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Abstract. We consider several Ising models with anisotropic interactions which can be 
solved exactly in the thermodynamic limit, for instance using a transfer matrix method. 
These include a two-dimensional system where each spin interacts directly with the two 
nearest neighbours along one of the principal axes of the lattice and has a coherent-field 
coupling with the spins along the second principal direction and a multidimensional system 
with coherent-field couplings along any of the principal axes. 

1. Introduction 

Many interesting equilibrium (macroscopic) phenomena, such as phase transitions, 
can be studied explicitly by applying Gibbs ensemble theory to simplified model 
systems with a given (microscopic) Hamiltonian. In practice, however, the number of 
mathematically well defined model systems with a physical relevance which can be 
solved exactly is very limited. Lattice model systems are in a sense the most interesting 
ones in physics; actually they capture many of the essential physical features of 
equilibrium cooperative phenomena and, in particular, they are now recognised to 
have great relevance for many phase transitions in nature (see, for instance, Thompson 
1972). In any case, Ising-like lattice models have only exceptionally a simple exact 
solution; exceptions are the celebrated solution by Onsager (1944) of the two- 
dimensional Ising model with nearest-neighbour interactions for zero magnetic field, 
and some mean-field solutions such as those by Bragg and Williams (the so-called 
coherent field) or Bethe and Peierls (quasi-chemical) (see, for instance, Smart 1966, 
Pathria 1977, Ziman 1979). The latter, however, are known to fail to reproduce the 
correct behaviour near the critical temperature as well as the spin-wave behaviour at 
low temperatures, and yield only semi-quantitative agreement at best in other cases; 
this is due to the fact that they involve a defective treatment of the detailed spin 
interactions and, as a consequence, fail to take proper account of short-ranged correla- 
tions, symmetries and dimensionality of the systems. I t  thus seems interesting to 
consider further variations of the Ising model having an exact solution and more 
realistic interactions in some sense. 

This paper is mainly devoted to the study of a two-dimensional king model with 
‘exact’ nearest-neighbour interactions along one of the principal directions of the lattice 
and a mean (coherent) field coupling along the other. The model may then be solved 
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exactly, even in the thermodynamic limit, when an  arbitrary external magnetic field is 
present, for example, by a transfer matrix method (Kramers and Wannier 1941; see 
also, for instance, Thompson 1972, Pathria 1977). Thus it may serve to illustrate some 
interesting aspects such as the effects of anisotropy, both in the sense of different 
strengths of the main interactions and in the sense of a coexistence of ferromagnetic 
with antiferromagnetic interactions, or to clarify somewhat the range of validity of the 
classical universality class. As a matter of fact, our model is still characterised by 
classical critical exponents for any ratio A between the interaction strengths. From a 
more practical point of view, the model is also interesting because it may show up  a 
more realistic behaviour near the critical temperature than standard mean-field models 
when A is used as a parameter. Moreover, it is very convenient to use as a reference 
state to analyse the properties of stationary non-equilibrium states in Ising-like models; 
such a study will be published elsewhere (Garrido and Marro 1987). There is also 
some hope that the present model may be of interest in describing some cooperative 
anisotropic surface phenomena, for instance. Finally, as an  extension of the above 
model we also consider the case of a multidimensional Ising model with coherent-field 
couplings along each one of the principal directions of the lattice, a situation which 
seems, in principle, more interesting than the standard mean-field one, given that it 
allows the explicit consideration of the space dimension, a number of anisotropies, etc. 

2. Nearest neighbours and coherent-field interactions 

We first consider a system defined through the Hamiltonian 
N ,  M 

I J = l  

= - 
JXslJ ( ’Z-1.J + ’ l + 1 , , )  + JyslJml 1 

where it is assumed that there is a spin variable sy = *l at each lattice site ( i  = 
1 , .  . . , N ; j  = 1 , .  . . , M ) ,  the indexes i and j describe respectively the 2 and F directions 
corresponding to the two principal axes of the lattice with exchange energies J, and 
Jy, both being positive constants, and 

where the bracket represents a canonical average. The above amounts to considering 
a two-dimensional ferromagnetic Ising model with anisotropic interactions such that 
there is a nearest-neighbour coupling along 2 and a coherent field (or Bragg-Williams 
mean field) along 9;  it seems convenient to consider separately the antiferromagnetic 
case, see P 3. 

The canonical partition function, as a consequence of the unrestricted sum in the 
Hamiltonian, factorises 

z=nz, 
J 

(2.3) 

L( a ,  a ’ )  = exp[2PJVaa’+ (PJl./2)m( a + a’)] (2.5) 
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for L T E S , , ,  cr’=s,+,,, ( p  = l / kT) ;  also, the restricted sum in (2.4) only extends to 
(so ; i = 1, . . , , N ;  j fixed) and periodic boundary conditions are implied, e.g. s N + , , ,  = 
s,,, for all j ;  also m,v+l = m ,  but this turns out to be irrelevant because homogeneity 
is assumed in the sense that m, = m for all i. Thus one may define the transfer matrix 
(Kramers and Wannier 1941) L with elements (2.5): 

and one has 

Z, = Tr( L w  ) = A ;” +Ay (2.7) 

where A ,  and A 2  represent the eigenvalues of L, A l  > A 2 .  It follows 

Z=n A ;“[I+ ( A L / A I ) ~ I  (2.8) 
J 

and, consequently, the free energy density 

a = - p - ’  In A l  (2.9) 

when N, M + m ,  i.e. only the largest eigenvalue is relevant for thermodynamics. A l  
follows from the eigenvalue equation det( L - A )  = 0 implying 

A l  = exp(2pJx) cosh(pJ,m) + [exp(4PJx) sinh2(/3J,m) + e ~ p ( - 4 P J , ) ] ” ~ .  (2.10) 

The action of an external field h is represented by an extra term - h  Zj, so in the 
J,m + h in (2.10), namely Hamiltonian (2.1), i.e. it just amounts to the substitution J,m 

A l  = exp(2pJx) cosh[p(J,m + h)]+{exp(4PJX) sinh2[P(J,m + h) ]+e~p( -4PJ , )}”~ .  

This solves the general problem; for instance, the magnetisation per spin is given by 

(2.11) 

m ( h ,  T)=-da /dh=p- ’ (d lnA, /dh )  

= a ( h ,  ~ ) [ a ( h ,  ~ ) ~ + e x p ( - 4 ~ ~ , ) ] - ” ~  ( 2 . 1 2 ~ )  

with 

a(h ,  T )  =exp(2/3Jx) sinh[p(J,m + h)] .  (2.12b) 

The case J ,  = 0 ( J ,  # 0) corresponds to the familiar one-dimensional Ising model 
with nearest-neighbour interactions (see, for instance, Thompson 1972); in zero field, 
h = 0, the (spontaneous) magnetisation is zero for all non-zero finite temperatues. On 
the other hand, the case J,  = O  ( J ,  # 0) reduces to the usual one-dimensional Ising 
model under a mean-field hypothesis (Thompson 1972). More interesting is the case 
J, f 0, J, # 0. The corresponding spontaneous magnetisation per spin, m,, which is 
the solution of (2.12) for h = 0, can be proved to have the limiting values mo-* 1 as 
T+0,  m,+O as T+m,  and there is a phase transition for all finite values of J , / J , ;  
figures 1-4 show up the behaviour of m, and m as a function of T, h and J,/J, .  Figure 
3 depicts the influence of the anisotropy parameter A = J , / J ,  on the spontaneous 
magnetisation. This suggests in particular the use of A as an adjustable parameter, for 
instance (figure 4) A -* 00 makes m, to tend towards the Bragg-Williams behaviour, 
while smaller values of A may approximate near T, to the behaviour of our model to 
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Figure 1. The magnetisation, as given by (2.12), plotted against temperature for J ,  = J ,  
and different values of the field h = O  (curve l ) ,  0.1 (curve 2 ) ,  0.5 (curve 3 )  and 1 (curve 4).  

r 

0 2 4 6 0 10 
T 

Figure 2. As figure 1 for h =0.5 and different values of J , / J y :  J , / J ,  =0.1 (curve l ) ,  1 
(curve 2) ,  5 (curve 3 )  and 10 (curve 4). 

the Onsager solution of the isotropic two-dimensional Ising model. The influence of 
the external magnetic field on m is depicted by figures 1 and 2. 

The critical temperature follows from (2.12) for h = 0 as m0+ 0; one has 

kT, = Jy exp(4Jx/ kT,). (2.13) 
The behaviour of T c =  T J A )  is depicted by figure 5 showing practically a linear 
dependence for A > 3.  

The spontaneous magnetisation critical exponent /3 which is defined as 

m, - Bo( - E ) ~ (  1 + B(  --E)' + . . , ) T +  T i  
6 > 0, E = T /  T, - 1, follows after some algebra as p = i, and 

(2.14) 

B i =  2(1 +4JxP,){/3fJ~.[exp(8PcJ,) -fl>-' .  (2.15) 
This suggests a classical critical behaviour of the model (a fact which is already obvious 
from figure 4 for large A )  for all finite values of A ;  one also has 6 = 1 ,  independently 
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I 

Figure 3. The spontaneous magnetisation, (2.121, for h = 0 plotted against temperature 
for decreasing values of the anisotropy parameter: J > / J r  =0.01 (curve l ) ,  0.1 (curve 2 ) ,  
0.25 (curve 3 ) ,  0.5 (curve 4) and 1 (curve 5 ) .  

TI T, 

Figure 4. The spontaneous magnetisation plotted against temperature, normalised to the 
corresponding critical temperature, for different models: curve 1 (Bragg-Williams), curve 
2 (the model in 5 2 for J , / J ,  =20), curve 3 (Bethe-Peierls), curve 4 (the model in § 2 for 
J , l J ,  = O . O l ) ,  curve 5 (Onsager). Notice that curves 1 (broken curve) and 2 (full  curves) 
are almost indistinguishable from each other. 

of A. That classical behaviour is confirmed by computing the other critical exponents, 
for instance, the critical isotherm exponent: 

h - D l m l s  T =  T, ( 2 . 1 6 )  

follows after some algebra as 6 = 3 and 

D = J Y ( 3 + P : J t ) / 6 .  (2.17) 
Notice that there is a hidden dependence here on J ,  through pc .  

The energy density, on the other hand, is given by 

( e )  = -a In A , lap. (2.18) 
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J, IJ, 

Figure 5. The dependence of the critical temperature T, on the ratio JJJ, between the 
strength of the interactions along the two principal directions, as given by (2.13).  

The simplest case occurs for T > T, and h = 0: 
( e )  = -2J, tanh(2PJx) T >  T, (2.19) 

and 
C,  = a(e ) /aT  = (4J?J k T 2 )  sech2(2PJ,) T >  T, .  (2.20) 

These expressions may be understood by noticing that the Hamiltonian (2.1) practically 
reduces for T > T, ( mo = 0) to the one-dimensional one. On the contrary, the corre- 
sponding expressions for T < T, are very interesting. One has for T < T, 
( e )  = -2Jxm coth(PJym) - J,m2+4Jxm2 cosh(4PJx) exp(-4PJX) 

(2.21) 
which goes continuously to the value (2.19) as one crosses T,.  Figures 6 and 7 illustrate 
the behaviour of the energy and specific heat respectively. Again, one observes that 

x {sinh(PJ,m)[ m cosh(pJ,m) + sinh(PJ,m)])-' 

I I I I I a 
0 0.2 0.6 1 .o 1.4 1.8 

TIT, 

Figure 6. The energy per spin, normalised to the zero-temperature value, plotted against 
temperature, normalised to the corresponding critical temperature, for the same models 
as in figure 4. 
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n Tc 
Figure 7. The specific heat at zero field plotted against temperature, normalised to the 
corresponding critical temperature, for the same models as in figure 4. Notice that the 
vertical axis is in absolute units. 

using A as a parameter one may approximate the behaviour of the more conventional 
models; large values of A lead to a Bragg-Williams behaviour, while small and 
intermediate values of A may reproduce approximately the Onsager solution and the 
Bethe-Peierls model, respectively. Of course, a given value of A affects each quantity 
differently (cf the cases A = 0.01 in figures 4 and 6 ) .  

The magnetic susceptibility readily follows as 

x = p m (  1 - m2){tanh[p(J,,m + h ) ]  -pJym}- ’  (2.22) 

whose critical behaviour is characterised by y = 1. 

3. Antiferromagnetic interactions 

The model defined in 0 2 may also be considered in the case J, <O. However, the 
local order parameter m, needs then a specific treatment. We thus write instead of 
(2.4) and (2.5): 

(3.1) 

L“’(a, a’) = exp[2pJxaa’+ ( ~ ~ , / 2 ) ( c ~ m ~  + ~ ‘ m ~ , ~ ) ]  (3.2) 

where (+ = sij and a’= s i + l j  as before, and mi = mo for all odd i, mi = me for all even 
i. That is, one has now two transfer matrices: 

(3.3) 
exp(2pJx + M + )  exp(-2pJx + ( - ) M - )  

Lo(,, = 

where M + =  (pJy/2)(mo + m e ) ,  M - =  (pJy/2)(m, - m e )  and 

2, = Tr[(LoLe)N’2]. (3.4) 
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The free energy density in the thermodynamic limit follows as 

a = -(2p)-’  In A’, 

where A { represents the corresponding largest eigenvalue given by 

(3.5) 

where 

g(J,, J,, m,, m e )  = exp(8PJ,) sinh2[PJ,,(mo + me)]+exp(-8PJ,) sinh2[PJ1.(m, -me)] 

+ cosh(2PJvm,) + cosh(ZPJ,m,) + 2 .  (3.7) 

One may convince oneself that the more general expression (3.5) reduces to (2.9) when 
m, = me (the case considered in 0 2 ) .  

However, we shall assume in the rest of this section that J, < 0, J, = -lJ,l; the 
system behaviour may then be described by using the odd and even order parameters 
at zero field: 

+ ~ x P ( ~ P I J ~ I )  sinh[PJy(mo - me)I}g(-IJxt, J y ,  mo, me)-’’’ .  (3.9) 

As expected, one has the same critical temperature T, as in (2.13) and the limiting 
behaviours ma+ 1 and m e + - l  as T+O for finite A, and m,+0, m e + O  as A + O .  It 
also follows easily from (3.9) that m, = me in general corresponding to a kind of 
antiferromagnetic behaviour, namely consecutive vertical rows tend to present a 
different order. 

4. Multidimensional system in the coherent-field approximation 

A simple case of the model in 0 2 corresponds to the Hamiltonian: 

= -c (Jd,&/ + J>sl/m,) 
l/ 

with 

(4.1) 

This amounts to assuming a coherent-field coupling along both k and 9. One has 
immediately the conditions 

(4.3) m, = ( NPJ,)-’(~ In Z / d m , )  ri2, = (NPJ~)-’(~ In ~ / a & / )  

the partition function 

Z =n  I/ (2 cosh[~(J,ri$+J,m,)]} (4.4) 
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and, consequently, 

m, = N-' 1 tanh[p(JxfiJ +J,m,)]  

mJ = N - ' L  tanh[/3(JxfiJ+J,m,)l 

J 

I 

and the free energy density 

a = -(PA'')-' In z 
= - ( p N 2 ) - '  ln(2 cosh[p(J$iJ +J,m,)]}. 

'J 

(4.5) 

(4.6) 

(4.7) 

As expected, when one assumes A = O  here the system reduces to a collection of 
one-dimensional systems with 

fiJ = tanh( pJxfiJ) (4.8) 

and 

m, = N- '  2 f i l  V i  
I 

(4.9) 

while assuming homogeneity in the sense that m, = m and GI = f i  implies f i  = m and 

m =tanh[p ( J ,+J , )m]  (4.10) 

which is the familiar mean-field result. 
A more interesting situation corresponds to a solution such that 

m ( l '  - - m ,  = m3 = . . . m i * )  = m2 = m4 = . . . . (4.1 1 )  

Assuming further that fiJ = f i  for all j ,  one has 

f i  = ( m i l i +  m ' " ) / 2  (4.12) 

m ( l )  = tanh[ p ( J x f i  + J ,  m ' ' ) 3 (4.13) 

The case G = 0 then corresponds to a certain antiferromagnetic structure m"' = -mI2) 
and f i  = m leads to m") = m ( 2 i  = m. The corresponding internal energy, which is 

( e ) = - J , N - ' C  f i ; - ~ , ~ - ' C m f  (4.14) 

in general becomes (e) = and (e) = - ( J x  +J,)m* for those two cases respec- 
tively. Also, one may show that the free energy density is larger for that 'antiferromag- 
netic structure' than for the familiar ferromagnetic one so that the former is not 
necessarily stable. 

m'"= t anh[p(Jyf i  +J,m"')]. 

I I 

The model also presents solutions corresponding to the conditions 

m" '  = mi = m , + ,  = m,,,, = . . . 
m ' * ' =  m,+, = m , + , + ,  - - .  . . 

m'"= m,+,_ ,  = .  . , , 
One has 

(4.15) 

(4.16) 
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and 

+, = r - I  m ( k l  (4.17) 

Then 6 = 0 implies Ek  m") = 0 and m"' = 0 is the only solution when r is odd, while 
for even r one may have some 'disordered antiferromagnetic structures' with periodicity 
r such that one has r / 2  of a kind. The corresponding free energy density: 

k = l  

a = -kT In 2+ r - l  I n { c o ~ h [ p ( J , ~ + ~ ~ , m " " ) ] }  (4.18) 
r ' =  1 

is such, in particular, that aa /a r i  = 0 and d 2 a / a f i 2 >  0. 
Finally, it seems interesting to notice that the model defined through the Hamiltonian 

(4.1) may easily be generalised to d-dimensional spaces, i.e. the generalised Hamil- 
tonian is 

d N  h' 

a = l  , , = I  ! < , = I  

with 

The internal energy then follows as 
d 

( e ) =  -N- '  1 J, mf, 
u = l  I', 

the partition function as 

and  the local magnetisations as 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

where the sum over i, is lacking, and a'= 1,. . . , d. The specific solutions in this case 
may be investigated as before. 
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