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We study a two-dimensional Ising model with different interaction strengths along each principal
axis and a nonuniform temperature profile along one of them, as well as some variations of it. The
model is solved analytically and/or numerically on different assumptions 1o reveal a variety of

(nonequilibrium) stationary states and phase transitions; we also investigate the system relaxation
in some typical cases.

1. Introduction

The present status of the statistical mechanics of nonequilibnium phenomena
allows no general use of the formalism which is most standard and powerful in
equilibrium phenomena, the Gibbs ensemble theory. Actually, there is no
general (e.g. valid for a system with interacting elements) prescription for
choosing appropriate ensembles even for the simplest nonequilibrium case, ie.
that of stationary nonequilibrium states in which external agents maintain
steady particle or heat currents throughout the system'). Instead, the study of
stationary nonequilibrium states is nowadays based on a collection of ad hoc
methods, most of them approximate, for particular problems. As a con-
sequence, the consideration of mathematically well-defined (c.g. fattice) model
systems having nonequilibrium states bears great interest, specially when they
are amenable to simple, nontrivial analytical solutions; see refs. 2-4 for some
recent examples.

We present in this paper some simple generalizations of the usual kinetic
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[sing model®} showing phase transitions in the local equilibrium conditions
which are usually taken as a characteristic of stationary nonequilibrium states.
The nonequilibrium condition is a consequence of the action of some external
agents inducing, just along one of the principal directions of the lattice. a
nonuniform local temperature in the thermal bath which is supposed to interact
with the spin system. A simple version of the model then occurs in two
dimensions when the interactions in the direction perpendicular to the tem-
perature gradient are assumed to have a mean-ficld nature. This and further
variations of the model are studied with some detail to consider some questions
such as the nature of the system relaxation and of the steady state produced by
different temperature distributions, the corresponding critical behavior. which
happens to be always classical, the influence of the choice for the transition
probabilities on the properties of the steady state, the case of “impure’” sites,
etc. When the temperature is assumed to be constant throughout the system,
the basic two-dimensional model reduces to an equilibrium Ising model with
anisotropic interactions which was solved previously by us®).

2. The basic model system

The basic model of interest consists of a Ly X L, lattice (see fig. 1) with spin

variables s, =1 (i=1,..., Ly j=1,..., L,) at each lattice site. Some
external agent induces a given, nonconstant temperature profile along the X
direction, as if the spins s, (i=1,..., Ly j=const} at each row were in

contact with different thermal baths at temperatures 7, respectively (or with a
single “‘thermal bath” with local temperatures 7;), while there 1S a constant
temperature along the Y direction for each value of the index i. The interac-

Y

const. |

i
—
T
Fig. 1. Schematic representation of the two-dimensional lattice modei with a nonuniform tempera-
ture along the X axis. There is an occupation or spin variable s, = =1 at each lattice site in contact
with a thermal bath at local temperature T,.

]
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tions will be assumed anisotropic in the sense that there is a nearest-neighbor
coupling along X which is characterized bv the exchange energy Jy, and a
nearest-neighbor (or other) interaction along Y which is characterized by J,
which may differ from J,. In addition, the configurational density probability
function changes with time according to a Markovian master equation,

dpgt* 0o {Z w,,,(s”)]P(s. NS (=s ) PC =5yt (2

i

with local transition probabilities per unit time given by

_ % LX LY . "9
Wl/(SEj) - —2_ [] - i‘yl S:i(‘gifi,; + 51*1.,)][1 - Y s (5,',,4—\ - St.j—l)] ? (-'-)

L Y]
where

y# =tanh(2J,/kT,), Z=X.Y, (2.3)

and a, simply describes the local time scale on which the transitions take place.
A sufficient condition which may be used to interpret our choice (2.2) is the
local detailed balance condition

wn’f(sij)Pij(sij) = ij(_sx,‘)Pi,'(_Si,‘) s (2.4)
where
piis;) =exp(—E;/kT)) (2.5)

with the definition

Eij = —Si;['IX(Si—l.j + Si+l,[) + ‘]Y(S[.)'—l + Si,;-v-l)} ’ (2'6)
here p,(=1) represents the probability of the state s, = =1 of the ijth spin (the
others remaining fixed). This amounts to assume local equilibrium in the

stationary nonequilibrium state.
The local magnetization,

qu(t) = (S.','> = 2 s,‘,'P(s- 1, (2.7

satisfies

dg.
i‘;tg_) = —z(sijwf[(sij)) . (2~8)
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Thus, when one characterizes the stationary regime by the condition dg,/dz =
0 and assumes translational invariance along the Y axis in the sense that
(s,) = (5, =17, it follows

(s - 'Y.Y - %'Yf((*si—l) +45,,10)
- ]37.?(7,},];1 ([E:j R CT L P ) (C PN 5;i)) = 0. (2.9)
where we dropped most dependence on j for clarity, and E, is defined in eq.

(2.6).

3. One-dimensional and mean-field cases

3.1. Nearest-neighbor interactions

The simplest case occurs when J, =0 corresponding to a one-dimensional

system with nearest-neighbor interactions along X. It then follows from eq.
(2.9) that

q:‘=%‘yi[qi—l+qi+1], i=1,...,N, (3.12)

where vy, =y, for N interior spins and

0= Yod1» Gn+1 = Inv+19n (3.1b;

for the two spins at the ends, N + 2= L,. The only solution of the system (3.1)
of (N +2) equations is g, =0 for all i when the corresponding determinant is
nonzero; this can be written as a function of

1 -2 0 <o 0
~Ye/2 1 —-y..1/2 0
A= : R (3.2)
0 —y 21 —yy2
0 Co 0 ~Ywve1 L

n=1,...,N—1; Ay=1-5yy¥v.,, Which satisfy the recurrence relations

A=A, — ¥ ¥ +1A .2 1t then follows for the system determinant:

detA=A, - iypnd, (3.3)
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which may be readily evaluated in some limiting conditions. Namely, in the

case of weak coupling, i.e. small J, so that 2J,/kT, is small enough for all i,
one obtains

B 'J_Y)Z[ 1 1 1 } .
detA=1 (k T()T|+T|Tz+ + TTo (3.4)

Also, when the temperature profile is linear, T, =T, + Ve, with a small
gradient VT it follows

IV vT
SPSYS) s |
etA=1 iT, 1-(N+1) T, (3.5
for any value of J,. Both expressions, (3.4) and (3.5), are nonzero in general
implying the absence of a phase transition, as in the equilibrium counterpart,
for rather arbitrary temperature profiles.

3.2. Coherent-field coupling

As in equilibrium, however, the above model system may be forced to
present in general a (nonequilibrium) phase transition at finite temperatures by
introducing a mean-field coupling. That is, we shall assume now that the
transition probabilities are given by

wiis;) = % (1 -5, tanh(E,/KT))] , (3.6)

where T, represents the temperature profile along a principal direction, say X,
and

~
>

E=h+ 2 Is, . (3.7)

Here h represents an external magnetic field contribution and every spin is
supposed to interact with the rest via J;;; we are also assuming a Mmacroscopic
system. A simple hypothesis is then that J;=J/N at each site, and the
consistency condition s, = {s,); this is the so-called coherent-field approxima-
tion by Braggs and Williams’). The corresponding stationary regime can be
seen to be characterized by the condition

M= L' 2 tanh[(h + JM)/kT)], (3.8)

where
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M=Ly' 2 (s) (3.9)
is the mean or global magnetization.

3.3. Differeni temperature profiles

To make evident the general existence of nonequilibrium phase transitions in
the mode! of section 3.2, one may consider in eq. (3.8) A =0 and the rather

general profile T, = T,[1 + af(i)] with | f(i)| bounded for all i. In the case of
small & it follows that

a

M =tanh x — —2%— [a(L,) + a(1 — x tanh x)b(L)] (3.10)
cosh™x

with the notation x = JM/kT, and
sl )=L7 Zf). blLy)=Ly' 2 fG) . (3.11)

The critical temperature (with respect to the first, i =90, spin) is then given by
KS=1—aa(Ly)+a™b(Ly)+ . (3.12)

where K,= kT,/J and one should noticc that a will depend in general on
temperature.

The ubove may refer in particular to the linear behavior T, = T,+iVIiwitha
small gradient VT; one has f(i) =i, a =VT/T,, and

Ki=1-AK/2+(AK)13+---, (3.13)

where AK = K,,,, — K, and L is assumed to be large enough.

Figs. 2-4 correspond to the linear temperature profile with an arbitrary
gradient VT, i.e. they were prepared numerically from eq. (3.8) avoiding the
approximation, small a, leading to (3.13). Fig. 2 reveals the monotonous
decreasing of the local spontaneous magnetization with increasing /; this is
clearly implied by the above equations, e.g. {s,} = tanh(JM/kT,), and it is to
be expected on physical grounds. As shown by fig. 3, there are important
qualitative differences with VT in the phase diagram M(T,), where T, is the
temperature corresponding to the first spin to the left of the line, while M
scales near a mean critical temperature when it is represented as in fig. 4,
namely when one uses

T=Ly' 2T, T.=Ly 2T, (3.14)
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Fig. 3. Fig. 4.

Fig. 2. Local spontancous magretization as a function of the position along the X axis in the case
of a one-dimensional system with 10 spins and a linear temperature profile T, = T + iVT, T,=0.4
(J7k =1 unit) for different values of the gradient VT: cf. section 3.3. The solid line is for ¥7 =0
(equilibrium); the dashed lines from the top to the bottom are. respectively, for VT =0.01, 0.1 and
0.2.

Fig. 3. The mean magnetization M = L3 T, {s,) for the system in fig. 2 as a function of T, (the
temperature of the first spin). The curves are from the top to the bottom for ¥T = 0,0.01,0.1 and
0.2, respectively; the corresponding critical temperatures are T, =1. 0.944, 0.630 and (.405,
respectively (J/k =1 units).

Fig. 4. Same data as in fig. 3 plotted versus TIT; cf. eq. {3.14). The solid line is for VT =0 and
YT =0.01; the other two lines are from the top to the bottom for ¥T = 0.1 and 0.2, respectively.

where T; =T, +iVT, as natural variables. Fig. 4 suggests a common critical
behavior near T.; actuaily the numerical analysis of the phase diagrams in fig. 4
near T = T, shows that the critical exponent for the mean magnetization is
B = 1, independent of VT. One may also get convinced analytically by oneself
from eq. (3.8) and by expanding for small M that L;' Z, TS ' =land B =1}
Note however that, as is also suggested by fig. 4, the width of the critical region
decreases with increasing VT. Note also that the equilibrium version of the
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model. VT = 0. is already characterized by classical critical exponents”) so that
this fact is not a peculiarity of the nonequilibrium condition here.

The cases T, =T, + VTw 'flwi) with f(z) =sin(z) or cos(z) also bear some
interest. The corresponding local spontaneous magnetization can be seen to
present in this case oscillations atound a constant value, reminding stationary
waves on a line, whose amplitude and frequency strongly depend both on ¥T
and . The curves M(T), on the other hand, lie one onto the other for all
values of T, independently of VI and w. In particular, for flwi)= sinwi),
o =VT!T,®, one finds to first order in a that

VKM sin{wi)
N K | I ' 3.15
{s,} =tanh( o) wKi cosh (M/K,) ( )

Some representative critical temperatures (with respect to the first spin) when
f(z) =sin(z) are as follows: Ti(w=m/10, VT =0.1)=0.99, To(w = /10,
VT =0.1)=0.91, To(w =2w/10, VT = 0.1)=1.11, To(w =27/10, VT =0.01)
=1.0.

Finally, we consider explicitly the case of two competing temperatures. A
simple situation is that with a fraction n of the lattice sites with fixed spins, e.g.
as a consequence of their contact with a thermal bath at zero temperature. It
follows immediately that

M =n+ (1 - n)tanh[(k + JM)/kT] (3.16)
when every ‘‘active” spin is at the same temperature 7; one also has

T*=(1-n)Jlk (3.17)
as in the usual mean-field case with vacancies. More interesting is the casc in
which half the system (say, i =0) is at temperature 7 and the other half (i >0)
at temperature 7'; it follows then

2M = tanh{(k + JM)/T] + tanh[(h + JM)IT'] (3.18)
and

T =TRKTIT - 117", (3.19)
where T needs to be greater than J/2k. Notice in particular that half the system

(i > 0) may still present order when the other haif is completely disordered, i.c.
for T—c.
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3.4. Sysiem relaxation

The system relaxation towards the stationary nonequilibrium state is de-
scribed by the equations

d B}
T L' X tanh(JM/KT)) . (3.20)

where M is defined in eq. (3.9), so that there is a separate equation for cach
{s,} following from eq. (2.8) (we set h =0 for simplicity): we also need to
assume o, = 1, i.e. equal local time scales at each lattice site.

For small derivations from the stationary state and for temperatures ncar
the critical one, eq. (3.20) may be approximated by the Bernouilli differential
equation®”):

d
E’ti=(1—A)y+B, (3.21)

rI | =

where y = M "? and

A=JLy 2 (kT)™', B= PGBLy) 2 (kT) . (3.22)
This leads in general to the exponential behavior

M=VIZTA{[(1- AM;>+Bje" ™™ -B}7'"", A#L. (3.23)

At the critical temperature, however, one has A=1 (cf. the discussion
following eq. (3.14)) and it follows the slower relaxation

M=[2B+M;*]""?, A=1, (3.24)

M, = M(t = 0). The local order parameter, on the other hand, relaxes accord-
ing to
(s)= e"[q? + jdt’ e (BIM — %3?13/\43)] , (3.25)

0

where M = M(1) is given either by (3.23) when A # 1 or by (3.24) when A =1,
B, =1/kT,; and q" represents the initial (r=0) value for (s,).

The above equations involve a general description of the system relaxation in
a nonequilibrium phase transition. A comparison between different cases is
made in fig. 5 when the system is characterized by a linear temperature profile;
further details may be worked out easily.
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Fig. 5. Time relaxation of the global order parameter, as given by eq. (3.20), normalized to the
initial (¢=0) value in the case of a linear temperature profite T=T,+ (V7. The solid lines
correspond to V7 =0.2, i.e. relaxation towards a nonequilibrium state, for different temperatures
of the first, i =0, spin: T, < T {curve labelled 1), T, = T (curve 2) and T, > T, (curve 3). The
dashed lines correspond to VT =0, i.e. relaxation towards the equilibrium state, for the same
temperatures.

3.5. Influence of transition probabilities

Stationary nonequilibrium states may in principle depend on the transition
probabilities one considers in the master equation (2.1); as a matter of fact,
this is the observation in some recent Monte Carlo experiments on the
stationary nonequilibrium states in a fast ionic conductor model system”). That
possibility may be analyzed in the present model.

Let the generalized (local) transition probabilities per unit time be

w(s) = f{s) exp[-A,(s)s], (3.26)
where f,(s) is an even function, fi(s,, . .., 5, ..., 5 ) =f(s;,. ... =S, ..., 5)

and the explicit form for A (s) depends on the specific assumption on the
interactions; for instance,

J
Ai=k_;(si—l+si+1) (3.27)
for nearest-neighbor interactions as in section 3.1, and
A, =JIM/KT, (3.28)

for a coherent-field coupling as in section 3.2. The stationary regime is then
characterized by

> P(s, t}f(1) cosh(A,)(1 — s, tanh A,) =0 (3.29)
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and

> P(s. 0)ss,[ f.(1) cosh(A4,)(1 — 5, tanh A))
+ f(1)cosh(A)(1 —s,tanh A,)] =0. (3.30)

as follows, respectively, from the stationarity of the local order parameter {s,7
and the correlations {s,s,}. That is, there is indeed a nontrivial dependence of
the stationary nonequilibrium state on the choice for ;. For instance, the
simple choice f(s,) cosh A, = a; produces

{s,)={(tanh A ) (3.31)

and
(a,+ a,)(s;5,) = a5, tanh A} + a,(s, tanh 4}) (3.32)

while other choices may obviousty produce a quite different behavior including
a different critical temperature. Of course, those differences wash out in the
equilibrium cases, T, = T for all , as one may easily prove from eqgs. (3.31) and
(3.32). A related crucial point, which can only be addressed properly in a more
general context than the present one, is to find the conditions on the transition
probabilities to obtain a given nonequilibrium universality class; as suggested
by previous Monte Carl> work”), chances are that one should obtain the same
critical exponents (even though the critical temperature differs) at least for the
most familiar choices for w,, e.g. for the ones in refs. 2 and 3.

4. Two-dimensional cases

4.1, Zeroth order solution

The stationary nonequilibrium states for the two-dimensional Ising lattice
with 2 nonuniform temperature distribution, T,, along one of the principal axes
are characterized by the condition (2.9), i.e.,

(S:‘j)(l - 71}, - %7?((514,,‘) + (5541_,'))
+ %7;"‘)’7’(‘;[]'(5.‘-]_,' + Si+1,f)(sr',;—l + 5;:,‘4-1)) =0, (4.1)

where v and y] are defined in eq. (2.3).
In order to proceed further, however, one needs to decouple the three-spins
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correlations in the last term of eq. (4.1). One of the simplest assumptions 1s 10
write {5;5,5, ,«1) = ($,568i -1 = (s,j)z(sk,). both for k=i—1 and for k=
i + 1; at equilibrium (T, = T for all i) this produces the solutions

(sy= =[Oy " = DY'T (4.2)
and the magnetization critical exponent B =1/2. The dynamics also follows

easily in this case; for instance, one finds for a homogeneous temperature after
some algebra that

(s)={ay*y'i+q, )", T=T. (4.3)
and
(yx + _yy _ l)qu 1/2
<S>=[ 1+'yxquzA0 - TA L (44)
0
where
A=(y¥ vy —1—ySy g expla(y™ +y" — 11, (4.5)

which leads to the solutions (4.2) as r—>.

4.72. Coherent field along Y

More interesting is to analyze the model system defined in section 2 by
assuming a coherent-field coupling along the Y axis and treating exactly the
nearest neighbor interactions along the X axis. The transition probabilities
(2.2) reduce in this case to

wylsy) = 3 [1—:,.,. e 'n](l—siji,), (4.6)

@ Sica S

where the last bracket in eq. (2.2) suffered the treatment discussed in section
3.2, and we introduced the notation y,=v" and 3, =tanh(M,J/kT;}. The
stationary regime is then characterized by

(s)=%+ (5o + (st %'Y."l_/.'(ef>1;1 ’ (4.7)
where we dropped the trivial dependence on j and use the notation

(e,) = —Jx(s(sicy +s.)). M= '11\7 2 <Sij) . (4.8)
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In order to proceed further with this equation we may assume that the
correlations {e,) are given locally by their equilibrium value'’). That is. when
the temperature distribution is homogeneous throughout the system, T, = T for
all i, one may compute the system caronicl partition function®); it then
follows in particular from that partition function the correlations which are
given as

d
(Sij(slA]4}+Si+l.i)> =2kTa_inn A* * (49)
where
A, = exp(J/kT) cosh(JM/KT) + a(T, M, J ., 1) (4.10)

with the notation
& = [exp(2J /KT sinh*(JM/KT) + exp(—2J,/kT)]'"? (4.11)

and the magnetization which is given as the solution of the self-consistency
equation:

M =& " exp(Jy/kT) sinh(JM/KT) . (4.12)
The general solution on that assumption (local thermodynamic equilibrium) is

thus given by eq. (4.7) where each {e;) follows by combining eqs. (4.9) and
(4.12). More specifically, the solution for the inhomogeneous case is

M, — v(M_ + M) =%+ 7@(2-];{)_‘ (5.(T,-)>] s (4.13)
where (£,(T,)) means the combined local solution (by eliminating M) of

(e) = —2J,& '[exp(Jx/kT) cosh(JM/kT) =2 cosh(24,/kT)A'],
(4.14)

which follows from egs. (4.8)-(4.10) and eq. (4.12) for each temperature T,.
We shall come back to these expressions in section 5.

4.3, Weak coherent-field coupling

The above equations allow the explicit analysis of a number of interesting
situations. The simplest one corresponds to the case J =0 which reduces
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exactly to the inhomogeneous one-dimensional system with nearest-neighbor
interactions discussed in section 3.1. It thus seems interesting to study now
smalt enough values of J, e.g. such that one is allowed to write % =
tanh(JM /kT.)= M /KT,

We shall refer explicitly to the case of an infinite system with only two
temperatures, T, = T, for i =0, T,= T, for { <0. small differences |T, - T,
and a weak coherent-field coupling in the sense specified above. One has
immediately from eq. (4.13) the two sets of equations (notice vy, =
tanh(2J,/kT;)}:

_ _ JME[ % ] .

M; 2 (M,_,+ M, )= kT, 1+ 27, (e T, (=0, (4.15a)
_x _iﬂi[ el ] <

M= = (M + M) = iT, 1+ 57, (eTo)) ), is~1, (4.15b)

The only general solution of eqs. (4.15) and (4.14) with a physical relevance is

M= B[y \A-VI- )L+ JkT)I ", i=1, (4.16a)
and
M, =B,[y; (1= V1— 91+ HkTH]™ ™, i<—1; (4.16b)

and one also has from eqs. (4.15) for i =0, 1 that

2
M= > [1- (JIKT)V1-y3|M_, — B, (4.16¢)
2
and
M_ = —i— [1—(J/kTOV1 - viIM, - B, . (4.16d)
1

where B, and B, cannot be determined within the present theory (one would
need to know the value of M, at two points), i.e. the theory only predicts the
spatial variations of M,.

The above equations allow us to consider, for instance, the situation in which
half the system is in contact with a heat bath at a very high temperature,
namely T, = and a finite value for 7. It follows in this case y, =0, B, =0,

J
M,= %Bm(l + o \/1——?) (4.17)
1
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and M., i = 1, given by eq. (4.16a). The nature of the steady state in this case
depends on the functional dependence of B, on T, and J: one may get
convinced in particular that, in order to have a phase transition. BA(T,. 1)
needs to be such that B; =0 defines a critical temperature T,: 5,70 for
T,<Tj, B,=0 for T, = TY. Further cases of interest are considered in the
following within a more general context.

4.4. Impurites

Our basic two-dimensional model also allows the study of the influence of
impure sites on the details of a number of steady states. either equilibrium or
nonequilibrium. [n order to illustrate this fact we first mention the case of fixed
spins, s, = 1, for all even { when there is a coherent-field coupling along the ¥
axis as described in section 4.2; one has immediately from egs. (4.7) and (4.8)
that the steady state is characterized by

M, = tanh[(2],, + JM,) IKT,] (4.18)

for odd i, and M, =1 for even i. When T, = T and M, = M for all /, eq. (4.18)
describes in particular the case of a homogeneous temperature distribution and
fixed, impure spins at alternate columns.

In order to generalize the above situation, one may consider the Ising square
lattice with nearest-neighbor interactions along both principal directions, X and
Y, and a local temperature T'; at each lattice site; that is, we have now instead
of egs. (2.5) and (2.2):

Pi,‘(-‘.,‘) x CXP{JXSJ,(S.'—LJ + Si+l.j)/kTij I8 (8t Si.j+1)/kai} (4.19)
and

Siciy; TSy vy Sij-1 T8
e I CEL

respectively, and it follows the stationary condition

&, x
wyls;) = jj [1 TSy

x 1%
Y Y
(5:‘,'> - '2_1 ((-ﬁ—m) + <si+l.i)) - TI (<Sl-i—l> * <Sf.i+l))
+ %7?;7;(&/'(55*1.1 t 8 )6t Si-i+1)) =0 (4.21)

instead of eq. (2.9).

Let us apply this equation to the case of two coupled sublattices, i.e. like the
ones characterizing the ground state of the square antiferromagnetic Ising
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model. The first sublattice is occupied by fixed, impure spins so that one has
=1, say when both i and j are either even or odd, e.g. the corresponding
spms are in contact with a bath at zero temperature; on the contrary, the spins
at the second sublattice are free, so that they can take any of the two possible
values 5, = 1 (with ¢ and j having different parity) as a consequence of their
mteractlons with a single heat bath at temperature T inducing trans1l1ons
s;;— —5; with the probabilities per unit time (4.20) with «;; = a, y” =% and
Y~ v’ for i and j belonging to the second sublattice. When the site (i, )
belongs to the first sublattice, one has s, =1, T, =0, ;= 1, and it follows
from eq. (4.21) that

(Si 1 Sy =2M —1. (4.22)

When the site (i, j) belongs to the second sublattice, one has (s;0 =M,
T,=T, and

M = tanh[2(J, + J, ) /kT) (4.23)

to be combined with eq. (4.22).

4.5, Coherent-field coupling along the two directions

The basic two-dimensional model system in section 2 may also be approxi-
mated by a much simpler version, namely assuming coherent-field couplings
along both the X and Y principal directions of the lattice. That is, w2 wi.te new
with an obvious notation:

P.(s,) < exp[(JyM, + JyM)}s, /KT ] ; (4.24)
here |
M.=N"'2(s), M= N7 2 {sy) (4.25)
i :
and
wilsy) = 5 [1= 5,751 = 53751, (4.26)
where

y¥ = tanh(JM/kT,), v, =tanh(J,M/KT,). (4.27)
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The stationary state is characterized then by

(s,) =tanh[(J,M, + JyM)IKT,] (4.28)
and
M. =N"' Y tanh[(J M, + J,M)IKT], (4.29)
J
M= N"' 2 tanh[(J, M, + JyM)IKT]. {4.30)

Different temperature profiles may easily be worked out from these equations.

5. Small departures from equilibrium

Finally, we present in this section a differential formulation of the model
defined in section 4.2 by introducing infinitesimal variations, T,=T + 8T,
M,= M+ 8M;, with respect 10 the homogeneous, equilibrium solution M =
M(T) which was already analyzed before by us®); notice that we drop here the
dependence on j for simplicity.

Qne has immediately that

y¥ =tanh(27/kT) =y* +a"8T/T, (5.1)
where 7 = tanh(2J,/kT) and a* = —2J,(1 = (y")")/kT. and

_ _ 8T, 5M,-)
v, =tanh(JM/kT,)=v + a( T R (5.2)
where ¥ = tanh(JM/kT) and a= —JIM(1 —%3)/kT. Let us denote by M‘ the
local solution, corresponding to the local temperature T,, of the equilibrium
self-congistency condition egs. (4.12) and (4.11), and let us write then M; =
M + 8M_; it follows after some algebra that

=n

5 57,

‘=AM, T) — (5.3)

x|

with the auxiliary function

A= {20 M — (1 - M) sinh( BIM)] — JM(1 — M?) sinh(2B/M)}
x (2kT sinh*( BIM) — JM(1 — MY sinh(2BIM)] ', (5.4)
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B = 1/kT. In the same way, we may write (&.(T,)) = (e) + 8¢, where (e) is
given by eq. (4.14) and (&,(T,)) represents the local solution (by eliminating
M) of egs. (4.14) and {4.12); it follows that

86.= B(M., T) §T£ (5.5)
e By (MAZED [ D L2 L) s

by noticing the fact

~ = &T.
¥, = tanh(JMi/kTi) =y +a(l— A) —T—i . (5.7)

The above expressions allow to write immediately from eq. (4.13) that
8T,
M, = C(M, T)TE(M, T), (5.8)

where we introduced the assumption &M, + &M, ~28M,, i.e. smooth
variations, and the notation

C=(ay* +a*y)DIM, T)+a+ M+ yy*Bi2J, (5.9)
with
D=[(1-y*)Mly-1]/v" (5.10)
and
2a 1 - 'yx X:l_l
=ll-—+———a-+ . .
E [1 o LAty (5.11)

As expected, this implies in particular that § M, = constant for 8 T, = constant.
One also has for the local order parameter that

8(s;)=C(M, T)a—TT—"(l—vx)"‘{l—% +yX]E(M, T) (5.12)

on the assumption 8{s,, ) +8(s._,) =28(s,).
The above equations represent a complete solution for small deviations from
the equilibrium state. In order to extract from them some concrete informa-
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tion, one may define the quantities:

M=N"SM=M+N"28M, (5.13)

¢

T=N'"ST=T+N"'28T,. (5.14)

i

It then follows, for instance, that
M=M+T'CM, TYEM, TYT - T) (5.15)
showing that the critical temperature is given by the condition M=0,ie.

T =T[1- M{CM, TYE(M, T)}"']. (5.16)
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