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We study the phase dtagram and other general macroscoplc properties of an interacting spin (or
particle) system out of equilibrium, namely, a reaction-diffusion Ising model whose time evolution
occurs as a consequence of a combination of spin-flip (Glauber) and spin-cxchahge (Kawasaki) pro-
cesses. The Glauber rate at site x when the conﬁguratlon is 8, say c(s;x), satisfies detailed balance at
a reciprocal temperature 3, whlle the Kawasaki rate for the mterchange between nearest-nelghbor
sites x and y, Fc(s, X,y), satisfies detailed balance at temperature '. We derive hydrodynamic-type
macroscopic equations from the stochastic microscopic model for 8,80 and large T' when time
and space are rescaled by I" and \/f‘ respectxvely, and study the homogeneous steady solutions of
those equations when I'—w. We state some general theorems for B'=0 and solve explicitly the
model with different choices c(s;x) for systems of arbitrary dimension d when =0 and also for
d =1 when §'#0. We also describe new Monte Carlo data for finite ", /=0, and d =1,2. The

latter suggests, in partlcular, the ex1stence of phase transitions for d =1, finite I', and some choices
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for ¢ (s;x).

I. INTRODUCTION AND DEFINITION OF MODEL

This paper is one of a series devoted to the study of the
nonequilibrium steady states occurring in a model w1th
competing dynamics. We study here an Ising spin (or
lattlce-gas) system on a simple hypercubic lattice in d di-
mensions whose spin configurations s= {s, ;XEZ4, 5,
=11} evolve in time due to a combination of reaction
and diffusion processes. That is, s changes stochastically
due to both spin-flip (reaction) processes caused by the
contact with a heat bath at temperature §=(kzT) "}, the
so-called Glauber dynamics,! and diffusion processes
caused by nearest-neighbor (NN) exchanges, the dynam-
ics introduced by Kawasaki,? which occur as if the asso-
ciated bath temperature was . Those two competing
processes are independent in continuous time, with I' the
ratio of attempted exchanges per bond to attempted flips
per site. The same model was studied before in the case

Here ,
= 3 (G, —1)cB(s;x), Gg(s)=g(s"), (1.2)
Lﬁ———-] EI (Kyy—1DcP(s;x,y), K g(s)=g(sV),
x—y|=1

(1.3) .

g(8) stands for an arbitrary function of the system
configuration, s* represents the configuration obtained
from s by flipping the spin at site x, i.e.,

8, ZFX

(s*),= (1.4)

—s,, Z=X

and s™ is the configuration obtained from s after the in-
terchange of the spin variables at sites x and y, i.e.,

S, X,Y¥Z

B'=0, i.e., for a completely random “diffusion process, by
De Masi, Ferrari, and Lebowitz>* in the limit I'— ,
and by means of a mean-field approximation by Dick-
man® for arbitrary T, as a continuation of previous in-
terest on rcactlon diffusion stochastic_models by both
physicists®’

and mathematicians.®”!1® Further related
nonequilibrium lattice models have been studied recently;
see, for instance, the bibliography contained in Refs. 11
and 12.

The systém configurational probablhty dlstnbutlon,
say 2 (s;1), will be assumed to evolve in time according
to the Markovian master equation:

(s¥),= X=Z (1.5)

Sys
Sy, Y=Z.

The respective rates cP(s;x) and cP(s;x,y) for the
Glauber and Kawasaki processes both satisfy detailed

balance, but with respect to different heat bath tempera-
tures. As a consequence, one has that

LEub(s)=0 (1.6)
with

)= [ exp[—BH(s)] | “lexp[—BH()],  (17)

oulP (s;1)

3 (L1

=(LE +TLE uff(s;t) .

where H (s) represents the system configurational Hamil-
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tonian, assumed for simplicity to be H(s}=~J 31 . 5,5y,
where the sum is over NN pairs, and

LZub(s;m)=0 (1.8)
with _
,uf'q(s;m)=Z(,II)_lexp [—[j"H(s)+,n2sX (1.9)
Here, i=[i(m), namely,
—11 @
=N"!'|— |InZ(@), (1.10)
e[z
where
(1.11)

Z(g)= 3 exp [—B’H(s)+ﬁ§sx ,

i.e., the Gibbs state at temperature 3 has a fixed value for
the magnetization m.

The stationary state implied by Egs. (1.1)-(1.11) is ex-
pected to bear a number of interesting properties. For in-
stance, it will not be unique in general but will depend, in
a way which is not yet quite well understood, on the pa-
rameters 3, B, J, and T" and on the specific form assumed
for the spin-flip and spin-exchange rates cf(s;x) and
c?(8;x,y). Also, it may present continuous and discon-
tinuous instabilities leading to nonequilibrium phase tran-
sitions in the infinite-volume limit. One may distinguish
the following cases.

(i) T'=0 or ¢#(s;x,y)=0 corresponds to the familiar
kinetic Ising model with a nonconserved magnetization. !
Any spin-flip rate c#(s;x) satisfying detailed balance, this
implying (1.6) in particular, drives the system to the same
stationary state. This is the equilibrium Gibbs state (1.7)
corresponding to the temperature S=(kjp T)"! and to the
energy H (s) whose nature is well known, e.g., the system
shows a finite critical temperature 3, for any d =2. The
same follows when ¢®(s;x)=0 for finite I". This is the Is-
ing model evolving by the Kawasaki dynamics which
conserves the system magnetization.? The steady state is
then also an equilibrium Gibbs state, (1.9), with a fixed
magnetization, however. This is independent of the rate
I'cP(s;x,y) when it satisfies detailed balance, which im-

plies (1.8) in particular. Those two limiting, equilibrium

situations are a well-known reference for the nonequi-
librium situations in which we are interested here.

(i) The situation is very different when I'>0 and c”,
¢Ps£0, e.g., multiplying c’(s;x) by a constant may
dramatically modify the stationary state. This is already
implicit in certain versions of the model which were in-
vestigated before, namely, when c?(s;x,y)=1 as if the
bath temperature controlling the diffusion process was
infinite, i.e., the case of a completely random diffusion.
That case was found most interesting because, as one re-
scales time and space by I' and by V'T, respectively, and
takes the limit T'— oo, it follows rigorously>*!? that the
macroscopic magnetization m (r,1), rERY, satisfies a
hydrodynamic-type, macroscopic equation. Namely, a
reaction-diffusion equation:

om(r,t)

=m0+ F(m (0] (112
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Here, F{m} is a polynomial in m, which may be inter-
preted as the derivative of a mean-field energy o,
F =3®(m)/dm, obtained as

F{m}=—2(s.cBs;x)),, , (1.13)
m=(s,),,, where the average is taken with respect to a
Bernoulli state with uniform magnetization m. The study
of the homogeneous steady (nonequilibrium) solutions of
(1.12) reveals,>*!3 for instance, the presence of instabili-
ties, even when d=1 for some choices ¢?(s;x).

(iti) The case of finite I, where no exact results are
known, was studied for B'=0, d=2, and for some specific
choice ¢#(s;x),'* by means of a mean-field-type approxi-
mation® and Monte Carlo (MC) computer simulations.’
The main conclusion from those studies concerns the
presence of a nonequilibrium phase transition changing,
as I' is increased, from the Ising-type second order to a
mean-field-type first order. That is, the phase diagram
has a “tricritical point” separating those two behaviors.

(iv) It was shown recently!® that one may also obtain,
as for case (ii), a hydrodynamic-type macroscopic equa-
tion when both temperatures, 8 and ', remain finite.

It is our purpose here to study some questions related
to cases (ii)~(iv). When 8'=0 and ' — «, we conclude
some properties of the d-dimensional stationary state for
the rates c?(s;x) which are more familiar in the litera-
ture, and state some general theorems relating the prop-
erties of c?(s;x) to those of the stationary state. In par-
ticular, we find the conditions on c’(s;x) to expect a
phase transition for d=1 and ferromagnetic-type interac-
tions, and conclude some properties of the antiferromag-
netic case. The nature of the phase diagram in the S-I'
plane, with B, €[0, « ], is further investigated by per-
forming computer simulations for ferromagnetic interac-
tions, several choices c?(s;x), and for d=1 and 2. We
thus find, in particular, strong evidence for the existence
of a phase transition for d=1 and finite I'. When ' >0,
we study analytically the situation depicted above under
case (iv), — w0, and find explicit steady solutions for
d=1. Brief reports of some of the results here were
presented before; 13,15 we describe now, in addition to
methods and most relevant details of the proofs, some
novel analytical results and further numerical, Monte
Carlo data.

II. HYDRODYNAMIC LIMIT

The generalized reaction-diffusion model in the preced-
ing section was defined as a microscopic, stochastic mod-
el. An important question is whether one may obtain a
hydrodynamic-type macroscopic equation from that mi-
croscopic description under some scaling limit. We
present here such a derivation, and a method to obtain
macroscopic equations which generalize in a sense the
one obtained before by De Masi et al.>* for '=0.

With that aim, we first multiply Eq. (1.1) by s, and sum
over s; it follows immediately that

(s, )
ar

=—2(s5,cP(5;x)) +T 3 s, LEuPP (s;1) .

2.1)
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The angular brackets indicate here an average with mea-

sure p(s;t). The last term in Eq.
transformed successively as follows:

rss, 3 [cb"(sﬂ,y,z)y?ﬂ(sﬂn

s ly—z|=1
—cB'(S'y,z),ugﬁ'(S't

(2.1) may be

=T 3 ([(s¥),—s.1cP(8;y,2))
. ly—zl=1
d e
=ry 3 ([(S“),—sx]cﬁ"(s;x,zﬁ
i=1z=xti

where (8™),=s, according to (1.5) ‘and x+i represents the
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~ Next, we write I'= ez- and make a partition of the
infinite Iattice into (hyper) cubic boxes of side €~ la,, with
a, the original lattice spacing. The location of each box
‘is then represented by a discrete vector r, and two neigh-

-~ — - boring boxes, at r and r’, respectively, are separated by a

distance @ =€~ 'a, which we shall take as our unit of
length Consequently, we define a coarse-grained magne-
- tization at each box,

'm(rs) -4 E Se s
x€Q,

(2.3)

where (), . is the part of the original lattice within the
box at r. The quantity m, is determined by a competi-
~ tion between the spin flips occurring within the box and
the spin exchanges with the neighboring boxes. Those
. two mechanisms produce variations of the same order of

J— magnitude in m., i.e., the variations induced by the form-

er are of the order of the volume of the box, € ¢, and the
ones induced by the spin interchanges are a surface effect
" of order e ™1 times the gradlent of the magnetization
involved at each exchange, 1/¢”, times I". By combin-
ing (2.3) and (2.2) one has that

NN of site x along the £i direction, i =1,2,...,d. Thus
one has that
a(s,)
5 =—2(s,ch(s;x)) ‘ i
+1‘2 3 (s Flssxz)) . (2.2)
i=1z=xti
. i
}
am (r;1) .
m—at—‘s——'ze 3 (sc (s;x) )+‘e" 22 2

e, lxeﬂ

E ( (s, =5, )c?(s; x,z)> (2.4)

z—xn’:i

where m (r;t)={(m (r,s))

Most interesting is the limit €—0, where the boxes .Q, -

develop a macroscopic size and (m (r;s) 7 transforms
into the macroscopic, deterministic varlable m(r;t).
Simultaneously, €—0 makes the d1ﬁ‘us1on very fast as
compared to the reaction process, i.e., there is an infinite
number of spin exchanges within the box (per unit time)
for each spin flip, and the corresponding number of ex-
changes through the box surface becomes negligible. Un-
der those circumstances, when the observation occurs in
time units of €2, one expects some sorf of local equilibri-
um within the box with respect to the fast dlﬁ'usxon pro-
cess.

More precisely, the original measure u(s;f)=
satisfies (1.1), i.e.,

u(s;1)

Thls reveals in partlcular that, for € small enough, there
will only be a well-behaved solution as far as
Lypy(s;t)=0. Therefore the relevant measure in the lim-
it €—0, i.e., assuming that surface terms tend to disap-

psar,.w_sm}ply .

po(s;t)= T p&(ssm (r;1)) (2.9)
T

which corresponds indeed to a sort of local equilibrium

characterized by the local magnetization m(r;?); [],

represents here a product over boxes and s, is the

configuration within the box at r.

~==—==-=The measures (2.7) and/or (2.9) are the ones to com-

pute the average involved by (2.4) when € is small enough
or zero, respectively. Assuming a> 1, we have immedi-
ately to leading order in € that

B (2

(2.5)
at e I a_'na(_:@ 2<S c (s x)>m(r;t)
where d B
412 C st), st
LG!‘LB(S)_‘O LK”eq(S’m)“ (2'6) . 26 lgl r’=§0—ai (m(r ) m(r ))
Let us assume that ¢(s;¢) exists such that e . +O(e). (2.10)
u(s;tY=p(s; 1)+ e“p(s; 1)+ 0 () , .7y Here,
. . 7o p)) — — Bla
where b >a>0. By using (2.7) in (2.5), it follows to lead- Clm (r50,m (5] = (s, s )e(5;%,2))o 210
ing order that L ;Q,:Xe Qr cand zEQ, , and
Lo+ (2E) Ly g+ L= L+ O (b~ 2. (V= 2 S ufism), (o= 2 kol (212)

at

T2.8)

Now, take a=e¢ 1ao'—l and the lengths scaled by ¢, i.e.,
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iis replaced by €i. Equation (2.10) leads in the limit e—0
to the hydrodynamic-type macroscopic equation:

d 3¢
%:—Z(SXCB(SJX»m(r;”

[8,C(u,0)]

u=v=m(r;t)

+13 |2

X (2.13)

ar,

i

dm (r;1) ”

where 8, represents a derivative with respect to v. This
equation has coefficients which are evaluated in the local
equilibrium ensemble (2.9) and depend in general on the
details (transition rates) of both the spin-flip and the
spin-exchange mechanisms.

Notice also that the measure (2.9) for € —0 reduces as
[B'—0 to the factorized one:

;qu(s;m)‘—"z_lexp [ii S s, ] , (2.14)
X

where fi=Ji(m) is defined by Eq. (1.10). This is the Ber-
noulli measure found previously by De Masi, Ferrari, and
Lebowitz>* for B'=0 when the “infinite temperature”
(i.e., completely random) diffusion avoids any local corre-
lation. We recover their macroscopic equation for '=0,
Egs. (1.12) and (1.13), after using (2.14) in Eq. (2.13).

III. STATIONARY SOLUTIONS:
SOME GENERAL RESULTS

Consider now the case of a homogeneous system in the
limit €—0. Then, (2.13) [or (1.12) in the special case
B'=0] reduces to dm(t)/3t=F{m(t)] where
F{m}=—2(s,c(s;x)) and the averages are computed
with measure (2.9). The relevant uniform stationary solu-
tions, say m *, follow then from

3F (m) <0
om m=m*_

where the second condition guarantees local stability.
We shall first refer to the case 5'=0; Sec. V will study
some stationary solutions when 8’ > 0.

The former case is characterized by cPs; x,y)=1,ie.,
the spin-exchange rate is independent of s, and by the de-
tailed balance condition:

c(s;x)/c(s;x)=exp[ —AH (s;x)],

F(m*)=0, (3.1)

(3.2)

AH (8;x)=H (s*)—H (s). For simplicity of notation, we
are including B in the configurational Hamiltonian, i.e.,
define K =fJ and

H(s)=—K ¥
Jx—yl=1

sxsy=Hy(s)—Ks, ¥s,,  (3.3)
q
where the second sum is over the ¢ NN of site x, and
H(8) contains no information about s,. One may write
quite generally after using (3.3) that
g
—Ksy 3 sy | s

c(x;8)=fy(s)exp (3.4)

y=1

3805

where fy(s) is an arbitrary function, except that
Sol8)=f(8*) 20 as required by (3.2) and by the positivi-
ty of the rates. It also turns out convenient to write

c(s;x)=f(s)[ A, (s)+s5,4_(s)] (3.5)
where, for simple hypercubic lattices, one has that
d
F(8)=fo(s) [T cosh[K (s,4;+5,-1)] (3.6)
i=1
which also satisfies the symmetry property
f(8)=f(s") (3.7
as a consequence of detailed balance, and
O o
A (s)= 5 li:[=I1 {1 2 (Sx+i+3x—i)]
d a
+ H 1+3_(sx+i +sx_i) ’ (3.8)
i=1

with a=tanh(2K). Thus, after using (3.5) in (1.13), one
has that

Fim}=—2m{(f(s)4,(s)), —2{f(s)4_(s)),,

where A4, have no explicit dependence on s,.

Theorem 1. Consider the case d==1 and K >0 with
f(s)=1+as, 5,1, a=a(K), |a| 1. The system un-
dergoes a second-order phase transition if and only if
a>0.

Corollary. The critical temperature K, when ¢>0
satisfies the equation

(3.9

[1—tanh(2K_)]/tanh(2K )=a (K, )=a, , (3.10)
and one has that
m*=0 when a <a,,
3.11)

m*=+[(a—1)a " '+a]"? when a>a,

for the magnetization.

Theorem 2. Consider the case d=1 and K>0 with
F8)=1+4ay(s, 41 +5.—y), la] <1. The system under-
goes no phase transition for any value of a, but it
presents a nonzero spontaneous magnetization given by

m*=[2a,(2—a)]™!

X{[(1—a+4a,)a(2—a)]*+a—1}; (3.12)
m™ has the sign of a,.

Remarks. The proofs of Theorems 1 and 2 are a simple
matter of algebra within the above formalism. Notice
that, for d=1 and symmetric interactions restricted to
NN spins, one has in general that f(s)=1
+as, 118, ~1tay(s, 41 +s, ;). For instance, a =a,=0
is for the rates introduced by Glauber! and Kawasaki,?
and a,=0, a7*0 correspond to the rates by Metropolis
et al.' and to the ones introduced in Ref. 4. Thus one
has in general that

F{m}=a,a+mlala+1)=1]+ma,(a=2)—m’a ,
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where |a| <1 and |a,| <1(1+a) as implied by the posi-

tivity of f(8), and stability requires that
ala +1)—1+2a,(a—2)m*—3a(m*)? <0

where F{m*}=0.
Theorem 3.
choice

5
f(s)= 2 akak(s) (3.13)
k=0 -

where a,=0y=1, ;=00 aQy=mm,  a;=o;to;
a=m+m;, as=oym;tom, with o=, +s,_,),
My =8x+n853—n» =L j. Then,

Flm)=mf'(m?), f'(¢)=A+Bp+C¢>

is the most general F having all solutions of the form
(m*)?=a>0, and (3.14) occurs when a;=a;=0 in
(3.13).

Corollary. The following relations hold:

A=2Q2c—1)+a(2—Lta)a, +4aa, ,

(3.14)

(3.15a)
=—2a,—1a,a?, T
=—2a’—(a’—2a+2)a, +2a(2—a)a,
—4(a’—a+1)a, (3.15b)

between K and the coefficients of Egs. (3.13) and (3.14).

Remarks. The proofs are a matter of algebra. Notice
also that the stable stationary solutions following from
(3.14) need to satisfy
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Consider d=2, K >0, and the genéral

.. K<0

40

SESUY ¥

T mFL(m)+F_(m)=0, (3.19)

where F (m)=(f(8)44(s)},,, as a consequence of Egs.
(3.1) and (3.9). Next one notices that f(s) is positive
defined and that one may write

L
AL =12 4s) [“Sh} KYS (sx+i+sx_i] (3.20)
o i=1

sinh
_ where
- TLE PR _ B
Ao(s)= {H cosh[K(st—I-sx_i)]] . (3.21)
i=1 :
Therefore one has from (3.19) that
m=—F_(m)/F,(m)<K|M||K|™", (3.22)
where
- (sinh [IK! 3 (setits5—;) ] Ao(s)f(s)>
= ’ T (323)

o 130 ),

~is independent of the sign of K. Then, m < —|M] for
and, due to the symmetry property
c(8;x)=c(—s;x), both m and —m must be solutions.
“That is, any solution is such that m=0.

IV, EXPLICIT COMPUTATIONS
FOR DIFFERENT SPIN-FLIP RATES

Following with the case f'=0, we study now explicit

m*(A +Bm*2+Cm**)=0 , . (3.16)
A +3Bm*?+5Cm**<0 . 3.17)
That is, m*=0 satisfies both conditions and, when a
nonzero solution exists, it will satisfy

A +Bm**+Cm**=0 and (3.17). Thus one may define
two temperatures, say 7. and T{”, where the solutions
m*=0 and m *0, respectively, become unstable, as fol-
lows:

A(TM)y=0 - -(3.18a)

and :
A(TY+B(TPm*2 4 C(TP)m**=0 ,
A(TOYV+3B(TO)Ym *2+5C(TI)ym**=0 ,

where m* may be nonzero revealing the existence of a
first-order phase transition. More precisely, when
T{"=T? it may occur either that m *=0 (the transition
is second order) or - else that m*%0 when
B(TV)=C(T{")=0 (the transition is first order), while
m* is always nonzero (first-order transition) when
Tél)#TéZ).

Theorem 4. Consider the case K <0, any dimension d, )

and a dynamics such that ¢ (s;x)=c(—s;x) for all x, with
c(s;x) depending only on the NN of s,; any homogene-
ous stationary solution is such that m=0.

A proof follows by noticing that

G.185)
G180

“~solutions of (3.1) corresponding to the most interesting

choices for c¢(s;x), i.e., f(s), for arbitrary d and K>0

~ (ferromagnetic interactions).

Case 1. The rates originally introduced by Glauber!
correspond to f(s)=const> 0 in Eq. (3.5). This yields

F(m)=(1+am)1—m)—(1—am)1+m)=mf,(m?)

~[cf. Eq. (3.9)]. Then, m=0 is a stationary solution which

-remains stable as far as @ <, where
e, =a(T{V)=tanh(2J /ky T{)=d ~1 . 4.1)

Thus K{V=J/kp TV is finite for 1<d < o, KV as
-d—1, and 2K"~d"'-+0 as d— . One may also
show after some algebra that

m*=~BéP, e=1-K./K—0" 4.2)
with B2=6K_d and f=1.

In particular, one has for d=1 that the only stable
solution is m *=0, so that T."'=0 and there is no phase
transition. On the contrary, one has that
F(m)=—2m(a’m?—2a+1) for d=2 implying the
stable solutions

""" m*=0 when a<l

<i,
- (4.3)
m*=+[(2a—1)]'?/a whena>1;

i, there is a second-order transition  with

a,=tanh(2K,)=1 (notice that T{"=TP=T,). For
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d=3, one has that F(m)=[2aXa—3)m?+6a—2] lead-
ing to the stable solutions

=0 whena=<4i,
=x[(3a—1)/a*3—a)] whena>1,
and TV'=T?=T, with a, =tanh(2J /ky T, )=1.

(4.4)

Case 2. Given that the Glauber rates in case 1 produce ‘

a zero-temperature critical point when d=1, it seems in-
teresting to consider the more general choice:*

c(x;8)=1—&s, (5, 15,4 1)FE %15, 41 4.5)

where &=tanh(K). This may be generalized to arbitrary
dimension by using Eq. (3.5) with

d
f(8)= [T (1+8&% 45547 (4.6)

i=1
which leads after Eq. (3.9) to

Fm)=(1+m&1—m)—(1—m&)P*41+m) .

This is precisely the same F as for case 1 when one makes
the substitutions d —2d, J—J /2, so that one has the
same conclusions as for case 1, except that the critical
temperature is given now by &,=tanh(K!")=(2d)"%
Thus there is a phase transition even for d=1 with

=0 when &<},

=+[(28—1)]'2/& when &> 1 ;

this is precisely the behavior shown by the Glauber rates
in case 1 when d=2, i.e., it might be said that (4.6) causes
an effective increase in the system dimension. For d=2
the stable solutions are

=0 when 8<%,
=+[28—3+2(&%—28+2)*]"2a 2

1
when &2 1,

(4.8)

and the critical temperature for the (second-order) phase
transition is tanh(K, )=

Case 3. The fact that the stationary states of the model
strongly depend on the choice for f(s) may also be illus-
trated by considering f as a function of s except of s, and
its NN. It follows that

F(m)={f(s)),,F(m) (4.9)
where F''(m) represents the polynomial obtained before
for case 1. That is, in addition to the solutions character-
izing case 1, one has the solutions of {f(s)),, =0 which
may be as varied as one wishes.

Case 4. Most familiar, from equilibrium and time-
dependent problems concerning the binary alloy model
system in the canonical formalism, are the rates intro-
duced by Kawasaki’? which may also be applied to spin-
flip processes. These are defined as
{1+exp[AH (s;x)]} 7!

c(x;5)= (4,10)

@7
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or, equivalently, by putting f(8)=A 3! in (3.5). It fol-

lows that

F(m)=—2m —2( A _(8)/ 4 .(s)),,
d

K (s

i=1

=-2m + Z(tanh

x+i+sx_..i) ]> (4.11)

where the average is given by (cf. the Appendix)

d d 2d
<tanh K 3 (sgqitsg—y) ) =3 B,m*"! [2 —
n—1
i=1 m p=1
4.12)
where
d—1
B,= 3 (b™YH, P, n=1,...,d (4.13)
s=0
P,=tanh[2K (d —r)], r=0,...,d —1 4.14)
and
min(2n —1,2d —r)
(b)m= (__l)s+1
s =max(0,2n —r—1)
2d —r r
x 27 [ s @
Then m*=0 is always a solution, which is stable when
<(2d)7}, and TV is the solution of B(T{)=1/2d;

one may also conclude from above that the magnetization
critical exponent is  (unless B, =0), independent of d.
For d=1 one has that b, =2, B,=1a, where
a=tanh(2K) as before, F(m)=2m(2B,—1), and the
only solution is m * =0 which is always stable. For d=2

one has
—1=1 1 =1
b '—'—3-‘ 1 _2 y Bl,z"-?[tanh(4K)j:2a] »
and 7
F(m)=m(8B,m*+8B,—2), (4.16)
and the only stable solutions are
=0 when B, <}, N
4.17)
=+[(a*—a’+2a—1)a"?]'* when B, =1,
im {)Iymg second-order phase transition with
D=T2 =T the solution of & —a2+2a,—1=0, ie.,
ac——O 5698 (K =0.3236). One has, ford 3
) 1 4 5§
(b~ H==1|1 0 =3|,
32 1 -4 5
Bl’3=-37[tanh(6K):1:4tanh(4K)+5a] y
= &[tanh(6K)—3a],
and
F(m)==2m(1—6B,—20B,m*>—6B;m*), (4.18)
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I3

and the stable solutions are m * =0 when B, <%, and

m*=1 —1—3—[5a+5a3—(12a—11a2+48a3—58a4
6o - where & =exp( —4K), and

R V)
+360°—11a)!72]

L 419)
otherwise; i.e., there is a second-order phase transi-
tion with TV=T®=T, the solution of B;=1
or 3a—3at+9ai—4a?+3a,—1=0: «a,=0.3750
(K,=0.197).

Case 5. Consider now the familiar Metropolis rates'*
defined as :
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then,
B§=1[a'cosh(2K)£1], Bj =la'/%sinh(2K)
F(m)=2m (2B —Bf —B}m?), (4.26)

“implying that the only stable solution is m*=0 for all
tempeératures, i.e., there is no phase transition for d=1.
For d=2, on the other hand, one has

c(x;s)=min[1,exp[ —AH (s;x)]]
or equivalently by »
d
fis)=exp |—K| 3 (s,+isx_i)|l
i=1
d . _
X JI cosh[K (sy4i8,—;)] . (4.21)
=1 -

Then,

F(m)==—2m(f(8)4,(s)),,—2(f(8)4_(8))),

a0

—2 —8 —6
(") I=1—-2 0 2 |,
-2 8 —6
-1 1 2

16B =a%+4a+11, 16B}=a%—1,
168 =a’—4a+3, 16B; =3—2a—a?,

. _16By =—(1—&)?,

and
F(m)=2m[4B7—B{ +m%*4B; —6B{ )—B;im*].
- : (4.27)

where (cf. the Appendix)
d
—_ 2d
(fAL) = nz=0 [Zn ]B;’mz" ,

'[2d

e ]Bn—m2n—l

d
(fA——)m=,_—'2

n=1
with

o
Bf=S b";'PF, n=0,1,...,d

Then, m*=0 is stable when @>& (!’ where the latter is

the solution of 5(a "+ 12a—1=0, i.e., & {"'=0.0806

(K{M=0.6295). There is also a solution, say m. such
. that

(mH3—a)=1+5a
+2[(1—7a+3a2—5a3)(1—a)" ]2,

(4.28)

which is stable for & < zz‘c” where

r=0 Coo '
_dmt e 5(a 2P —3(a PP +7a2—~1=0,
B =3 (b);'P;, n=0,...,d—1
r=0 ie., @?=0.1501 (K{¥=04741). Thus K{"#K? and
. [ cosh the transition is first order:
Pr=exp[ —2K(d —r)]{. 2K(d—r)], (423
’ ol ' sint |1 ] 0 when K <K
and : m(K)=1{0 and m, when K@ <K <KV (4.29)
min(2n,2d —r) -
b)= > (=1 [st ’] [an——sl . (424) m, when K >KV
s =max(0,2n —r) . 1
Th -~ —————  where m (K{")=0.9612 and m _(K!¥)=0.6142. For
us d=3 one has
d—1
= 2d - 2d
F"")“Z’"{ 20’"2"[ [Zn +1 ]Bnﬂ“ [Zn Bf] 56 186 240 110
" : . S (b,‘f)—'—_fl—'_r—'f—l 16 32 —16 —32
—Bim* |, (4.25) 592 {16 —42 —16 42 ’
IO . |56 —36 240 —260
and it follows that m*=0 is always a solution which is 1 4 5
stable when 2dB; —B{ <0. In particular, for d=1: (b)“1=—1—- 1 0 —3
) T T T T/ T 32 2
. 1 1 1 —4 5
b)7'=1/2 , b=2; —
(6") / I -1 and
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F(m)=2m(a¢*+b¢*+co+d)
where —
¢=m? a=—B;, b=6B; —15B; ,
¢=20B; —15B}, d=6B] —B{ ,
592B; =28& +93a 2+ 1202 +351 ,
592B{ =8&*+16a2—8a—16,
592B;} =g8a3—21@—8a+21,
592BF =28 %—18& 2+1206—130,
64BT =—a3—4a?—5a+10, 64B; =—a’+3a—2,
64B; =—a’+4a’—5a+2 .

(4.30)

That is, m* =0 is always a solution for &> a {'=0.3843
(K{V=0.2390) and, as for d=2, there is a jump
|m,|=0.7089 in the magnetization at K"

Table I collects some results for cases 1-5.

Case 6. Finally, we may consider the action of an
external magnetic field, i.e., the original Hamiltonian is
now

Hs)=—K 3

[x—yl=1

5,8y —h 3 54 (4.31)
X

and the transition probability is
c(x;8)=f(8){ 4 [cosh(h)—ssinh(h)]

— A _[sinh(h)—s,cosh(h)]} . (4.32)

The corresponding stationary solutions satisfy that
(fA4),[m cosh(h)—sinh(h)]

+(fA_), [cosh(h)—m sinh(h)]=0. (4.33)

Let us assume that f(s)=const as for case 1, and
remember that a,=d~! when A=0; it follows that
m=~ Ah'/® with 6=3 and A43=3d2/(d*—1) revealing
that d —1 is again singular and that 4 -0 asd— . It
also seems interesting to refer to case 2 with d=1 in the
presence of an external field. One has that

m(1—2a+m%?)=tanh(h)(1—2m’a+m’a?)  (4.34)

TABLE 1. Critical values K, for the parameter K =fJ when
the transition is second order, or for K/ and K (as defined in
the text) when it is first order, corresponding to the models
designated in the text as cases 1 [Glauber rates (Ref. 1)], 2 [a
generalization of case 1 (Ref. 4)], 4 [Kawasaki rates (Ref. 2}],
and 5 [Metropolis rates (Ref. 15)].

Phase transition

Case d=1 d=2 d=3 order
1 © 0.275 0.173 Second
2 0.549 0.255 0.168 Second
4 o -0.324 0.197 Second
0.629 ’ .
5 © 0.474 0.239 First

which, for small fields, reduces to m (1—2a)~h —m3a?;
that is, one has near &, that m =411+ 0(h) while
far from &, the prediction is that m =h(1—2&) when m
is small enough and & < 4.

V. FINITE TEMPERATURE DIFFUSION

We now turn to the computation of F(m) when >0
(and I"— o0 ). We shall illustrate this by considering two
different choices for c(s;x); one of them induces a (non-
equilibrium) phase transition for d=1 (J>0).

" Consider first the transition probability

c(s;x)=1—tas, (s, 11 F5,-1) (5.1

ie, case 1 of Sec. IV with d=1. It follows that
F(m)=—2m{(1—a), so that the only solution is m *=0.
More interesting is the one-dimensional choice (4.5), case
2, which produces, after some algebra,

Flm)=—2[m(1—28)+ &5, _5,5,40]1. (5.2

The three-spin correlation here, which is defined via the
equilibrium measure (1.9), follows (by using a transfer
matrix method, for instance) as

{8y — 15585 +1) =mO " [20 cosh(@) —1—3/(&"')] ,

(5.3)
where
&=tanh(K), &'=exp(2K’), K'=pJ, (5.4)
© =cosh(fi)-+m ~lsinh(f) , (5.5)
and i is related to the magnetization by
m ={1+[&"sinh(m)] 2} ~1/2. (5.6)

That is, there is always a solution m*=0 which remains
stable as far as
<& =(1+a"n/3+a’) (5.7)

for any given B'. Otherwise, i.e., when 2K >In(2+&’),
there is a stable nonzero solution, namely,

m*=col[o?+(1—o2X&")"2]" 12 (5.8)
with .
or=1—48%1—&)[(1—-28—8&)sinh(2K")
+282cosh(2K')] 2 (5.9)

which corresponds to a second-order phase transition, as
one can convince oneself by following the method in the
remark after Theorem 3 in Sec. III. As expected, the lim-

" its K’—0 and K'—> © produce in (5.7) the known results

&<l (Ref. 4)and &=<1 (Ref. 1), respectively.
- It also follows from above that, for any given K’, one

has a “critical spin-flip temperature” such that
K,=1In[2+exp(2K')], while K needs to be larger than

3In3 in order to have a “critical spin-exchange tempera-
ture,” namely, K,=1In[exp(2K)—2]. That is, the sys-
tem presents a line of critical points, corresponding to
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pairs (K,K') related as 2K =In[2+exp(2K’)], K > K,
which ends at the “special point” (1In3,0). When one
approaches that point from the two-phase region by fol-
lowing the line of slope b, i.e., 2K =In3+2bK’, one ob-
tains the classical behavior m*=[2(3b —1)K']'/? as
K'—0. One also has a classical critical behavior in the
same sense when crossing the line of critical points at
fixed K'>0. Thus it follows that such a mean-field type
of behav1or which was first found associated to the limit
K'=0,% is a consequence of the diffusion fast-rate limit
e—0 (I‘—» o). This is also supported by the MC results
for finite I in the next section.

The limit K’'=0 is characterized by an essential lack of
correlation between sites, as was discussed before. As ex-
pected, this is no longer true for finite values of K’. This
is illustrated here by computing the spin-spin correlation
function for any fixed K’ in the case of the one-
dimensional choice (4.5). We find that

P. L. GARRIDO, J. MARRO, AND J. M. GONZALEZ-MIRANDA
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also for d=1], and the behavior of the stationary state at
fixed I'. We have investigated that relationship by simu-
lating in a computer the model dynamics in Sec. I with
c(s;x,y)=1, i.e., a completely random diffusion, for two
particular spin-flip rates ¢ (s;x), namely, for those corre-
sponding to case 2, where ¢ (s;x) is given by Eq. (4.5), and
5, where c(s;x) is given by Eq. (4.20). The latter choice
was motivated by the fact that it is probably the most fa-
miliar one in the literature and it is also most efficient
when trying to reach the stationary state by means of the
MC method, so that it becomes then more simple to
simulate true (stabilized) magnetic ordering disturbed by
exchanges; also, because (4.20) produces quite different
behaviors for d=1 than for d=2 in the limit I'— 0, so
that one may also expect important differences for ﬁmte
values of T'. We also found it interesting to simulate the
behavior vaﬂ}g model for finite I" when the spin-flip
mechanism is governed by the transition probability (4.5)
because, in the limit I"'— oo, this produces a phase transi-

“ tion already ford=1. Itis questlonable whether this may

remain true for finite T'. 13

- —Q0ur procedure is essentially the usual one in a MC ex-

_periment, '¢ except that after a site x is chosen at random
from a given lattice (d=1,2) then with probability p,
0=p =1, the spin s, is exchanged with one of its NN as if

(505,2=(8,+0_)" (0% +6* )
—4(6_/6.,)"0%6% ]
" (5.10)
where o
01=0,—exp(K +y) (5.11)

the system was in contact with a heat bath at infinite tem-

.. _perature, afid with probability 1—p the spin s, is flipped

and

ei=(1_02)—1/2,{(7/\,’)liylj:lUZA'+(1—, 2)/& ]1/2} .

(5.12)

In the one-phase region, one has =0, 050, and it fol-
lows that

(o5, ) =exp(—n /€)), £=—1/In[tanh(K")], (5.13)

__with rate ¢ (s;x) computed as if the bath temperature was

B~'. As compared with the model discussed in Sec. I,
this corresponds, except for a renormalization of time
units which is irrelevant for the stationary state, to have
I'=p/d(1—p). Periodic boundary conditions and fer-
romagnetic interactions are always assumed.

- Two-dzmenszonal systems. The case d=2 was studied

for different sizes L2, L <100, NN interactions, and
=Metropolis rates. The detailed behaviors of the energy
(NN correlation) and magnetization as a function of 8 for

while, in the two-phase region, an expans1on around
m=0 (o =0) produces -

(508, ? =exp(—n /&;)exp(—n /E,)

“=————several values of p, and their comparison with a mean-
~==field computation® which essentially produces the same

__qualitative results, were reported before.!> We describe
now the behavior of the specific heat C (Fig. 1) and mag-
_netic_susceptibility y (Fig. 2), as given by energy and.
magnetization fluctuations, respectively, and of the
defined as
__)/(N4_), where N, _ represents the
number of up-down pairs of NN spins in the system, etc.
The latter turned out to be a very useful quantity to
determine the nature of a phase transition. !’

+(o&'P{1—exp[—n (&7 +E&7']), (5.14)

with _
2 N ©.... . -_short-ranged order parameter (Fig. 3),
&=[oexp(3K")]7", (5.15) o=(N_, )N
which diverges as m —0. We also find that
Keinh(7
(55,55 = ze sinh(fi) ] —
6.(6_16,) o
~ X[4cosh(2K)+0% —40 eXcosh()] (5.16)

for the three-spin correlation function.

VI. COMPUTER SIMULATION RESULTS

Also interesting are the properties of the stationary

states of the model for finite I', 0 <I" < . In particular,
the relationship between the macroscopic mean-field in-
stability which occurs for random diffusion and T'—
when J>0 and d 22 [and, for some spin-flip rates ¢ (s;x),

Figure 2 reveals that the function y(B,p) for p SO. 8

- -——remains sharp around a transition temperature, say B* ,

which decreases with increasing p. The characteristic

shape of y(f3,p) for a given p ( $0.8) is qualitatively indis-

--.=-tinguishable from the one for p=0 (i.e., the equilibrium,

-.-—Onsager case). Moreover, all our data for p 50.8 are con-
sistent with the Onsager value for the corresponding crit-
ical exponent, y=1.75, independently of p. Also, the
magneltslzatlon critical exponent is then always around
0.125.

Figure 1 reveals that p=0.1 is characterized by a sharp
divergence, apparently the same logarithmic divergence
as p==0. The cases p=0.6 and 0.8 are also consistent
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FIG. 1. The specific heat, computed from energy fluctua-
tions, as a function of the inverse temperature 3 (B°=0.441/J,
the equilibrium critical temperature) for the two-dimensional
system with NN interactions (Ref. 13) and case-5 rates. The
solid line represents the equilibrium (p=0) result for the infinite
system. The symbols are for p=0.1 (empty squares), 0.6 (-+),
0.8 (triangles), 0.85 (X), and 0.95 (O); the dashed lines are a
guide to the eye.

with a sharp divergence. In any case, there seems to be a
symmetry a=~a’ with a very small or zero.

The situation for p 20.85 is, however, qualitatively
different. That is, long-lived metastable states, which
were never present for p<0.8, now frequently appear
during the system evolution, the energy and magnetiza-
tion become discontinuous at some well-defined tempera-
ture B, 1, 13 and C(B,p) and y(B,p) are more asymmetric
than before. Actually, the data suggest that both C and y
present a finite jump at By (p) which keeps decreasing
with increasing p.

50.0 T T

X(3.p)
NJ

375

1.4

0%g 10 v

BiBe

FIG. 2. The magnetic susceptibility, obtained from the fluc-
tuations of the magnetization, as a function of 8. Same system

and symbols as in Fig. 1.

FIG. 3. Short-ranged order parameter, as defined in Sec. VI,
as a function of B. Same system and symbols as in Fig. 1.

Figure 3 depicts the behavior of the short-ranged order
parameter ¢. This confirms our previous observations.
In particular, p=0.1 is consistent with a second-order
phase transition similar to the one for p=0, while
p 2 0.85 is characterized by a discontinuity. Moreover,

" the qualitative behavior shown by o in Fig. 3 allows one

to exclude the possibility of having a second-order phase
transition with classical exponents for small values of p,
say for p =0.1."7

The phase diagram for the two-dimensional system
with Metropolis rates, as implied by the above MC data
and by the exact results in Sec. IV (see also Ref. 13), is re-
ported in Fig. 7 (main graph): There is a “tricritical
point” at p, =~0.83 separating two different behaviors for
p <p, and p > p,, respectively. The first one is similar to
the situation at equilibrium (p=0), i.e., second-order
phase transitions with Onsager critical exponents. The
second one is characterized by mean-field type first-order
transitions. There is also some evidence for a changeover
of the critical exponents from the Onsager values towards
the classical ones as p—p,” .

One-dimensional systems. The case d=1 was studied
numerically for Metropolis rates, (4.20), and for the gen-
eralized rates defined by Eq. (4.5). The former case was
reported before.!> The main conclusion there is that a
system with p=0.95 (L=2500) presents no phase transi-
tion, as it is also known to occur for p=0 (equilibrium)
and for '—-o (Sec. IV, case 5). Actually, the
magnetization-temperature curve for p=0.95 is identical
to the equilibrium one (while the energy differs due to the
action of the fast random diffusion process when
p=0.95). We also performed the experiment for p=0.95
when the spin interactions extend up to the next NN.
The energy and magnetization curves are then more
structured than for p=0, but they always depict a mono-
tonous behavior and there is no evidence of a phase tran-
sition for a chain with 2500 spins. The same follows by

inspection of specific heats and magnetic susceptibilities.
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0.0 6

FIG. 4. The energy (main graph) and the magnetization (in-
set) as a function of B (B is the exact value of the transition
temperature with p=1) for the one-dimensional system with
NN interactions and case-2 rates. The symbols are for p=0.1
(squares), 0.5 (triangles), 0.75 (X ), and 0.95 (0); the dashed
lines are a guide to the eye.

The picture revealed by the experiments with the gen-
eralized rates (4.5) is more interesting. This is reported in
Figs. 4-6 which refer to 10000 spins and p=0.1, 0.5,
0.75, and 0.95: As p is increased, the energy curves (Fig.
4) are observed to deviate from the equilibrium result in a
way which suggests that the system segregates for p 2 0.7.
This is also suggested by the inset in Fig. 4 where the
magnetization seéms to present a discontinuity for
p 20.75, and perhaps also for p=0.5. Figures 5 and 6 for
C(B,p) and x(B,p), respectively, are indeed consistent
with the presence of a first-order, mean-field-type phase
transition for p> 0, perhaps only for p 2 0.5, occurring at
a temperature which increases with p.

Finally, let us mention two important features of the
temporal evolution of the one-dimensional system with
rates (4.5). First, that seems always characterized by a
very slow decay rather than by the presence of actual

I8

FIG. 6. The magnetic susceptibility as a function of 8. Same
system and symbols as in Fig. 4.

steady metastable states (as one would expect for a first-
order phase transition; cf. the case d=2 above). This
-suggests that, in spite of the abrupt jump manifested by
the magnetization (cf. inset for Fig. 4), the discontinuity

we are interpreting for p>0.5 is characterized by a very

‘weak energy jump, if any. This is indeed confirmed by

the energy curves in Fig. 4. The fact that the energy

0.95
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FIG. 5. The specific heat as a function of 8. The solid line is
the equilibrium result for the infinite system. Same system and
symbols as in Fig. 4.

P

FIG. 7. Monte Carlo (empty squares) and exact (solid circles)
results for the phase diagram of the two-dimensional system in
Fig. 1 (main graph) and for the phase diagram of the one-
dimensional system in Fig. 4 (inset). The MC transition temper-

-~ - atures follow from the analysis of Figs. 1-6; the exact ones are

_ defined in the “Remarks” after Theorem 3 (Sec. III). Both exact
‘anid Monte Carlo results (the latter including error bars) when
d=1 are consistent with the situation described by the curve in
the inset, i.e., mean-field-type phase transitions for all p> 0, and
also with the presence of a phase transition only for p 2 0.5.
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discontinuity may be quite negligible, even when the asso-
ciated magnetization discontinuity is large enough, just
reflects the zero measure of the surface of the one-
dimensional clusters, where the energy changes take
place. This is a feature of d=1 which cannot be extrapo-
lated to d> 1. On the other hand, the relaxation times of
the system are larger here than usual, and they increase
with decreasing p. As a consequence, we cannot decide
definitely from the MC data, as suggested above, whether
the phase segregation occurs for all p>0 or only for
p>0.5 (see the inset in Fig. 7).

VII. CONCLUSION

We have studied by different methods a reaction-
diffusion Ising model whose dynamics consists of a com-
petition between spin-flip and spin-exchange processes,
with p/d (1—p) the relative probability of attempted ex-
changes per bond to attempted flips per site, both driven
by canonical heat baths at (inverse) temperatures 8 and
B, respectively. It was shown that one may derive mac-
roscopic equations (involving time and spatial deriva-
tives) for large enough p from that microscopic model for
all 5,8 =0. This generalizes previous results for p—1
and §'—0 which represent the limit of pure mean-field
behavior and lack of correlations.

The stable (nonequilibrium) homogeneous steady states
predicted by those macroscopic equations depend strong-
ly on the spin-flip rate and less critically on the spin-
exchange rate. We concentrated here on the detailed
study of the former dependence when f'=0, i.e.,, when
the diffusion is completely random, and p—1. In partic-
ular, we determined (A) the conditions on the rate to
have a second-order phase transition, and the associated
critical temperature, for a one-dimensional system, (B)
the most general form of the magnetization curve for a
two-dimensional system, and (C) most details of the
steady state for systems of arbitrary dimension and for
the rates which are familiar in the literature.

In addition, the study of the general case 8'#0 re-
vealed (D) a rich phase diagram for the one-dimensional
system, (E) the fact that the resulting classical critical be-
havior comes rather associated to the limit p —1 than to
the random diffusion destroying correlations, and (F) the
existence of microscopic correlations for B’ >0 which de-
cay exponentially in the one-phase region.

Most information concerning the case p<1 was ob-
tained from MC studies for B’=0. The results are con-
sistent with the exact computations for p—1, and with
the equilibrium results for p=0, while they help in
characterizing the whole phase diagram. For d=2 and
certain familiar rates, there is a “tricritical point” at
p =p,=0.8310.01. For p <p,, the system undergoes a
second-order phase transition with equilibrium, Onsager
critical exponents. The exponents probably become clas-
sical as p—p,, and the phase transition changes to first
order for p >p,. The situation for d=1 is more intrigu-
ing. For the same rates as before, the one-dimensional
system has essentially the same behavior as in quilibrium,
i.e., no phase transition exists for any p 20. The con-

clusion remains unchanged when the interactions are ex-
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tended to next NN, though one observes then some more
definite changes with temperature than for NN interac-
tions. The use of certain generalized rates for the spin-
flip process produces, however, phase segregation in one
dimension. Two alternative pictures emerge, both con-
trary to some expectations: (i) equilibrium behavior, i.e.,
lack of long-range order, for small values of p and first-
order phase transitions, as in the limit p — 1, for large p,
or (ii) discontinuous phase transitions for all p>0. The
transition temperature increases with p in both cases.
The data at hand seem to favor the first picture. We are
presently studying further this question and the nature of
the situation for p <1 and ' >0.
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APPENDIX

This illustrates the computation of Bernoulli averages
(g(s)),,, as required in Secs. III and IV, where g(s)
represents a function of the system configuration s. Let
us assume that g (s)=g (s, ...,s;) and that g (s) remains
invariant under the interchange of any two spin variables.
Then,

1
gls)=got+g, 3 s;+8 3 s:8;+ - +gsy. .8
NN

i=1

(A1)
Each configuration with [ spins has
r spins down and 1~ spins up , (A2)
and one may write the function g as
grl—r=g(s,=-=s,=—1,5,4=" =5=1)
= é a,8n (A3)
n=0

with » =0, ..., [, where ag=1. Thus the computation of
the coefficients a, determines the unknowns g, in Eq.
(A1).

Denote by p (s,n —s) the probability of having n spins,
out from a configuration (A2), such that s are up and
n —s are down,

(I =r)ri(l —n) [n]
I s
1 1

x (I —r—s) (r+s—n)

where one has the bounds max(0,n —r) <s <min(n,l —r),
the symmetry property p (s,n —s)=p (n —s,s), and

a,= [,ll ] %p(s,n —s)(—1)"¢

pls,n —s)=

(A4)

(AS)
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such that a,{r)=(—1)",(1—7r), andra,,({l-)%oirfor any 2(3‘1) kp,c , (A8)

odd n, i.e., g, =0 for any even n. Thus o A

1
gl—rn=3 [,I,]Ep(sm~s)(—l)""’g,, . ag ond
n=0 H - ) ) 1

. - 1] & ~13

One may introduce the matrix notation (g(8))y ngo [n ]m % (B™ Py (A9)

P.=gll—rnr), B,= [ 21’(5’ —s)—=1)"" (A77),; i.e., the computation of the required Bernouli averages
L follows after the inversion of the B matrix and the con-

such that . - ... struction of the elements P both defined in (A7).

*Present address: Hill Center for Mathematical Sciences Mathematics, edited by J. A Goldstein (Springer-Verlag, Ber-

Research, Rutgers University, Busch Campus, New lin, 1975).
Brunswick, NJ 08903. U — ) S Arnold and M. Theodosopulu, Adv. Appl. Prob. 12, 367
IR.J. Glauber, J. Math. Phys. 4, 294(1963) (1980).

2K. Kawasaki, in Phase Transitions and Critical Phenomena, lip 1, Gamdo and J. Marro, Phys. Rev. Lett. 62, 1929 (1989).

edited by C. Domb and M. S. Green (Académic, London, 12See the review by J. L. Lebowitz, E. Presutti, and H. Spohn, J.

1972), Vol. 4. - _ Stat. Phys. 51, 841 (1988).

3A. De Masi, P. A. Ferrari, and J. L. Lebowitz, Phys Rev. Lett. . 13J, M. Gonzélez- Miranda, P. L. Garrido, J. Marro, and J. L.
55, 1947 (1985). Lebowitz, Phys. Rev. Lett. 59, 1934 (1987).

4A. De Masi, P. A. Ferrari, and J. L. Lebowitz, J. Stat. Phys 4, ) RN Metropolis, A. W. Rosenbluth, M. M. Rosenbluth, A. H.
589 (1986). . - ———Telier, and E. Teller, J. Chem. Phys 21, 1087 (1953).

SR. Dickman, Phys. Lett. A 122, 463 (1987). . _ __._1%p. L. Garrido and I. Marro (unpublished).

H. Haken, Synergetics (Springer-Verlag, Berlin, 1978). 16See, for instance, K. Binder, in Phase Transitions and Critical

7G. Nicolis and 1. Prigogine, Self-Organization in Nonequilibri- Phenomena, edlted by C. Domb and M. S. Green (Academic,
um Systems (Wiley, New York, 1977). ______ London, 1976), Vol. 5b; D. G. Mouritsen, Computer Studies

8T. Kurtz, J. Appl. Prob. 7, 49 (1970); 8, 344 (1971); Stoch. Pro- of Phase Transitions and Critical Phenomena (Springer-
cesses Appl. 6, 223 (1978).  Verlag, Berlin, 1984).

°D. G. Aronson and H. F. Weinberger, in Partial Differential 17 Marro, P. D. Garrido, A. Labarta, and R. Toral, J. Phys. C
Equations and Related Topics, Vol. 446 of Lecture Notes in (to be published).




