〈hk〉2 = ∑

l
J2

kl(1−〈n〉)〈n〉= KJ2(1+ γg2)(1−〈n〉)〈n〉def
=σ2. (5)

As hk is a sum of typically thousands of synaptic inputs, to good approximation it follows
as Gaussian distributionN (μ,σ2) with mean μ and variance σ2. We are now ready to
calculate the mean activity in the network [10]

〈n〉 = 〈F(n)〉 �
ˆ ∞

−∞
H(x−θ)N (μ,σ2,x)dx =

1

2

(
1− erf

(
θ −μ(〈n〉)√

2σ(〈n〉)

))
. (6)

This equation needs to be solved self-consistently, because μ and σ depend on 〈n〉
themselves. Figure 2A illustrates the graphical solution.

COVARIANCES IN THE RECURRENT NETWORK

Next we need to calculate the covariances in the recurrent network. We proceed along
similar lines as before. We start with equation (4) and apply a linearization to the two
terms of the form 〈Fk(n)δnl〉. In the recurrent network, the activities of pairs of neurons
may be correlated. Therefore, the input hk to neuron k not only depends on nl directly,
but also indirectly through the covariances of nl with any of the other neuron ni that
projects to k. Taking this dependence into account in the linearization we obtain

〈Fk(n)δnl〉 = 〈H(hk)δnl〉=∑
i
〈H(hk\ni + Jki−θ)niδnl +H(hk\ni−θ)(1−ni)δnl〉

� ∑
i
〈H(x+ Jki)−H(x)〉x 〈niδnl〉n︸ ︷︷ ︸

=cil

+〈H(x)〉x 〈δnl〉n︸ ︷︷ ︸
=0

� S(μ,σ)∑
j

Jkicil,
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Figure 2. A Graphical solution of the mean field equation (6) for 〈n〉. B Distributions (light gray) of
input h for different J, and corresponding σ . An additional input causes a left-shift of the gain function
F (black), the gray area is proportional to the susceptibility S.

where we introduced the susceptibility S(μ,σ) = ∂
∂ε |ε=0〈H(x + ε) − H(x)〉x =

1√
2πσ

e−
(μ−θ)2

2σ2 given the synaptic weight Jki is small compared to the total fluctua-

tions of hk. In the second line we separated hk − θ = x + Jn j into the fluctuations x
distributed asN (μ−θ ,σ2), and assumed to be independent of the state of nl and those
fluctuations that either depend on or covary with nl . The linearized (4) turns into

ckl =
S(μ,σ)

2
∑

j

(
Jk jc jl + Jl jc jk

)
.

We now take advantage of the random structure of the network and replace each pairwise
covariance ci j by the average value over many pairs of neurons. Here we distinguish

the excitatory (E ) and inhibitory (I ) neuron types ()and define cE E = 1
N2

e
∑i	= j∈E ci j,

cII = 1
N2

i
∑i	= j∈I ci j, cEI = cIE = 1

NeNi
∑i∈E , j∈I ci j. The variances cii of the binary

variables are fixed by their mean cii = a = 〈n〉(1−〈n〉), as shown before. Replacing the
individual covariances by the respective mean and counting the number of connections
between neurons we arrive at a set of linear equations

[
1− 1

2
q
(

2− γg −γg
1 1−2γg

)](
cE E
cII

)
=

qa
N

(
1
−g

)
(7)

cEI = cIE =
1

2
(cE E + cII ) ,

which can be solved for c with elementary methods. Figure 3B compares this solution
to direct simulation. The parameter q = K J S(μ,σ) scales the effective linearized cou-
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Figure 3. A Cross covariance cE E (black), cEI (gray) and cII (light gray) for zero time-lag simulated
(dots) and predicted (lines) by theory (7). B Cross covariance functions averaged over 106 pairs of
excitatory neurons (black), inhibitory neurons (light gray) and pairs of one excitatory, one inhibitory
neuron (lgray). The crosses mark the analytical expectation (7).

pling and q=K J 1√
2πσ

e−
(μ−θ)2

2σ2︸ ︷︷ ︸
≤1

≤
√

K
2π(1+γg2)(1−〈n〉)〈n〉 is bounded. If 〈n〉 is held constant

at 0.5, choosing the threshold appropriately, q ≤
√

2K√
π(1+γg2)

. For non-saturated activity

0 < 〈n〉< 1 it follows that μ � θ so q is close to the maximum allowed by the inequality.
Moreover, the covariance is almost independent of J, as shown in Fig. 3A, because σ ∝ J
(5) and the peak of the input distribution decreases with σ (Figure 2B), so S∝ σ−1. This
self-regulating mechanism also preserves the system from the instability induced by
modes corresponding to eigenvalues of the effective connectivity matrix with real part
more than one: the spectral radius ρ containing the eigenvalues of the linearized random

connectivity matrix [11, 12] is bounded as ρ = q
K

√
N p(1− p)(1+ γg2)≤

√
2(1−p)
π < 1.
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Abstract. We describe a method for reproducing the dynamical behaviour observed in systems of
very high dimension in a state space of much lower dimension. The method is designed for systems
where the solution evolves onto an attractor of dimension m which is much lower than that of the
state space of the full system, n. Whitney’s embedding theorem guarantees that the attractor can be
embedded in a space of dimension d = 2m+ 1. We describe how such methods can be extended
to reproducing the vector field on the attractor so that the dynamics of a parameterized family of
attractors can be explored in the low dimensional space Rd .

Keywords: dynamical systems; bifurcations; dimension reduction.
PACS: 05.45Gg, 05.45Jn, 05.45Pq

INTRODUCTION

There is considerable interest in the idea that networks of very large numbers of neurons
can exhibit dynamics that can be described by a manifold of very low dimension. We
present a mathematical method that involves obtaining a low dimensional description of
a system that is originally specified in high dimensional terms. Unlike classic methods of
data reduction, which consider data alone, we are attempting to reproduce the dynamics
of the high dimensional system in a much lower dimensional ambient space so that it
can be more easily studied. There are mathematical theorems (principally Whitney’s
embedding theorem) which guarantee that, if the high dimensional system produces
dynamics which can be represented on a low dimensional manifold, the dynamics can
be reproduced in a space of a dimension comparable to this manifold [1]. Models of
dynamics often involve parameters representing physical processes. Thus we consider
dynamical systems with parameters, where the parameters index a family of vector fields
which produce a corresponding family of attractors. Existing methods of dimensionality
reduction typically either do not consider the inclusion of parameters, or they deal with
control inputs, where the focus is on preserving input-output behaviour, rather than
geometric structures in the state space. Although the attractors can change significantly
with respect to the parameters, the underlying vector field is often smoothly dependent
on the parameters. We can take advantage of this, to produce a low-dimensional family
of vector fields that reproduce the corresponding attractors which are indexed by a
parameterization from the original parameter space.
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STANDARD METHODS OF DIMENSIONALITY REDUCTION

The standard approach to this problem is to obtain a projection onto a suitable linear
subspace of the state space, which is then used to determine a corresponding ‘reduced’
ODE that describes the dynamics in the subspace. A sample of points from an orbit of
the system (referred to as ‘snapshots’) are often used to describe the attractor, which al-
lows for numerical methods to be used in finding a suitable projection. Once a projection
has been found, the reduced dynamic is obtained by algebraically manipulating the orig-
inal differential equation to produce a reduced ODE. Let x ∈ X be the state variable with
dynamics given by ẋ = f (x), and P : X → X be a projection. We can write x = Px+Rx,
where R = idX −P. Applying this to the original dynamic gives Pẋ = P f (Px+Rx). The
Galerkin approach is to choose a projection such that Rx = 0 on the attractor, i.e. to
project onto the subspace which the orbit explores, Px(t) = x(t). In practice one seeks
the lowest-dimensional subspace such that this is approximately true. A popular method
of finding such a projection is the proper orthogonal decomposition (POD) (also known
as the Karhunen-Loève decomposition), which finds an orthogonal projection that min-

imises the mean of ‖Rx‖2 over the data set. This can be performed by use of a singular
value decomposition (SVD), which has the benefit of also providing the information
necessary to evaluate how many dimensions are required for the subspace via the singu-
lar values [1, 2]. For a general subspace, the residual may be non-zero and the inverse
projection is nonlinear. Methods that attempt to describe this nonlinear inverse are some-
times called nonlinear Galerkin methods, or approximate inertial manifolds [3, 4].

A subspace can be described as the image of a linear embedding of a vector space, X̂ ,
of appropriate dimension, given by W : X̂ → X . The inner product on X can be pulled-
back to X̂ , giving W †W = idX̂ , where † is the adjoint. The orthogonal projection onto the

subspace W (X̂) is then given by P = WW †. This allows the dynamics in the subspace

to be described in X̂ as ˙̂x = f̂ (x̂) :=W † f (Wx̂), where x̂ =W †x. However, although this
equation specifies a low-dimensional vector field on X̂ , in general it does so in high-
dimensional terms: it requires evaluation of the high-dimensional nonlinear vector field.
In contrast, a bottom-up approach can be taken by constructing an approximation of f̂
directly, which bypasses the need for restrictions on the inverse and the form of f . A
recent method of this type is the ‘discrete Empirical Interpolation Method’ [5] (discrete
EIM), which is an adaptation of EIM [6] for the finite-dimensional case, which is used
to approximate the (nonlinear part of) f̂ .

GEOMETRIC APPROACHES

However we now consider methods can be regarded as geometrical in inspiration be-
cause they utilise the geometrical properties of the attractor, e.g. the set of all secants
between points of the attractor, as the basis for the projection methods. Projections of
this type can be found in Broomhead and Kirby [7][8], who also use radial basis func-
tions to reproduce f̂ and its derivatives on the attractor.

We wish to determine a suitable dimension-reducing map, W †, that can be used to
reconstruct, in a low dimensional space, the dynamics occurring in the high dimensional
space. It is critical to this method that the dynamics in the high dimensional space
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FIGURE 1. The projection of a limit cycle from a high to a low dimensional state space.

is actually evolving on an attractor of much lower dimension embedded in the high
dimensional space. We show this in Fig. 1 . We determine the orthogonal projection
described by W using data points from the attractor by performing optimization over the
Grassman manifold. To construct a cost function for the optimisation, we consider the set
of all pairs of points on the attractor. Each distinct pair of points (x,y) generate a secant,
(x− y), which we normalise to get a unit secant, (x− y)/‖x− y‖. In a realisation of the
method on a computer we can only consider a subset of the set of all pairs of points,
determining what is a sufficiently representative subset is empirically determined and
depends on the complexity of the structure of the attractor. Let K be the set of unit
secants generated by points on the attractor. The cost function is then

F (W ) =
1

|K | ∑k∈K
∥
∥
∥W †k

∥
∥
∥

−1
. (1)

The cost function aims to preserve the lengths of the projected secants, so that distinct
points are not projected on top of each other. This makes the inverse well-conditioned.

The basis of this method is the Whitney embedding theorem, which states that an m-
dimensional manifold can always be embedded into R2m+1. Thus in the case of our limit
cycle (m= 1), this can be embedded in a three dimensional space, no matter how high the
dimension of the original state space in which the limit cycle evolves. A consequence of
the Whitney embedding theorem is that the set of bad projections (those resulting in null
projected secants) is nowhere dense in the Grassman manifold, Grd(R

n), as long as the
dimension d is ‘large enough’ to contain the attractor (d ≥ 2m+1). This guarantee gives
the method robustness. In practice we may be able to do better than 2m+1, depending
on the example.

INCLUDING PARAMETER DEPENDENCE

A significant complication to this problem is the introduction of parameters, ẋ = f (x;λ ).
In control engineering, dimensionality reduction goes by the name model order reduc-
tion; however, in this field the parameters are usually dynamically-varying control in-
puts, and the objective of the reduction is to preserve input-output behaviour [9], rather
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FIGURE 2. Dynamics of the Rössler equations reconstructed using the methods described in the text,
showing two period doubling bifurcations of a limit cycle as a control parameter is varied.

than particular geometric objects in the state space. In contrast to this, we consider static
parameters, where the objective is to describe a family of attractors in the state space; an
autonomous view is taken without any inputs or outputs. Such parameters are studied in
the theory of bifurcations and they are also used to steer numerical experiments to direct
the computation to regions of parameter space where the solutions are of physical inter-
est (e.g. [10]. An early result of our work is shown in Fig. 2 where we show a sequence
containing two period-doubling bifurcations in the solutions of the Rössler system [11].
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Abstract. The Berkeley Open Infrastructure for Network Computing (BOINC) has become the
standard open source solution for grid computing in the Internet. Volunteers use their computers
to complete an small part of the task assigned by a dedicated server. We have developed a BOINC
project called Neurona@Home whose objective is to simulate a cellular automata random network
with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire
model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according
to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its
behaviour and to compare it with the electroencephalographic signals measured in real brains.
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INTRODUCTION

The idea that the brain is a network dates back to the foundational works on Neuro-
science by Santiago Ramón y Cajal in the XIXth century and the early XXth century
[1]. Although this concept was not developed at that time, it has become clear since
the 70s of the past century that the brain is the most complex example of the network
paradigm. In the human brain, neurons project an average of 10,000 synapses to their
neighbours and this fact only illustrates the topological complexity of this biological
system [2].

On the other hand, we have the Cellular Automata family of mathematical models.
These models are composed by a set of units called automatons, each of them can
be found in different states. The dynamical evolution of the state of every automaton
is determined by rules that usually depend on the states of the automatons in their
immediate neighbourhood. The patterns arisen from these models are very complex in
many cases despite the simplicity of the underlying rules [3]. Usually, the rules are
deterministic but we can define stochastic cellular automata as well.

In our project we have combined the structural complexity of random networks with
stochastic evolution rules in order to build a Cellular Automata Model of the brain. In
order to simulate a sufficiently large number of automata neurons, around 1,000,000,
we need a distributed computing solution because the amount of computational work is
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vast.
This number of neurons is still very small in comparison with the number of neurons

in the human brain but it could serve as a model for the complex mini-brains of some
insects: honeybee brains contains around 960,000 neurons which enable them with
a memory and behavior repertoire astounding for their size. In these insect brains,
the synchronization in the firing of large assemblies of neurons are related to odour
discrimination [4] while in humans they have been related to higher-order functions
such as attention, memory and conscious awareness [5]. It is remarkable that we find
both synchronous oscillations and quasi-gaussian noise in our model. In the next section
we describe the BOINC approach to grid computing and some preliminary results are
given in the Results section.

THE BOINC ENVIRONMENT

The BOINC open source grid computing environment is a software developed at the
University of Berkeley in 2002 [6] to tap into the immense computing capacity of
the Internet. It can be considered an evolution of the famous SETI@Home project in
which radio signals from many stars in our galaxy are analyzed in the hope of detecting
intelligent activity.

BOINC is particularly concerned with security issues, specially after security
breaches were exploited by users of SETI@Home. The BOINC concept is classical in
grid computing and it is described by the following elements:

• A client software is installed in every individual computer. This client request tasks
from the server and manages the completion of them for the project using the local
CPU and even GPU (graphic processor unit).

• The scheduling server sends the task and takes into account that a particular com-
puter is capable of managing them by considering its amount of RAM, etc

• The PC reports the completed task to the server, the output files are finally sent and
it receives more tasks.

A system of credits was also developed to control the amount of work performed by
every computer connected to the project server. In the last decade many researchers have
developed their BOINC projects for a variety of purposes from Medicine to Astrophysics
and nowadays there are more than forty active projects for volunteers to join.

The Neurona@Home project was developed at the Falúa Laboratory for distributed
computing at the Campus of Aranjuez, Complutense University of Madrid [7]. Initially
a total of 80 computers from the University Laboratory were included in the project test
(low connectivity degree networks) achieving an initial performance of 225 GFLOPS.

The tasks requires huge amount of RAM memory for the largest value of the average
degree of the network. In particular, for k= 2000 a computer with, at least, 10 Gigabytes
RAM is required. This set a stringent limit on the number of volunteers with computers
capable of managing the tasks.

Currently we have more than 300 hosts running the client for the Neurona project and
the average floating point operations per second has reached 378 GFLOPS.
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FIGURE 1. Fraction of firing neurons versus discrete time for a cellular automaton brain with 1,000,000
neurons. Parameters are ν = 1/10, γ = 1/98, α = β = 0.000904 in a random network with k = 300
average number of links per node.

RESULTS

In our model we consider both excitatory and inhibitory neurons. It is a well-known
fact that about a thirty per cent of cortical neurons are inhibitory. Cellular automaton
neurons are found in one of three states: Resting, Firing and Refractory. The transition
from firing to refractory is measured by a Poisson stochastic process with probability
ν . The return of a neuron from the refractory state to the resting state proceeds with
probability γ per unit time. The network dynamics enter in the activation of resting
neurons from firing neurons. Every excitatory neuron connected with a resting neuron in
the network can induce this transition from resting to firing with probability α . Similarly,
firing inhibitory neurons deactivate firing neurons (or inhibit the activation of a resting
one) with probability β . The substrate is a random network characterized by an average
number of links per node, k. We expect to explore the region in the range k= 100-2000.

In Fig. 1 we show a typical example in which self-sustained oscillatory behavior is
found for the number of firing neurons in the network. It is important to remark that
this oscillation is generated by the network itself as a self-organized behavior and no
need of external forcing input is necessary. This could help to understand the different
regimes in which the neuronal networks generate collective patterns and their role in the
evolutionary history of the brain from insects to humans.

After the completion of the project we hope to obtain a whole phase diagram of behav-
iors in terms of the model parameters and to fit the data to real electroencephalograms
EEG and electrode measures of activity.
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Can brains generate random numbers?
V. Chvátal1 and M. Goldsmith

Concordia University, Montreal, Canada.

Abstract. Motivated by EEG recordings of normal brain activity, we construct arbitrarily large
McCulloch-Pitts neural networks that, without any external input, make every subset of their
neurons fire in some iteration (and therefore in infinitely many iterations).
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Epilepsy is a group of neurologic conditions, the common and fundamental charac-
teristic of which is recurrent, unprovoked epileptic seizures. These seizures are transient
changes in attention or behavior, often accompanied by convulsions; they result from ex-
cessive, abnormal firing patterns of neurons that are located predominantly in the cere-
bral cortex. There are a number of different types of seizures and these different types of
seizures manifest themselves differently in electroencephalogram (EEG) recordings of
the electrical activity in the brain. One frequent occurrence is a transition from an irregu-
lar, disorderly EEG before the seizure (the pre-ictal state) to a more organized sustained
rhythm of spikes or sharp waves during the seizure (the ictal state).
A linear threshold function is a function f : Rn → {0,1} such that, for some real

numbers w1,w2, . . . ,wn (mnemonic for “weights”) and θ (mnemonic for “threshold”),
f (x1,x2, . . . ,xn) = 1 if and only if ∑nj=1wjx j ≥ θ . A McCulloch-Pitts neural network
(with no peripheral afferents) is a mapping Φ : {0,1}n → {0,1}n defined by Φ(x) =
( f1(x), f2(x), . . . , fn(x)) for some linear threshold functions fi : {0,1}n → {0,1} (i =
1,2, . . . ,n). States of this network are zero-one vectors with n components; given an
initial state s, the network computes the sequence of states s,Φ(s),Φ2(s), . . ., which is
called its trajectory.
Warren Sturgis McCulloch and Walter Pitts [4] proposed these networks as a model

of the central nervous system. Here, each fi represents a neuron and variable t marks
discrete time; the bits of each state Φt(s) tell us which neurons are firing at time t. This
model, now superseded by more realistic models of the brain, played a seminal role in
the development of artificial neural networks and even today is routinely referenced in
medical literature.
Motivated by electroencephalograph recordings of the pre-ictal brain activity, we

asked whether there are McCulloch-Pitts networks whose trajectories are random-like
in the sense of following no readily discernible scheme. An essential prerequisite of
every such network is that, starting from any state in its domain, it eventually produce
many, if not all, states in this domain as points of the trajectory. This means that the
period of Φ, defined as the smallest t such that Φt+1(s) = s for some s in its domain, is
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reasonably close, if not equal, to the size of the domain.
For every positive integer n, we have constructed a McCulloch-Pitts network Φn :
{0,1}n → {0,1}n with period 2n. However, the trajectories of these networks are far
from being random-like. To point out two of their blatant blemishes, let us consider a
trajectory s,Φn(s),Φ2n(s), . . . and let us write (x1(t),x2(t), . . . ,xn(t)) for Φtn(s). It turns
out that

x1(t) = x1(t+1)⇒ x1(t+1) �= x1(t+2)
and, for all i= 2,3, . . . ,n,

xi(t) �= xi(t+1)⇒ xi(t+1) = xi(t+2).

However, if Φn were a random permutation of {0,1}n, then we would expect x1(t) =
x1(t+1) = x1(t+2) for about about 25% of the values of t and, for each i= 2,3, . . . ,n,
we would expect xi(t) �= xi(t+1) �= xi(t+2) for about about 25% of the values of t.
The statement that trajectories of a mappingΦ : {0,1}n→{0,1}n are random-like can

be given a more rigorous meaning as follows. Define Xn = {k/2n : k = 0,1, . . . ,2n−1}
and note that there is a natural bijection f : {0,1}n→ Xn: explicitly, f (s0,s1, . . . ,sn−1) =
∑n−1i=0 2

−1si. Now Φ can be interpreted as a mapping gΦ : Xn→ Xn (explicitly, gΦ(x) =
f (Φ( f−1(x)))) and saying that trajectories of Φ are random-like can be interpreted as
saying that gΦ is a satisfactory uniform pseudorandom number generator.
To be considered satisfactory, a pseudorandom number generator has to pass a number

of statistical tests. A number of these tests is commonly agreed on; our favourite ones
are implemented in the software library TestU01 of L’Ecuyer and Simard [2, 3]. In
particular, TestU01 includes batteries of statistical tests for sequences of uniform random
numbers in the interval [0,1). The least stringent of them, SmallCrush, consists of ten
tests. The pseudorandom number generator gΦ with Φ our Φ32 fails all of them.
Is there a McCulloch-Pitts network Φ : {0,1}32→{0,1}32 such that gΦ passes all ten

tests of SmallCrush? The promising candidates seem to be those with long periods.
McCulloch-Pitts networks Φ : {0,1}n→ {0,1}n have period at most 2n; how many of
them attain this bound? Computer search shows that there are just two such networks
when n= 2 (this is easy to determine without a computer), that there are precisely 24 of
them when n = 3, and that there are precisely 9984 of them when n = 4. (Two distinct
McCulloch-Pitts networks may be isomorphic through permuting subscripts and flipping
bits. The two networks of n = 2 are isomorphic, the 24 networks of n = 3 come in two
isomorphism classes, and the 9984 networks of n= 4 come in 56 isomorphism classes.)
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Abstract. A probabilistic approach for investigating the phenomena of dissonance and consonance
in a simple auditory sensory model, composed by two sensory neurons and one interneuron, is
presented. We calculated the interneuron’s �ring statistics, that is the interspike interval statistics
of the spike train at the output of the interneuron, for consonant and dissonant inputs in the
presence of additional "noise", representing random signals from other, nearby neurons and from
the environment. We �nd that blurry interspike interval distributions (ISIDs) characterize dissonant
accords, while quite regular ISIDs characterize consonant accords. The informational entropy of the
non-Markov spike train at the output of the interneuron and its dependence on the frequency ratio
of input sinusoidal signals is estimated. We introduce the regularity of spike train and suggested
the high or low regularity level of the auditory system’s spike trains as an indicator of feeling of
harmony during sound perception or disharmony, respectively.
Keywords: auditory system; consonant and dissonant accords; environmental noise; hidden
Markov chain; informational entropy; regularity.
PACS: 87.19.lc, 87.19.lt, 87.10.Ca, 02.50.Ga, 89.70.-a, 05.40.-a

INTRODUCTION

The perception and processing of environmental complex signals resulting from the
combination of two or more input periodical signals are still an open problem for
physicists and physiologists. In particular, the precise neural and physiological bases
for our perception of musical consonance and dissonance are still largely unknown [1] –
[3]. Although there is no single musical de�nition, consonance is usually referred to
as the pleasant stable sound sensation produced by certain combinations of two tones
played simultaneously. Conversely, dissonance is the unpleasant unstable sound heard
with other sound combinations [4]. The dominant and the oldest theory of consonance
and dissonance is that of Pythagoras (570− 495 BC). He observed that the simpler
the frequency ratio between two tones 1, the more consonant they will be perceived.
Example: the consonant octave is characterized by a 1/2 frequency ratio between two
tones, while the dissonant semitone is characterized by a 15/16 ratio. In 1843 Georg
Ohm �rst proposed that the ear works as a Fourier analyzer [5]. In the same period,

1 Pure tone is a single frequency tone with no harmonic components, or overtones. Complex tone is a
combination of the fundamental frequency tone together with its harmonic components. Sounds produced
from musical instruments are complex tones.
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August Seebeck noticed the "missing fundamental" pitch perception [6]: a stimulus with
a severely attenuated lowest component is subjectively assigned the same pitch as one
with the lowest component at full strength 2. In this work, after shortly reviewing the �rst
physical theory on consonance and dissonance of von Helmholtz, two recent theoretical
approaches (ghost stocastic resonance and nonlinear synchronization of oscillators), and
the pitch shift effect related to the fundamental experiment on virtual pitch perception,
we review our theoretical probabilistic approach to the statistics of consonance and
dissonancemusical accords by a simple auditory sensory model.

Helmholtz’s theory and pitch perception

In 1877, Helmholtz analyzed the phenomenon of consonance and dissonance in the
more general context of complex tones and proposed the "beat theory" [7]. When two
complex tones are played together as an interval 3, the harmonics of each tone are present
in the stimulus arriving at the ear of the listener. For some combinations (simple ratio
n/m) the harmonic frequencies match, for others (complicated ratio n/m) they do not.
As the frequency ratio n/m becomes more "complicated", the two tones share fewer
common harmonics and there is an increase in harmonics pair slightly mismatched in
frequency which give unpleasant beating sensation. In other words, the dissonance is
proportional to the number of frequency components present in the two complex tones
that produce beats. In Table 1 is shown the ordering of consonances for two tone intervals
as accepted in the Western musical culture in decreasing order of "perfection" from most
consonant to most dissonant [7]. The third column lists the frequency ratios of the two
tones, and the fourth column lists ΔΩ, the width of the stability interval.

TABLE 1. Ordering of consonances for two–tone intervals from most dissonant
(down) to most consonant (up)

interval name interval ratio ΔΩ Consonance

absolute consonances unison 1 : 1 0.075 ↑
octave 1 : 2 0.023 ↑

perfect consonances �fth 2 : 3 0.022 ↑
fourth 3 : 4 0.012 ↑

medial consonances major sixth 3 : 5 0.010 ↑
major third 4 : 5 0.010 ↑

imperfect consonances minor third 5 : 6 0.010 ↑
minor sixth 5 : 8 0.007 ↑

dissonances major second 8 : 9 0.006 ↑
major seventh 8 : 15 0.005 ↑
minor seventh 9 : 16 0.003 ↑
minor second 15 : 16 - ↑

Dissonance

2 Pitch is the perceived fundamental frequency of a tone. Pitch salience is the strenght of tone sensation.
3 Interval in music theory is the difference in pitch between the fundamental frequencies of two tones.
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FIGURE 1. Three different intervals, namely whole–tone, perfect 5th, unison (from bottom to top).

In the following Fig. 1, three different intervals are shown, namely whole–tone,
perfect 5th, unison (from bottom to top). We can see that the unison matches exactly, and
this interval is considered to be the most consonant. Next, the perfect 5th shows some
matched and some mismatched frequencies. The whole tone shows a mismatch for all
frequencies. These frequencies can be close enough together so that discernible beats
can result. As a result, the whole–tone interval is more dissonant than the perfect 5th,
which in turn is more dissonant than the octave that is more dissonant than the unison.
As one proceeds down the Fig. 1, the number of mismatched harmonics increases and
so does the dissonances. In beat theory of Helmholtz therefore, mismatched harmonics
are considered the cause of the dissonance. Intervals were consonant if there were no
or few beats between the partials. For dissonant intervals, the partials of different tones
were so close together in frequency that the beating between them was perceived as
dissonance [7].
Pitch is a very fundamental concept in music. In fact, music is essentially a variation in

loudnesses, pitches, and timbres as a function of time [8]. The of�cial de�nition of pitch
is "that attribute of auditory sensation in terms of which sounds may be ordered on a
scale extending from high to low" [9]. Pitch is a subjective place of a perceived complex
sound on the frequency scale: pitch represents the perceived frequency of a sound. Pitch
may be quanti�ed as a frequency, but pitch is not a purely objective physical property,
it is a subjective psychoacoustic attribute of sound. A high pitch (> 2kHz) will be
perceived to be getting higher if its loudness is increased. A low pitch (< 2kHz) will be
perceived to be going lower with increasing loudness. This is called Stevens’s rule [10],
the pitch of a pure sinusoidal tone depends not only on its frequency but also on its
intensity. Complex tones evoke pitch sensations which are often determined exclusively
by overtones. However, how the brain estimates the pitch of complex sounds, formed by
a combination of pure tones, remains a controversial issue [11] – [14]. Another important

276



quantity in music is the pitch salience, which represents the evidence of the periodicity
of some spike train, being the pitch value the periodicity itself. In other words, pitch
salience is the probability of noticing a tone, the clarity or strength of tone sensation.
The estimated salience, or relative strength, of the strongest pitch of complex tones, that
is the maximum salience, is an estimation of the perceived consonance.
A complex tone composed of two sine waves of 900 and 1200 Hz gives rise to three

pitches: two spectral pitches at 900 and 1200 Hz, due to the physical frequencies of the
pure tones, and the combination tone at 300 Hz, corresponding to the repetition rate of
the waveform. This is the so calledmissing fundamental frequency, which is the greatest
common divisor of the frequencies present in the input sound.
Perception of concurrent combinations of tones is central to physiological theories of

musical harmony and melody. In fact, perception of consonance in music involves sen-
sory and perceptual processes that are relatively independent of context, as well as cog-
nitive processes depend on musical context [15]. When a harmonic interval is played,
neurons throughout the auditory system that are sensitive to one or more frequencies
(partials) contained in the interval respond by �ring action potentials. For consonant in-
tervals, the �ne timing of auditory nerve �ber responses contains strong representations
of harmonically related pitches implied by the interval and all or most of the partials
can be resolved by �nely tuned neurons throughout the auditory system. By contrast,
dissonant intervals evoke auditory nerve �ber activity that does not contain strong rep-
resentations of constituent notes or related bass notes. Moreover, many partials are too
close together to be resolved. Consequently, they interfere with one another, cause coarse
�uctuations in the �ring of peripheral and central auditory neurons, and give rise to per-
ception of roughness and dissonance [11].
It is important to distinguish between musical consonance/dissonance: a given

sound evaluated within a musical context, and psychoacoustic, or sensory conso-
nance/dissonance: a given sound evaluated in isolation.Musical consonance/dissonance
is culturally determined: variation across cultures and historical periods. Judgments
of sensory consonance/dissonance are culturally invariant and largely independent of
musical training, involving basic auditory processing mechanisms. Moreover, rodents,
birds, monkeys, and human infants discriminate isolated musical chords on the basis of
sensory consonance and dissonance similarly to expert human listeners and experienced
musicians [1]. We will consider in this work the just intonation 4 musical accords, that
is the sensory consonance/dissonance.

Ghost Stochastic Resonance

For harmonic complex sound signals, whose constituent frequencies are multiple in-
tegers of a fundamental frequency, the perceived pitch is the fundamental, even if that
frequency is not spectrally present in the input signal. This is known as missing funda-
mental illusion. Recently, a mechanism for the perception of pitch has been proposed on

4 The just intonation tuning is the basic scaling method in which the frequencies of notes are related by
ratios of integers.
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FIGURE 2. A) A complex sound sc obtained by adding two sinusoidal signals with frequencies ω1 =
(k+ 1)ω0 and ω2 = kω0, namely sc(t) = s1(t)+ s2(t) = a1sin(ω1t)+ a2sin(ω2t). Here a1 = a2 = 1,k =
2,ω0 = 1. The peaks (asterisks) exhibited by sc result from constructive interference between s1(t) and
s2(t). B) The peaks of sc(t) shown in A) can be detected by a nonlinear threshold by adding a noise
signal, generating interspike intervals "t" close to, or to integer multiples of, the fundamental period. C)
The most probable interspike interval corresponds with the missing fundamental (here f0 = ω0/2π , f1 =
ω1/2π , f2 = ω2/2π).

the basis of the so called ghost stochastic resonance (GSR) [16] – [20]. According to
the proposed mechanism, a neuron responds optimally to the missing fundamental of a
harmonic complex signal for an appropriate level of noise. The main ingredients are: (i)
a linear interference between the individual tones, producing peaks of constructive inter-
ference at the fundamental frequency (ghost frequency), whose amplitude is not suitable
to trigger the neuron; (ii) a nonlinear threshold that detects those peaks with the help of
a suitable amount of noise.
In the following Fig. 2 it is shown a complex sound sc(t) obtained by adding two

sinusoidal signals s1(t) and s2(t). The constructive interference between s1(t) and s2(t)
gives rise to the peaks (asterisks in the �gure) in sc(t) at the period of the missing
fundamental ω0. These peaks together with a noise signal can be detected by a nonlinear
threshold (see Fig. 2B). In fact, the complex tone sc is the input to a neuron which
produces a membrane potential excursion that, because of its low amplitude, cannot
�re a spike. When noise is added to sc, it induces spikes with high probability at the
interference preaks. Moreover, peak detection is optimized at some noise intensity [16,
17].

The GSR mechanism was extended to describe a higher level of perception process-
ing: the binaural pitch perception in Refs. [18, 19]. Two different neurons, at a different
auditory channel, receive one single component of the complex signal each, and their
output spike trains drive a third neuron that processes the information. This processing
neuron responds preferentially at the ghost frequency and the response is optimized by
synaptic noise.
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Nonlinear synchronization theory of musical consonance

A nonlinear synchronization theory of consonance that goes beyond the linear beating
theory of Helmholtz was recently proposed in Ref. [2]. This theory is based on the mode
locking properties of simple dynamical models of pulse-coupled neurons. The mode
locking describes the phenomenon where the frequencies of two oscillators remain in
a given ratio for some �nite range of parameters. When the oscillators, that is the
periodically �ring neurons, adjust their frequency to maintain the same ratio, this is a
signature of nonlinear synchronization. For example we have one–to–one (1 : 1) mode
locking if one neuron �res at a frequency which is synchronized with that of the second
neuron. If the �rst neuron �res only once for every two �ring of the second neuron, we
have a 1 : 2 mode locking and so on, in general we have n : m mode locking (with n and
m integers). By using a simple scheme of two mutually coupled neural oscillators, the
authors show that the mode-locked states ordering gives precisely the standard ordering
of consonance [3].
The authors of Ref. [2] analyze the dynamics of two coupled leaky integrate-and-�re

neuron models, with mutual excitatory coupling, by �nding that the mode locking ratios
n/m are ordered according to the “Farey sequence", which orders all rational fractions
n/m in the interval [0,1] according to their increasing denominators m [21]. By plotting
the ratio of actual �ring frequencies as a function of the ratio of natural intrinsic fre-
quencies of the two coupled oscillators, they reproduce the so-called “Devil’s Staircase",
with �at steps corresponding to different mode-locked states. This is a universal feature
of driven coupled oscillators [22]. The width of each step, that is of the mode-locked
interval, is an indicator of the structural stability of the synchronization. It is therefore
possible to order the mode-locked states by their stability index, by �nding a correspon-
dence with the theoretical ordering of musical intervals according to their consonance
evaluation. The steps decrease in width as higher integers occur in their fractional rep-
resentation of the mode locking (see Fig. 3). Heffernan and Longtin in Ref. [3] analyzed
in detail the same model of Ref. [2] by considering different values of coupling between
the oscillators. They found that the ordering of mode locked states is not universal, but
depends on the coupling strength. Moreover, the noise jitters the spike times and mode
locked patterns, but the overall shape of the �ring mode lockings is preserved.

Pitch shift effect

Almost all musical sounds are complex tones that consist of a lowest frequency com-
ponent, or fundamental, together with higher frequency overtones. The fundamental plus
the overtones are together called partials. The �rst perceptual theories considered pitch
to arise at a peripheral level in the auditory system [5, 6, 7, 23, 24], while experiments
have shown that pitch processing of complex tones is carried out before the primary
auditory cortex [25]. The ability of the auditory system to perceive the fundamental
frequency of a sound even when this frequency is removed from the stimulus is an in-
teresting phenomenon related to the pitch of complex sounds. This capability is known
as "residue perception", "virtual pitch" or missing fundamental, and consists of the per-
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FIGURE 3. The ratio of the observed oscillator frequencies when coupled as a function of the ratio of
the oscillator’s natural intrinsic frequencies.

ception of a pitch that cannot be mapped to any frequency component of the stimulus
(see Fig. 4). According to the Helmholtz theory, the missing fundamental can be ob-
tained by the difference combination tone between two sources with two frequencies.
However, Schouten et al. [23] found in their crucial experiment that the behavior of
the residue cannot be described by a difference combination tone. By shifting all the
partials by the same amount Δ f (see Fig. 4c), the complex is no longer harmonic, the
difference combination tone remains unchanged, and the same should thus be true of the
residue. Instead, it is found that the perceived pitch also shifts, showing a linear depen-
dence on Δ f (Fig. 4d). This phenomenon is known as the �rst pitch-shift effect, and has
been accurately measured in many psychoacoustic experiments [26]. The fundamental
experiment of Ref. [23] was accurately described in terms of generic attractors of non-
linear dynamical systems, by modeling the auditory system as a generic nonlinear forced
oscillator [27].

PROBABILISTIC APPROACH

The key element of the cochlea in the inner ear of mammals is the basilar membrane,
which performs the sound Fourier transform with a good precision [28, 29]. As a result,
different spectral components of the input signal, i.e., different oscillating parts of the
basilar membrane, act upon different sensory neurons (sensors) , which send their output
of spike trains to the interneurons. Because we restrict our analysis by two spectral
harmonics (simple chords of tone pairs), it is suf�cient to consider the model with two
sensors at the input (see Fig. 5). The sensors N1, N2 are subjected to the mixture of
subthreshold sinusoidal signals with different frequencies and statistically independent
additional white Gaussian noises. The sum of weighted sensors’ spike trains summed
with the third statistically independent white Gaussian noise is sent to the interneuron
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FIGURE 4. (a) A harmonic complex tone. The overtones are successive integer multiples k = 2,3,4, ..
of the fundamental f0 that determines the pitch. (b) Another harmonic complex tone with the fundamental
and the �rst few higher harmonics removed. The pitch remains the same and equal to the missing
fundamental. This pitch is known as virtual or residue pitch. (c) An anharmonic complex tone, where the
partials, which are no longer harmonics, are obtained by a uniform shift Δ f of the previous harmonic case
(shown as dashed line). Although the difference combination tones between successive partials remain
unchanged and equal to the missing fundamental, the pitch shifts by a quantity ΔP that depends linearly
on Δ f . (d) Pitch as a function of the central frequency fc = (k+1) f0+Δ f of a three component complex
tone, namely k f0 +Δ f , (k+ 1) f0+Δ f and (k+ 2) f0+Δ f . This is the pitch shift effect, shown here for
k= 6,7, and 8 (see Ref. [27]).

N3, which is an internal neuron connecting sensory neurons to other neurons within the
same region of the brain. The output spike train of the interneuron is the main object of
investigation [30, 31].
Each neuron is modeled by the simple nonlinear model referred to as the noisy leaky

integrate-and-�re neuron [32]. We analyze the probability distribution of interspike
intervals (ISIDs) of the output signal of the interneuron by assuming to know the ISIDs
of the output signals of the two sensory neurons ρ1(t) and ρ2(t). We reduce the number
of events for which the interneuron can �re to four main scenarios because all other
events have a very negligible probability to happen in comparison with the previous
four. In this way we are able to calculate the �rst passage time distribution at the
output of the interneuron ρ3(t), using conditional probabilities and �rst passage time
distributions at the output of sensory neurons. Moreover, for periodical input signal at
the sensors with frequency ratio m/n we obtain (m+n-1) different patterns of input spike
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FIGURE 5. The investigated model. N1 and N2 are the sensory neurons, driven by subtreshold sinu-
soidal signals with different frequencies. Spike trains of sensors are received by the interneuronN3. ξ1(t),
ξ2(t), and ξ3(t) are the statistically independent white Gaussian noises.

trains for the interneuron, with different ISIDs at its output. The �nal interspike interval
density of the interneuron ρout(T ) is obtained by averaging the �rst passage time density
ρ3(t) over all different states (m+n-1) of the interneuron. We show how a complex
input composed of two harmonic signals is transformed by the proposed simple sensory
system into different types of spike trains, depending on the ratio of input frequencies.
Looking for the differences in the statistical sense, we �nd out that the output ISIDs
for some combinations of frequencies, corresponding to consonant accords, have more
regular pattern, while inharmonious signals, corresponding to dissonant accords, show
less regular spike trains and blurry ISIDs. This difference indicates that consonant
accords are higher stable, with respect to the noise environment, in comparison with
the dissonant accords in the processing of information throughout the auditory system.

Model

As a neuron model for our sensory system (see Fig. 5) we consider the Leaky
Integrate-and-Fire (LIF) model. Therefore, the set of stochastic differential equations
describing our system is⎧⎨

⎩
�v1 =−μ1v1+A1 cos(Ω1t)+

√
D1ξ1(t),

�v2 =−μ2v2+A2 cos(Ω2t)+
√
D2ξ2(t),

�v3 =−μ3v3+ k1s1(t)+ k2s2(t)+
√
D3ξ3(t),

(1)

where vi(t) and μi stand for the membrane potential and the relaxation parameter, re-
spectively, and the subscript i labels the different neurons, with i= 1,2 representing the
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two input sensory neurons (N1 and N2) and i= 3 (N3) denoting the processing interneu-
ron. Ai and Ωi (with i = 1,2) are the amplitude and the frequency of the corresponding
harmonic input of the sensors. We consider that the three neurons have different synap-
tic connections, they are not subject to the same background noise and the three noise
sources ξi(t) are independent of each other. Therefore, in Eqs. (1), the three white Gaus-
sian noise terms ξi(t) (i= 1,2,3) are uncorrelated and with the usual statistical properties
〈ξi(t)〉 = 0 and 〈ξi(t)ξ j(t ′)〉 = δ (t − t ′)δi j. Di is the noise intensity in each neuron. In

Eq. (1) si(t) =
Ni(t)
∑
j=0

δ (t − ti j), i = 1,2 are the spike trains generated by the sensors and

received by the interneuron as input, ki (i = 1,2) are the coupling coef�cients. Spikes
are modelled by Dirac δ -functions. The LIF model doesn’t comprise any mechanism
of spike generation. When the membrane potential vi reaches the threshold value vth,
the neuron is said to �re a spike, and vi is reset to its initial value v0i . In particular, the
input spikes at the interneuron, coming from the sensory neurons, can produce spikes or
jumps in the membrane potential of the interneuron, depending on whether or not they
are suitable to �re the interneuron.
All simulation and theoretical results presented in this work are obtained using the

following set of values of system parameters, namely μ1 = μ2 = 1, μ3 = 0.3665, D1 =
D2 = D3 = 1.6 · 10−3, k1 = k2 = 0.98, v01 = v02 = 0, v03 =−1, and vth = 1, unless stated
otherwise. The refractory period Tre f of the output interneuron is introduced explicitly as
the time at which the membrane potential reaches the level v3=−0.1, that is Tre f = 6.28.
The �rst two equations of system (1) describe the Ornstein-Uhlenbeck processes with
harmonic driving forces. For the Ornstein-Uhlenbeck neuronal model, the ISID was
obtained analytically with different approaches in Refs. [33, 34]. This distribution, which
coincides with the �rst passage time probability distribution related to the �ring event of
sensory neurons, is our starting point to obtain the ISID at the output of the interneuron.
It is important to note here that the ISIDs at the output of two sensors are non-

Poissonian (see Fig. 6b). These spike trains are the input of the third neuron, and
as a consequence the dynamics of the membrane potential of the interneuron is non-
Markovian. The output of the interneuron is shown in Fig. 6c. In order to perform this
analysis we use three main assumptions: (i) The input harmonic signals are subthreshold
for the sensors, that is the signal Ai cos(Ωit) is not able to bring the membrane potential
of the ith sensor above the threshold in the absence of noise (Di= 0). This means absence
of spikes at the output of the sensors. (ii) Only one spike can be generated at each period
of the harmonic driving force, and, at the same time, the spiking on each period is the
most probable situation (see Fig. 6a). This means that the relaxation times of sensors are
smaller than the periods of the sinusoidal signals. (iii) Each of coupling coef�cients ki
is less than the threshold value of the membrane potential vth. It means that any separate
incoming spike (see Fig. 6c) evokes a subthreshold impulse of the membrane potential
of the interneuron v(t), i.e. spike generation is impossible without noise. At the same
time, the sum of the two coupling coef�cients is greater than vth.
Therefore, we can evaluate the probability ΔP3(t) = ρ3(t)Δt that the interneuron N3

�res in the short time interval (t, t+Δt), by considering the occurrence of the following
events:

1. receiving a separate �ring spike from the sensory neuron N1;
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FIGURE 6. (a) Typical behavior of the membrane potential vi(t) of sensory neurons versus time for a
noise realization. (b) ISI distribution of the sensory neurons. The highest probability of a spike after t = 0
is near one period of external force (t = 10.47). The probability of �ring after two, three, etc. periods
decreases exponentially. (c) Typical behavior of the membrane potential v3(t) of the interneuron versus
time for the same noise realization. Here are well visible the refractory state (ref ), characterized by the
refractory time Tre f , and the noisy background (bg) during the relaxation time Trelax.

2. receiving a separate �ring spike from the sensory neuron N2;
3. receiving a �ring spike from the neuron N1 on the background of the membrane

potential relaxing, after the jump due to the spike from the N2 neuron, towards the
zero value; in other words, sensor N2 causes the jump and then sensor N1 the spike;

4. receiving a �ring spike from the neuron N2 on the background of the membrane
potential relaxing, after the jump due to the spike from the N1 neuron, towards the
zero value; in other words sensor N1 causes the jump and then sensor N2 the spike.

We neglect the contribution of multiple jump events to �re the interneuron and the
noise-induced spike events occurring during the relaxation of the membrane potential
after a jump, because they have very negligible probability to happen in comparison
with the previous four, with the chosen range of system parameters. The four described
scenarios exclude each other, so they are mutually exclusive events. As a result, accord-
ing to the formula of total probability we have to add up all probabilities of the above
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mentioned events.

Interspike interval distributions

Now we calculate numerically the interspike interval distributions of the interneuron
for two groups of consonant and dissonant accords by numerical simulations of Eqs. (1)
(see Figs. 7 and Fig. 8).

FIGURE 7. ISI distributions of the consonant accords: octave (2/1), perfect 5th (3/2), major 3rd (5/4),
and minor 3rd (6/5). All curves are obtained through the direct numerical simulation of the Eqs. (1).

We note the very regular behavior of the patterns of ρout(T ) in all the consonant
accords considered, and the very rich pattern with many peaks in the major 3rd (5/4)
and minor 3rd (6/5) accords.
The ISIDs of dissonant accords are blurry with respect to the ISIDs of the consonant

accords. This means that we can consider the ISID as an investigative tool to discriminate
between consonant and dissonant accords. In fact higher are the integersm,n less regular
and blurry are ISIDs, while lower are the integers more regular are the ISIDs.
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FIGURE 8. ISI distributions of the dissonant accords: major 2nd (9/8), minor 7th (16/9), minor 2rd
(16/15), and augmented 4th (45/32). All curves are obtained through the direct numerical simulation of
the Eqs. (1).

REGULARITY

Each different state of the interneuron belongs to a hidden Markov chain (HMC). For
each state of the HMC we are able to calculate the First Passage Time Probability
Density (FPTPD) for the passage of the interneuron’s threshold of spike generation by
the theoretical approach presented in the previous section (see Ref. [30] for details). For
input frequencies with ratio (Ω1/Ω2 = m/n), all FPTPDs consist of peaks, and each
peak corresponds to switching into some existing state of the HMC. Thus, the element
of the HMC’s transition matrix is obtained as follows: πi j =

∫
(i→ j)

ρ(i)(t)dt,where ρ(i)(t)

is the FPTPD of the interneuron in the i-th state, and (i→ j) is the interval, in which the
peak of ρ(i)(t), corresponding to switching into a state j, is situated.
Starting from the HMC’s transition matrix we calculate the speci�c informational

entropy H of the interneuron’s spike train using the Shannon’s formula [31]

H =−
M−1

∑
i=0

pi
M−1

∑
j=0

πi j log2 πi j, (2)
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where pi is the probability of state i, which can be obtained from the {πi j} matrix, and
M is the whole number of states of the HMC.
To characterize the regularity of the spike trains we introduce the spike regularity

measure R as
R(m/n) = Hmax−H(m/n), (3)

where Hmax is the maximal entropy value over all considered m/n ratios. Obviously,
R is de�ned up to a multiplicative constant [31]. In Fig. 9 the dependence R(m/n)
corroborates the hypothesis of the connection between the harmony perception and
highly regular spike trains in neural ensembles of the auditory system [30]. Indeed, the
regularity R (the entropy H) is high (low) for small integers m,n (namely, m,n < 10),
i.e. the investigated system produces a regular output spike train under in�uence of
consonant accords at the input. R grows linearly with increasing ratio m/n at �xed
difference (m−n) (Fig. 9, bold solid lines).
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FIGURE 9. Regularity of the interneuron’s spike train depending on the frequency ratio of input
sinusoidal signals m/n = Ω1/Ω2. The bold solid lines approximate the locus of the R(m/n) points for
constant differences (m− n). The noise intensity is the same for all three noise sources.

We note that this behavior of the regularity is very similar to the well-known �rst
pitch-shift effect [23] in the psychoacoustics: the linear growth of pitch for the linear
upward shift of frequencies of sounding tones at a given difference between the frequen-
cies. Therefore, because the pitch is a proxy of the regularity, the observed qualitative
correspondence between the obtained dependence R(m/n) and the dependence fp(m/n),
con�rmed in experiments [23] (see also Fig. 4), proves the feasibility of the model under
investigation. In some sense, the regularity embraces both the pitch value (periodicity of
a spike train) and the pitch salience (evidence of the periodicity). Thus, the use of the
regularity value R as a measure of the “consonance level” may have a number of ad-
vantages in comparison with the use of the pitch salience. Firstly, regularity is a clear
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physical quantity of a concrete spike train. Secondly, an R value can be obtained di-
rectly from a spike train by calculation of speci�c informational entropy [31]. Thirdly,
obtaining of a regularity value does not require determination of a pitch value, which is a
problem in a case of unknown or too complex input sound, e.g., a voice of a human. We
suppose also that an experimental con�rmation of the plots shown in the Fig. 9 can be
very fruitful for neurophysiological applications. For example, the discovery of brain re-
gions where property of the spike train regularity could help to understand how pleasant
or unpleasant are perceived by a mammal sounds, which are more complex than simple
musical accords.

CONCLUSIONS

With our simple model of the auditory system, we are able to discriminate between
consonant and dissonant accords by analyzing the �rst passage time probability distribu-
tions at the output of the interneuron. Blurry ISIDs characterize dissonant accords, while
quite regular ISIDs characterize consonant accords (Figs. 7, 8). We have calculated the
informational entropy for the non-Markov spike train at the output of the auditory system
model, and introduced the regularity of spike train. The high or low regularity level of
auditory system’s spike trains has been suggested as an indicator of feeling of harmony
during sound perception or disharmony, respectively. By considering an extension of this
simple model to a more complex realistic auditory system, composed of many sensory
neurons and different layers, we should be able to know at which extent the dissonant
accords will “survive", against the consonant ones, in the noisy neural environment of
the brain.
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