
Lat. Am. J. Phys. Educ. Vol. 6, Suppl. I, August 2012 252 http://www.lajpe.org

Gnuplot animations as a Physics teaching tool

Ananda Dasgupta
Department of Physics, Indian Institute of Science Education and Research – Kolkata.

E-mail: adg@iiserkol.ac.in

(Received 25 July 2011; accepted 17 December 2011)

Abstract
Computer based animations can go a long way towards enhancing student understanding of complex topics. In this

article we will explore the use of simple scripts (most no longer than a few lines) using the open source plotting

program gnuplot to develop animations. We feel that mastering this simple device will add considerably to the arsenal

of an educator in her efforts towards greater student comprehension.

Keywords: ICT, animations, Waves and Vibrations.

Resumen
La computadora basada en animaciones puede recorrer un largo camino hacia la mejor comprensión de los estudiantes

en temas complejos. En este artículo vamos a explorar el uso de scripts simples (la mayoría no son más que de unas

pocas líneas), utilizando el código abierto trazado gnuplot programa para desarrollar animaciones. Creemos que el

dominio de este sencillo dispositivo aumentará considerablemente el arsenal de un educador en sus esfuerzos hacia la

mayor comprensión de los estudiantes.

Palabras clave: Las TIC, las animaciones, ondas y vibraciones.

PACS: 01.50.ht, 43.20.Bi, 02.30.Nw ISSN 1870-9095

I. INTRODUCTION

It is well known that an animation can greatly enhance

student comprehension of complicated physics concepts.

Today the educator has a vast repository of animation

software, both commercial and non-commercial at her

disposal. While some of these software is of excellent

quality, one is often faced by the problem that using them

limits oneself to the features their creators had in mind. So,

while a java applet available on the web may be of very

high quality, it may not exactly be what the educator needs.

In such a situation, the best solution for the educator would

be to write her own software. This has the obvious problem

that not everyone can afford to spare the time and effort

necessary to learn a full-fledged programming language.

Even for those who already know the language, writing a

new program each time a new concept has to be

demonstrated to the class may be very demanding. In this

paper, we would like to call the educator's attention to a

simple, free solution that is openly available. This involves

using the open source plotting program gnuplot [1] which

has excellent capability of producing quick animations with

only a few lines of code.

While one may argue that this solution still demands

that one learns gnuplot scripting, it certainly requires much

less effort to learn few commands for a limited function (in

this case, plotting) program than to learn the intricacies of a

general purpose programming language. In addition, one

can create excellent animations with only a few lines of

code (most of our scripts are about ten lines long or less!),

which saves a lot of time, allowing the educator to devote

more attention to other aspects of her teaching. On top of

these, the other major advantages of gnuplot are

 It is open source

 It is free of cost

 It has versions which run on most operating

systems.
In Section II we will provide a very brief overview of

scripts in gnuplot. Here we also discuss the reread

command - which is critical for writing animation scripts.

In the next section we will we will demonstrate how to use

these concepts to write simple scripts that will perform

simple physics animations. Our examples will be from the

field of waves and vibrations – which is a topic whose

teaching benefits greatly from proper visualization. It

should be very easy for the reader to use the same

principles to write animation scripts suitable for whatever

course she is teaching.

II. GNUPLOT SCRIPTS AND ANIMATIONS

Gnuplot is a rather large and intricate open source plotting

program. The current gnuplot manual [2] runs into 224

pages! It is neither possible, nor necessary to outline all its

features in this article, especially since there are lots of

Ananda Dasgupta

Lat. Am. J. Phys. Educ. Vol. 6, Suppl. I, August 2012 253 http://www.lajpe.org

wonderful resources, apart from the manual, available

freely [3, 4]. Indeed the online help [5] available with the

gnuplot program is detailed enough for most purposes. In

the following we assume that the reader is familiar with the

basics of gnuplot and is able to use it for simple plotting

tasks.
In most plotting tasks, you would have to enter several

gnuplot commands sequentially in order to arrive at the

desired final graph. The alternative to writing the

commands out, one after the other, at the gnuplot prompt, is

to write them in sequence in a text file. An example of such

a file called, say, 'quickFourier.plt' (the .plt extension is

not mandatory, but is the standard convention) may be

file 'quickFourier.plt'
Plots the first few terms of the Fourier expansion
of a square wave
plot sin(x)
pause 2
plot sin(x)+sin(3*x)/3
pause 2
plot sin(x)+sin(3*x)/3+sin(5*x)/5
pause -1

Note that # is the gnuplot comment symbol – anything

following # is ignored by the gnuplot interpreter. One way

of running this script is simply typing gnuplot

quickFourier.plt at the linux command prompt. The pause

2 command makes gnuplot pause for 2 seconds before

carrying out the next instruction. The final pause-1

command makes gnuplot pause until the user presses any

key. Without it, the final graph will disappear as soon as the

script ends (which is immediately!). Of course, the user

may feel the default 100 sample points too small. Then she

could start gnuplot in the interactive mode and use the

commands

gnuplot> set samples 1000

gnuplot> load 'quickFourier.plt'

One command that is essential for writing gnuplot

animations is reread. When gnuplot encounters the reread

command, it essentially loads the script again. So if you

have a script 'easyWave.plt' that says

plot sin(x-ct)

ct = ct+sp

reread

(note that ct above is a single variable, not) and at the

gnuplot prompt type

gnuplot> ct = 0
gnuplot> sp = 0.01
gnuplot> load 'easyWave.plt'

will cause a sine wave to move slowly across the screen.

The catch is that the unconditional reread statement puts the

script into an infinite loop – and the only way out is to kill

the program (by hitting Ctrl-C). This is easily remedied by

replacing the last line of the script by

if (ct<10.0) reread

which will make the script end once the variable ct reaches

the value 10.0. You cannot, however, run the easyWave.plt

script by directly issuing the command gnuplot

easyWave.plt, since the script will raise errors about the

undefined variables ct and sp. A way out is to write another

script initEasyWave.plt containing

ct = 0
sp = 0.01
load 'easyWave.plt'

and run this script by typing gnuplot initEasyWave.plt at

the command prompt.

With this introduction we are all set to write more

complex animations.

III. A COUPLE OF EXAMPLES

It is possible to write a surprisingly large collection of

complex animations, using a little more than the basic

methods outlined above. We will illustrate just two of them

here.

A. Waves in a semi-infinite string

It is well known that small amplitude waves in a stretched

string satisfies the 1-dimensional wave Eq. [6]

, (1)

where
 is the speed of the wave (and are the

tension in the string and its mass per unit length,

respectively). Eq. (1) has the d'Alembert Solution [7]

 . (2)

The functions and are determined by the initial as well

as the boundary conditions. In particular, the initial

conditions

 , (3)

is satisfied by[8]

 , (4a)

Gnuplot animations as a physics teaching tool

Lat. Am. J. Phys. Educ. Vol. 6, Suppl. I, August 2012 254 http://www.lajpe.org

 . (4b)

Let us consider waves propagating in a semi-infinite string

stretching from a fixed end at to . Here the initial

conditions (3) are valid only for , and thus, (4a) and

(4b) will help us to specify the functions and only for

positive . This is not a problem for the left-going wave

 , but we do need the value of for negative

 as well. This can be obtained from the boundary

condition , which is valid for all positive . This

means that for , we have[9] .
Animating the motion of this wave can be done by

running gnuplot initWaveString.plt, where the

initialization scripts initWaveString.plt contains the code
set sample 3000
h = 1.0; a = 1.0; D = 10; ct = 0.0; sp = 0.08
set yzeroaxis
set title "Wave in a semi-infinite stretched string,

fixed end" font "Helvetica,16"
y0(x) = x<0?1/0:x<=D?0:x<D+a?h*(x-

D)/a:x<D+2*a?h*(D+2*a-x)/a:0
V(x) = -y0(x)
f(x) = x<0?-g(-x):(y0(x)+V(x))/2
g(x) = x<0?1/0:(y0(x)-V(x))/2
y(x) = x<0?1/0:f(x-ct)+g(x+ct)
load 'waveString.plt'

Note that here we have chosen the initial conditions so that

we begin with a wave traveling towards the left and at, the

wave is shaped like a triangle (Note that in the code above,

V(x) stands for). The actual animation is carried out by the

code waveString.plt, which is very small in comparison:
plot [][-2:2] f(x-ct)-.95 t "f" ls 4, g(x+ct)-1.05 t "g" ls

1,y(x) t "y" ls 3
ct = ct +sp
if (ct <20.0) reread

If you run this code, you should be able to see the pulse

travel towards the fixed end and finally get reflected back

with an accompanying phase reversal.

B. Partial Sums of Fourier Series

Our second example is not really an animation. It uses the

recursive function definition allowed by gnuplot to

demonstrate how the partial sums for the familiar Fourier

series expansions for the square wave and the triangular

wave[9] approach the limit as the number of terms increase.

This also consists of two scripts, initFourier.plt, which

contains

#Fourier series for the square wave and the

triangular wave
sq(x, n) = n == 0?

sin(x):sin((2*n+1)*x)/(2*n+1)+sq(x, n-1)

tr(x, n) = n == 0?

cos(x):cos((2*n+1)*x)/(2*n+1)**2+tr(x, n-1)
set sample 1000
n = 0
load 'Fourier.plt'
and Fourier.plt, containing
t = sprint ('Fourier Series summed to %d terms',

n+1)
set title t font 'Helvetica,16'
p [-10:10] [-1.5:1.5] 4/pi*sq(x, n) t 'square',

8/pi**2*tr(x, n) t 'triangular'
print n+1, ' terms'
n = n+1

pause -1 "Hit enter to continue"
if (n<50) reread
pause -1 "Hit enter to quit"

The interested reader will find many more examples of

animation codes at the author's course website [10]. There

she will also find instructions on how to convert the

animations into standalone movies. The latter are useful if

one is going to use a system in the classroom where gnuplot

is not installed. Of course, the advantage that one has in the

scripts that one can explore the effects of changes in

parameters and/or initial conditions by changing one or two

lines of code is largely lost when previously generated

movies are used.

IV. CONCLUSIONS

The codes above should illustrate that it is reasonably

simple to write scripts that animate important physical

concepts using gnuplot. While it is possible to construct

much more sophisticated plots and animations using

gnuplot (for examples you can see [11]), it is important to

note that the aim here is to provide the instructors with a

tool which can be used to create workable animations,

which are easy to modify in a few minutes. The author feels

that mastering this tool will aid an instructor considerably

in her aim to help her students comprehend complicated

material.

REFERENCES

[1] http://www.gnuplot.info/ Visited on June18, 2012.

[2] http://www.gnuplot.info/docs_4.4/gnuplot.pdf Visited

on June18, 2012.

[3] http://www.duke.edu/~hpgavin/gnuplot.html Visited on

June18, 2012.

[4]http://physicspmb.ukzn.ac.za/index.php/Gnuplot_tutorial

Visited on June18, 2012.

[5] To access the online help for plotting a graph, typing

help plot at the gnuplot prompt is usually adequate.

Ananda Dasgupta

Lat. Am. J. Phys. Educ. Vol. 6, Suppl. I, August 2012 255 http://www.lajpe.org

[6] Wallace, P. R., Mathematical analysis of Physical

Problems, (Dover Publications, New York, 1972).

[7] Arfken, G. B. and Weber, H. J., Mathematical methods

for Physicists, 6th Ed. (Academic Press, New York, 2005).

[8]http://www.iiserkol.ac.in/~ph221/animations/index.html

Visited on June18, 2012.

[9] http://gnuplot-tricks.blogspot.com/ Visited on June18,

2012.

